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This paper deals with parameter estimation for stochastic volatility models. We consider a twodimensional diffusion process (Y t , V t ). Only (Y t ) is observed at n discrete times with a regular sampling interval. The unobserved coordinate (V t ) rules the diffusion coef®cient (volatility) of (Y t ) and is an ergodic diffusion depending on unknown parameters. We build estimators of the parameters present in the stationary distribution of (V t ), based on appropriate functions of the observations. Consistency is proved under the asymptotic framework that the sampling interval tends to 0, while the number of observations and the length of the observation time tend to in®nity. Asymptotic normality is obtained under an additional condition on the rate of convergence of the sampling interval. Examples of models from ®nance are treated, and numerical simulation results are given.

Introduction

Many recent contributions in the ®eld of ®nance are devoted to modelling stock prices. The seminal [START_REF] Black | The pricing of options and corporate liabilities[END_REF] model assumes that stock prices follow a geometric Brownian motion with constant volatility, but several empirical works have rejected the shortcomings of the Black±Scholes model, and new models have been introduced (see, for example, for a survey, [START_REF] Ghysels | Stochastic volatility[END_REF]). Among these, the so-called stochastic volatility models have been proposed (see, for example, [START_REF] Hull | The pricing of options on assets with stochastic volatilities[END_REF], [START_REF] Chesney | Pricing European currency options: A comparison of the modi®ed Black±Scholes model and a random variance model[END_REF] and [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]). These models include stochastic volatility in such a way that the couple (stock price, volatility) behaves as a two-dimensional diffusion process, depending on unknown parameters. The problem of estimating these parameters from stock prices is not clearly addressed in all these studies. Indeed, this raises a dif®culty since only the stock price is observable, while the volatility is unobservable. It leads to a new problem in the statistics of diffusion processes.

In the case where all coordinates are observed, the estimation of drift and diffusion coef®cients is now classical. Among many references, let us quote [START_REF] Kutoyants | Parameter Estimation for Stochastic Processes[END_REF], [START_REF] Dacunha-Castelle | Estimation of the coef®cient of a diffusion from discrete observations[END_REF], [START_REF] Donahl | On estimating the diffusion coef®cient[END_REF], Lare Âdo (1990), [START_REF] Genon-Catalot | On the estimation of the diffusion coef®cient for multidimensional diffusion processes[END_REF], [START_REF] Bibby | Martingale estimation functions for discretely observed diffusion processes[END_REF] and [START_REF] Kessler | Estimation of an ergodic diffusion from discrete observations[END_REF]. These papers do not answer the estimation problem raised by stochastic volatility models.

Let us now come to the precise model investigated here. Assume that (Y t ) is the logarithm of the price process of some stock and that it is ruled by

dY t ì(ó 2 t ) dt ó t dB t , Y 0 0X
Here, (ó t ) is the positive volatility of the stock price, (B t ) a Brownian motion and ì some real function. Assume also that V t ó 2 t is another diffusion process, whose coef®cients depend on an unknown multidimensional parameter è, and which is de®ned by

dV t b(è, V t ) dt a(è, V t ) dW t , V 0 çX
We assume that (B t , W t ) t>0 is a two-dimensional standard Brownian motion, (V t ) is a positive diffusion process and ç is a positive random variable independent of (B t , W t ) t>0 .

The sample path (Y t ) is discretely observed at regularly spaced times t i iÄ, i 1, F F F , n.

Our concern here is to give a general methodology for estimating è from the observations (Y t 1 , F F F , Y t n ) only. For the statistical study, the key assumption is that the diffusion (V t ) has to be a strictly stationary positive process with stationary distribution ð è having at least a second-order moment. Apart from this assumption, the diffusion model for (V t ) can be quite general. Thus, our results will apply to most of the speci®c models proposed in the ®nancial literature.

As is always the case in the statistics of diffusion processes based on discrete observations, the likelihood function is untractable. Our approach is to construct appropriate and explicit functions of the observations to replace either the log-likelihood or the score function. We study the asymptotic properties of the estimators built using these functions. Our results rely on limit theorems proved in a previous paper [START_REF] Genon-Catalot | Limit theorems for discretely observed stochastic volatility models[END_REF] which concern the empirical distribution of the increments (Y t i À Y t iÀ1 , i 1, F F F , n), and are obtained in the following asymptotic framework. The number of observations n tends to in®nity, the sampling interval Ä Ä n tends to zero and the length of the observation time nÄ n tends to in®nity. As a result of the previous paper, the function ì cannot be estimated in this framework and behaves as a nuisance parameter. Moreover, it can be set equal to 0 without modifying the estimators (see Section 7). Therefore, this paper is devoted to the case ì 0. Also, the only relevant parameters in ®nance are those of the volatility.

The paper is organized as follows. Assumptions and preliminary results are presented in Section 2. The essential property is that the random variables Ä À1a2 n (Y t i À Y t iÀ1 ) behave asymptotically like a sample of Q è , de®ned as the distribution of Eç 1a2 , where (E, ç) has the law N (0, 1) ð è . Thus, Q è is a variance mixture of Gaussian laws, the mixing distribution being the stationary distribution of the unobservable diffusion (V t ). In Section 3, we study estimators based on the minimization of functions such as

U n (è) 1 n n i1 u(è, Ä À1a2 n (Y t i À Y t iÀ1 )),
where u(è, x) is a real function satisfying appropriate conditions. The minimum-contrast estimators are proved to be consistent and, under the additional condition nÄ 2 n 3 0, asymptotically normal with rate (nÄ n ) 1a2 . Section 3.3 is devoted to the special case u(è, x) Àlog q(è, x) where q(è, x) is the probability density of the mixture distribution Q è . It is especially well ®tted to the problem and possesses the following noteworthy feature: all the assumptions required to get identi®ability, consistency and asymptotic normality can be expressed in terms of conditions on the stationary distribution ð è of the (V t ) model. Another classical approach in situations where the likelihood is untractable is to de®ne estimators from estimating equations. This is done in Section 4. A consequence is that empirical moment estimators are included in this approach. Both methods only provide estimators of the parameters present in the stationary distribution of (V t ). However, these parameters may come from its drift or diffusion coef®cient. In Section 5, examples of parametric models commonly used in ®nance are fully treated. In Section 6, numerical results based on simulations are presented. Section 7 discusses extensions and gives concluding remarks.

Assumptions and preliminary results

The model

Let (Y t , V t ) t>0 be a two-dimensional diffusion process de®ned by

dY t ó t dB t , Y 0 0, (1) 
V t ó 2 t and dV t b(è, V t ) dt a(è, V t ) dW t , V 0 çX (2) 
We assume that (a) (B t , W t ) t>0 is a standard Brownian motion of R 2 de®ned on a probability space (Ù, A, P) and (b) ç is a random variable de®ned on Ù, independent of (B t , W t ) t>0 .

Equation (2) de®nes a one-dimensional diffusion process whose coef®cients depend on an unknown parameter è P È & R d . We make now the standard assumptions on functions b(è, v) and a(è, v) ensuring that the solution of (2) is a positive recurrent diffusion on (0, I) and a strictly stationary ergodic process.

(A1) For all è P È, b(è, v) and a(è, v) are continuous (in v) real functions on R, and C 1 functions on (0, I) such that

Wk . 0, Vv . 0, b 2 (è, v) a 2 (è, v) < k(1 v 2 ) and Vv . 0, a(è, v) . 0X
For v 0 . 0, de®ne the derivative of the scale function of diffusion (V t ):

s(è, v) exp À2 v v 0 b(è, u) a 2 (è, u) du 2 3 X (3) (A2) For all è P È,
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0 s(è, v) dv I, I s(è, v) dv I, I 0 dv a 2 (è, v)s(è, v) M è , IX Let ð(è, v) 1 M è 1 a 2 (è, v)s(è, v) 1 (v . 0) X (4) 
(A3) For all è P È, the initial random variable ç has distribution ð è (dv) ð(è, v) dv. (A4) There exists ã > 2 such that, Vè P È,

I 0 v ã ð(è, v) dv , I.
Assumptions (A1) and (A2) ensure existence and uniqueness of the solution of (2) together with the positive recurrence on (0, I). In particular, V t . 0 almost surely, for all t > 0. Assumption (A3) provides the strict stationarity property and the ergodicity (see, for example, [START_REF] Rogers | Diffusions, Markov Processes and Martingales[END_REF]). Moreover, note that, for each t > 0, V t has the distribution ð è and, under (A4), EV ã t , I. From now on, let (C, C , (Y t , V t ) t>0 , P è ) be the canonical diffusion solution of (1), (2), where C C(R , R 2 ) is the space of continuous functions on R and R 2 -valued, C is the Borel ó-®eld associated with the uniform topology on each compact subset of R , (Y t , V t ) t>0 is the canonical process, and P è is the distribution on (C, C ) of the solution of (1), (2).

Observations

We assume that (Y t ) is observable but at n discrete times only with regular sampling interval Ä. We denote by t i iÄ, i 1, F F F , n, these observation times. Our results are obtained under the assumption that Ä Ä n 3 0 and nÄ n 3 IX (5)

Let us set

X i X n i 1 Ä 1a2 n (Y t i À Y t iÀ1 ) and t i t n i iÄ n , i 1, F F F , nX (6) 
Conditionally on G ó (V t , t > 0), the random variables X i are independent and X i has distribution N (0, V i ) with

V i 1 Ä t i t iÀ1 V s dsX (7)
Thus, under the model (1), (2), the X i are variance mixtures of Gaussian distributions, and the likelihood function is untractable because the joint distribution of (V 1 , F F F , V n ) is not explicitly known. So, the alternative approach is to construct appropriate and explicit functions of the observations to replace either the log-likelihood or the score function. The statistical study relies on limit theorems concerning the empirical distribution of the sample (X i , i < n), which are presented below.

Remark 2.1. The problem of estimating è from a discrete observation of the sample path (V t ) itself has been investigated under different asymptotics. To obtain consistent estimators of parameters in the diffusion coef®cient of (V t ), it is assumed that the sampling interval Ä Ä n tends to 0 while the time interval T nÄ n where observations are available, remains ®xed [START_REF] Donahl | On estimating the diffusion coef®cient[END_REF][START_REF] Genon-Catalot | On the estimation of the diffusion coef®cient for multidimensional diffusion processes[END_REF]. It is worth noting that these results cannot be applied to obtain estimators of è in our model. Indeed, a discrete Ä-sampling observation of (Y t ) on a ®xed length time interval [0, T ] leads to a pointwise estimation ( V t ) of (V t ), t P [0, T ], which is not uniform on [0, T ]. This is not enough to derive consistent estimators of è. To go further, we have to use the ergodicity properties of (V t ), and so let T nÄ n tend to in®nity.

Preliminary results

We recall some results proved by [START_REF] Genon-Catalot | Limit theorems for discretely observed stochastic volatility models[END_REF]. We have investigated, for j belonging to a class of functions, the asymptotic behaviour of

P n (j) 1 n n i1 j(X n i )X
For j: R 3 R, let us consider when de®ned the function h j : R 3 R

h j (v) R j(xv 1a2 )n(x) dx, (8) 
where n(x) f1a(2ð) 1a2 gexp(Àx 2 a2) is the N (0, 1) density. Let p > 0, and F p be the class of functions satisfying the following two conditions (C1) and (C2).

(C1) j P C 1 (R) and WK 1 .

0 Vx P R jj(x)j < K 1 (1 jxj p ). (C2) h j P C 1 [0, I) and WK 2 . 0, Vv > 0, jh9 j (v)j < K 2 (1 v pa2 ).
Let us consider the probability density and the distribution de®ned on R by q(è, x)

I 0 1 (2ðv) 1a2 exp À x 2 2v ð(è, v) dv and Q è (dx) q(è, x) dxX (9)
The probability Q è is the distribution of åç 1a2 where (å, ç) follows a N (0, 1) ð è . For k < ã, let us de®ne the kth moment of the stationary distribution

ð è by m è (k) E(ç k ). Note that R jxj á Q è (dx) C á m è á 2 , ( 10 
)
is well de®ned for áa2 < ã, where C á is the áth absolute moment of the law N (0, 1).

Remark 2.2. Set j(x) ø(x 2 ); j belongs to F p if ø P C 1 [0, I) and satis®es

WK . 0, Vu > 0, jø(u)j jø9(u)j < K(1 u pa2 )X
For j belonging to F ã , with ã given in (A4), let Q è (j) R j(x)Q è dx, which is well de®ned (see ( 10)). For functions j, j 1 and j 2 , let us introduce (see ( 8) and (A2))

A j (è, v) v 0 fh j (u) À Q è (j)gð(è, u) du, v > 0, (11) V è (j 1 , j 2 ) 4M è I 0 s(è, v)A j 1 (è, v)A j 2 (è, v) dvX (12)
We can give now the main result concerning the asymptotic behaviour of P n (j).

Theorem 2.1. Assume (A1)±(A4), and let Ä n 3 0 and nÄ n 3 I.

(a) Let j belong to F ã , with ã given in (A4), for all è P È,

P n (j) À3 n3I Q è (j) in P è probabilityX (b) Let (j 1 , F F F , j k ) belong to F ã . Let è P È and assume that V è (j i , j i ) , I, for i 1, F F F , k. If moreover nÄ 2 n 3 0, then (nÄ n ) 1a2 P n (j 1 ) À Q è (j 1 ) F F F P n (j k ) À Q è (j k ) H f d I g e 3 D n3I N k (0, V (è)) under P è ,
where V (è) is the matrix given by V (è) ij V è (j i , j j ), 1 < i, j < k.

Minimum-contrast estimation

The method

Hereafter, we propose explicit estimators of è, based on the minimization of suitable functions of the observations, called contrasts. We refer to Dacunha-Castelle and Du¯o (1983, Chapter 3) for a general account on this notion. Set (see ( 6))

U n (è) 1 n n i1 u(è, X i ), ( 13 
)
where u(è, x) is a real function de®ned on È 3 R satisfying conditions to be de®ned precisely below. Let us stress the fact that U n (è) is equal to P n (j) with j(x) u(è, x). We study the associated minimum-contrast estimators è n de®ned as any solution of

è n arg inf èPÈ U n (è)X (14)
3.2. Asymptotic properties of minimum-contrast estimators

Consistency

In what follows, we denote by è 0 the true value of the parameter, i.e. the value of the parameter which rules the observation. According to the classical scheme, the following assumptions are needed. The exponent ã appearing below is that given in (A4).

(H1) È is a compact subset of R d . (H2) (Identi®ability assumption) For all è P È, the function è9 3 R u(è9, x)Q è (dx) has a strict minimum at è9 è. (H3) For all è P È, u(è, X) P F ã . (H4) For all x P R, u(X, x) is a continuous function on È. (H5) For ç > 0, there exists a function â(ç) such that

Vè, è9 P È, Vx P R, sup ièÀè9i<ç ju(è, x) À u(è9, x)j < â(ç)(1 jxj ã )
and â(ç) 3 0 as ç 3 0.

Theorem 3.1. Assume (A1)±( A4) and (H1)±(H5). Let Ä n 3 0, and nÄ n 3 I. Then, è n 3 n3I è 0 in P è 0 probability, where è n is the minimum-contrast estimator de®ned in (14).

Proof. The proof follows Dacunha-Castelle and Du¯o (1983, Chapter 3). Recall that U n (è) P n (u(è, X)). Assumption (H3) ensures that, for all è P È, ju(è, x)jq(è 0 , x) dx , I (see ( 10)). Applying Theorem 2.1 to the functions u(è, X) and u(è 0 , X), we obtain

U n (è) À U n (è 0 ) À3 n3I K(è 0 , è) in P è 0 probability,
where

K(è 0 , è) R fu(è, x) À u(è 0 , x)gq(è 0 , x) dxX (15)
The identi®ability assumption (H2) implies that the function è 3 K(è 0 , è) has a unique minimum at è è 0 . The continuity of è 3 K(è 0 , è) must hold and follows from (H4) and (H5). It remains to study the continuity modulus of U n (è). Let w(U n , ç) sup ièÀè9i<ç jU n (è) À U n (è9)j. Using (H5), we get

w(U n , ç) < â(ç) 1 1 n n i1 jX i j ã 2 3 X Now, E è 0 jX i j ã C ã E è 0 V ãa2 i . Since ãa2 > 1, the Ho Èlder inequality implies that V ãa2 i < 1a(Ä n ) t i t iÀ1 V ãa2
s ds. So, by the strict stationarity of (V t ), we get (see ( 10))

E è 0 jX i j ã < C ã m è 0 ã 2 X ( 16 
)
Following the usual standard proof, this leads to the consistency of the minimum-contrast estimator. u

Asymptotic normality

The next step of the statistical analysis is to study the asymptotic distribution of è n À è 0 suitably normalized. The additional assumptions are as follows (u9 è i denotes the partial derivative of u with respect to è i ).

(K1) The true value è 0 of the parameter belongs to 8 È. (K2) For all x P R, u(X, x) P C 2 ( 8 È). (K3) For all è P 8 È, for all i, u9 è i (è, X) P F ã , and u9 è i (è, x)q(è, x) dx 0. (K4) For all è P 8 È,

0 dv s(è, v) v 0 ð(è, u) du 2 , I and 
I dv s(è, v) I v u ãa2 ð(è, u) du 2 3 2 , IX ( 
K5) For all è P 8 È, for all i, j, u 0 è i è j (è, X) P F ã , the matrix J (è) de®ned by

J (è) ij R u 0 è i è j (è, x)q(è, x) dx (17)
is positive de®nite. (K6) For ç > 0, there exists a function å(ç) such that, for all i, j P f1, F F F , dg,

Vè, è9 P 8 È, Vx P R, sup ièÀè9i<ç ju 0 è i è j (è, x) À u 0 è i è j (è9, x)j < å(ç)(1 jxj ã )
and å(ç) 3 0 as ç 3 0.

Among these assumptions, some are those usually used to prove asymptotic normality ((K1), (K2), K(6) and the second parts of (K3) and (K5)). The others are required for applications of Theorem 2.1. Now, let us introduce the matrix

Ó(è) (V è (u9 è i (è, X), u9 è j (è, X))) i,j1,XXX,d X (18) 
It has been proved by Genon-Catalot et al. (1998, Section 3.4) that, under (K4), the quantity V è (j, j) is ®nite for all j P F ã . Therefore, under (K3), (K4), Ó(è) is well de®ned for all è.

Theorem 3.2. Assume (A1)±(A4), (H1)±(H5) and (K1)±(K6), and let Ä n 3 0 and nÄ n 3 I. If moreover nÄ 2 n 3 0, then

(nÄ n ) 1a2 ( è n À è 0 ) À3 D N d (0, J À1 (è 0 )Ó(è 0 )J À1 (è 0 )) under P è 0 X
Proof. By the consistency of è n and (K1), we have P è 0 ( è n P 8 È) 3 1. Let d è n, j and è 0, j be the coordinates of è n , è 0 , and denote by U 9 n,i (or U 0 n,ij ) the partial derivatives of U n with respect to è i (or è i è j ). For i P f1, F F F , dg,

0 U 9 n,i ( è n ) U 9 n,i (è 0 ) d j1 ( d è n, j À è 0, j ) 1 0 U 0 n,ij (è 0 s( è n À è 0 )) dsX
By (K3) and Theorem 2.1,

U 9 n,i (è 0 ) P n (u9 è i (è 0 , X)) 3 R u9 è i (è 0 , x)q(è 0 , x) dx 0 as n 3 I in P è 0 probabilityX
Using (K3), (K4), Theorem 2.1(b) may be applied to the set of functions u9 è i (è 0 , x), i P f1, F F F , dg. So, we get (see (18) for Ó(è))

(nÄ n ) 1a2 (U 9 n,i (è 0 )) iPf1,XXX,dg À3 D N d (0, Ó(è 0 )) under P è 0 X Applying Theorem 2.1(1) to U 0 n,ij (è 0 ) gives U 0 n,ij (è 0 ) P n (u 0 è i è j (è 0 , X)) 3 J (è 0 ) ij in P è 0 probability (J is de®ned in (K5))
. Finally, a bound for the remainder term is obtained using (K6), for all i, j P f1, F F F , dg,

1 0 U 0 n,ij (è 0 s( è n À è 0 )) ds À U 0 n,ij (è 0 ) < å(i è n À è 0 i) 1 1 n n k1 jX k j ã 2 3
X By the consistency, å(i è n À è 0 i) 3 0, in P è 0 probability. Using ( 16), the left-hand side of the previous inequality tends to 0 under P è 0 . Assumption (K5) leads to the asymptotic distribution

N d (0, J À1 (è 0 )Ó(è 0 )J À1 (è 0 )) for (nÄ n ) 1a2 ( è n À è 0 ). u
Examples of contrasts can be derived from the moments of Q è . For instance,

u(è, x) (x 2 À m è (1)) 2 or u(è, x) log v(è) (x 2 À m è (1)) 2 v(è) , with m è (1)
x 2 Q è dx and v(è) fx 2 À m è (1)g 2 Q è (dx). We shall not give more details of these examples, but we have rather restricted our attention to an example which takes more into account the distribution of the X i .

A contrast ®tting the statistical model well

To build an appropriate contrast, in view of Theorem 2.1, we use the idea that X i has approximately, for small Ä, the distribution Q è . Thus, let us set

u(è, x) Àlog q(è, x), (19) 
where q(è, x) is the density of Q è (see ( 9)). In this case, the following theorem links the conditions on u(è, x) with the properties of the stationary distribution ð è of diffusion (V t ). Proof. For (a), let us remark that (see ( 15))

K(è 0 , è) log q(è 0 , x) q(è, x) q(è 0 , x) dx K(Q è 0 , Q è ), which is the Kullback information of Q è 0 with respect to Q è . Recall that K(Q è 0 , Q è ) is positive if and only if Q è T Q è 0 . One can calculate the characteristic function of Q è : j è (t) R e itx Q è (dx) I 0 e Àv t 2 a2 ð(è, v) dvX
Therefore, the characteristic function of Q è at point t is equal to the Laplace transform of ð è at point t 2 a2, and, for all (è, è9)

P È 3 È, ð è T ð è9 D Q è T Q è9 .
This gives the result. For (b), let us set, for t > 0, g(è, t) I 0 f1a(2ðv) 1a2 g exp(Àta2v) ð(è, v) dv and j(è, t) Àlog g(è, t). So j(è, x 2 ) u(è, x). Using Remark 2.2, we just need to prove that j(è, X) P C 1 ([0, I)) and that

WK è . 0, Vt > 0, jj(è, t)j jj9 t (è, t)j < K è (1 t)X (20) 
Note that g(è, 0) , I if and only if E è (ç À1a2 ) , I. Under this condition, since g(è, X) is a Laplace transform, we have, for all t > 0, 0 , g(è, t) , I and g(è, X) is continuous on [0, I). Similarly, g(è, X) P C 1 ([0, I)) if and only if E è (ç À3a2 ) , IX So, j(è, X) P C 1 ([0, I)). It remains to prove (20). Let á P [0, 1]. By the Ho Èlder inequality, for t, t9 > 0,

g(è, át (1 À á)t9) < I 0 exp À t 2v ð(è, v) (2ðv) 1a2 dv 2 3 á I 0 exp À t9 2v ð(è, v) (2ðv) 1a2 dv 2 3 1Àá X Thus, j(è, át (1 À á)t9) > áj(è, t) (1 À á)j(è, t9
). Therefore, j(è, X) is a concave function and its derivative is given by

j9 t (è, t) 1 2 I 0 1 v exp À t 2v ð(è, v) (2ðv) 1a2 dv 2 3 0 I 0 exp À t 2v ð(è, v) (2ðv) 1a2 dv 2 3 X (21)
So, for all t > 0,

0 , j9 t (è, t) < j9 t (è, 0) 1 2 E è (ç À3a2 ) E è (ç À1a2 ) X (22) 
This clearly implies (20), and the proof is complete. u Theorem 3.3(a) means that all the parameters present in the stationary distribution ð è can be consistently estimated. However, some parameters of b(è, X) and a(è, X) may no longer be present in the expression of ð è . They must be estimated by another method. Further work is in progress in this direction. It is indeed a drawback, already encountered in other papers (see, for example, [START_REF] Kessler | Simple and explicit estimating functions for a discretely observed diffusion process[END_REF]). On the other hand, this method provides simple and tractable computations of the estimators and requires weak assumptions easy to check. The second part corresponds to the weakest version of assumption (A4). For what concerns assumptions implying asymptotic normality, let us point out that, for this contrast, u9 è i Q è (dx) 0 is immediate and that J (è) is now the Fisher information matrix of Q è .

Estimating functions

In situations where explicit likelihood in untractable as in the case here, another approach is to construct an estimating function G n (è) to be a substitute for the score function (see, for example, [START_REF] Barndorff-Nielsen | A review of some aspects of asymptotic likelihood theory for stochastic processes[END_REF]). Let us consider ø: È 3 R 3 R d , and de®ne

G n (è) n i1 ø(è, X i )X ( 23 
)
We de®ne estimators e è n as the solutions of

G n ( e è n ) 0X (24) 
Let ø i , i 1, F F F , d, denote the coordinates of ø. Clearly, a class of estimating functions is obtained by setting ø i (è, x) u9 è i (è, x) and u(è, x) a function leading to a contrast U n (è) (see ( 13)). However, other estimating functions can be used. Then, assumptions concern the functions (ø i ). For instance, another class of estimating functions is derived from power functions and moment properties of the distribution Q è . In particular, the moment method corresponds to the choice

ø i (x) C 2i m è (i) À x 2i , i > 1X (25)
Clearly, this leads to estimate m è (i) by n k1 X 2i k a(nC 2i ). In the contrast approach, we are able to prove that all the solutions of ( 14) are consistent. Afterwards, asymptotic normality is proved. In the estimating functions method, one proves that a solution of (24) exists which is consistent and asymptotically normal, under a different set of assumptions given below.

( K1) This is the same as (K1) ( K2) For all x P R, ø(X, x) P C 1 ( 8 È). ( K3) For all è P 8 È, for all i, ø i (è, X) P F ã and ø i (è, x)q(è, x) dx 0. ( K4) This is the same as (K4). ( K5) For all è P 8 È, for all i, j, (dadè j )ø i (è, X) P F ã and the d 3 d matrix J (è) de®ned by

J (è) ij R d dè j ø i (è, x)q(è, x) dx (26) is positive de®nite. ( K6 
) For all è P 8 È, for ç > 0, there exists a function ä è (ç) such that, for all i, j P f1, F F F , dg,

Vx P R, sup è9:iè9Àèi<ç d dè j ø i (è9, x) À d dè j ø i (è, x) < ä è (ç)(1 jxj ã )
with ä è (ç) 3 0 as ç 3 0.

The notation is chosen on purpose to establish a correspondence between assumptions (K1±K6) of Section 3 and assumptions ( K1± K6) above. Note that the matrix J (è) appearing in ( K5) is not necessarily symmetric. The property J (è) positive de®nite means that the inner product h J (è)x, xi is positive for all x T 0. Using the notation introduced in (12), let us de®ne the matrix Ó(è) by

Ó(è) ij V è (ø i (è, X), ø j (è, X))X (27) 
Theorem 4.1. Assume (A1)±( A4) and ( K1)±( K6), and let n 3 I, Ä n 3 0, nÄ n 3 I. If moreover nÄ 2 n 3 0, then an estimator e è n , which solves (24), exists with a probability tending to one as n 3 I under P è 0 and is weakly consistent. Moreover,

(nÄ n ) 1a2 ( e è n À è n ) À3 D N d (0, J À1 (è 0 ) Ó(è 0 ) J À1 (è 0 )) under P è 0 X Proof. Our assumptions imply that (a) G n (X) P C 1 ( 8 È), (b) under P è 0 , (Ä n n) 1a2 (1an)G n (è 0 ) À3 D N d (0, Ó(è 0 )), (c) (1an) 
G n (è 0 ) P è 0 À3 J (è 0 ), where G n (è) denotes the matrix ((dadè j )G n,i (è)) and (d) J (è 0 ) is positive de®nite.

In addition, a uniformity condition is required. Set M c, n fè: iè À è 0 i < c(nÄ n ) À1a2 g; we must have

sup èP M c, n 1 n G n (è) À J (è 0 ) À3 P è 0 0X (28) 
This property will be proved later. Now, we can follow step by step the proof of Theorem A1 (Appendix) of [START_REF] Barndorff-Nielsen | A review of some aspects of asymptotic likelihood theory for stochastic processes[END_REF] to get the existence and consistency of e è n and also that, for all convex combination è Ã n of e è n and è 0 , (1an) G n (è Ã n ) P è 0 À3 J (è 0 ). Then, the asymptotic normality is a straightforward consequence of the standard expansion:

0 Ä n n 1a2 G n (è 0 ) (Ä n n) 1a2 ( e è n À è 0 ) 1 n G n (è Ã n )X
We now check condition (28), following the proof of Theorem 3.4 and Lemma 3.5 of [START_REF] Bibby | Martingale estimation functions for discretely observed diffusion processes[END_REF]. Let f (è) ø(è, x)Q è 0 (dx), where ø ((dadè j )ø i ). We have

sup èP M c, n 1 n G n (è) À e J (è 0 ) < sup èP K 1 n G n (è) À f (è) sup èP M c, n j f (è) À J (è 0 )j,
where K is a compact set such that M c, n & K & 8 È. From ( K2), ( K6) and the Lebesgue theorem, it follows that f is continuous. Thus, the second term in the inequality above tends to 0. Let us choose a ®nite covering of K by balls of radius ç and centres è j . For è such that iè À è j i < ç, we have, using ( K6),

1 n n i1 ø(è, X i ) À f (è) < ä è j (ç) 1 n n i1 jX i j ã 1 n n i1 ø(è j , X i ) À f (è j ) j f (è j ) À f (è)jX
The proof may be ended by an appropriate choice of ç and noting that ø(è j , X) P F ã . u

Application to some classical models in ®nance

In this section, we develop the previous estimation methods for parametric models on the hidden diffusion (V t ) commonly used in ®nance. We study below successively the contrast based on log q(è, x) (see Section 3.3) and the moment method (see ( 25)).

Model 1. The diffusion approximation of a GARCH(1,1)-M model [START_REF] Nelson | ARCH models as diffusion approximations[END_REF]) is given by

dY t ó t dB t , Y 0 0, dV t á(â À V t ) dt cV t dW t , V 0 ç, V t ó 2 t
, where á, â and c are real numbers. Let us set a 1 2áac 2 and ë 2âáac 2 . Assumption (A2) holds if and only if ë . 0 and a . 0, and the stationary distribution ð è is the inverse Gamma distribution, with density

ð(è, v) ë a Ã(a) v ÀaÀ1 exp À ë v 1 fv. 0g , (29) 
where Ã(a) is the usual gamma function. The moments of ð è are given by

m è ( p) E è (ç p ) ë p Ã(a À p) Ã(a) if p , a, (30) 
and I if p > a. Hence, (A4) is satis®ed with ã 2 if and only if a . 2. To sum up, we get the conditions a . 2, ë . 0, which are equivalent to â . 0, á . c 2 a2. From the expression for ð è and Theorem 3.3, we see that only the parameters a and ë can be identi®ed in our asymptotic framework; so the unknown parameter to estimate is è (a, ë). This means that either á or c is known. Applying (9), we remark that the mixture distribution Q è is completely explicit:

q(è, x) I 0 1 (2ðv) 1a2 exp À x 2 2v ë a Ã(a) v ÀaÀ1 exp À ë v dv 1 (2ð) 1a2 Ã(a 1 2 ) Ã(a) ë a (ë x 2 a2) a 1a2 X
This is the distribution of (ëaa) 1a2 T when T has the Student t distribution of 2a degrees of freedom. Note that the Student distribution has been already proposed to take into account the observed ``fat tails'' of stock returns (see, for example, [START_REF] Blattberg | A comparison of the stable and Student distributions as statistical models for stock prices[END_REF]). Hence, we consider the contrast built with

u(è, x) a 1 2 log ë x 2 2 À a log(ë) log Ã(a) Ã(a 1 2 ) 2 3 X (31)
Let us assume that è (a, ë) P È, where È is a compact subset of (2, I) 3 (0, I) and let è n be the minimum-contrast estimator associated with (31). Let us remark that

E è (ç À3a2 ) a 1 2 ë 3a2 Ã(a) Ã(a 1
2 ) X Theorem 3.3 implies that (H3) is satis®ed with ã 2. Note also that è 3 u(è, x) is continuously differentiable (the derivatives can be explicitely computed) and satisfy (H5). Therefore, the weak consistency follows from Theorem 3.1.

For the asymptotic normality, the main dif®culty is to prove that the asymptotic covariance matrix is well de®ned and positive de®nite. An elementary proof shows that assumption (K4) of Theorem 3.2 is satis®ed. For (K5), we can compute explicitly J (è):

J (è) 11 Ø9(a) À Ø9(a 1 2 ), J (è) 12 À1 ë(2a 1) and J (è) 22 a ë 2 (2a 3) ,
where Ø(z) is the derivative of log Ã(z) (the so-called digamma function). To show that the determinant is positive, we use the following equality [START_REF] Luke | The Special Functions and Their Approximations[END_REF], Chapter 2):

Ø(z) log(z) À 1 2z À h(z), with h(z) I 0 f(e t À 1) À1 À t À1 1 2 g e À tz dtX
Let us stress the fact that asymptotic normality holds without any other additional restriction on the parameter set.

For the moment method, we use the estimating functions based on the moments of ð è . A natural choice to estimate (a, ë) is to consider the ®rst two moments of ð è , which are ®nite if a . 2, and are given by m è (1) ëa(a À 1) and m è (2) ë 2 a(a À 1)(a À 2). The correspondence (a, ë) 3 (m è (1), m è (2)) is a C 1 diffeomorphism of (2, I) 3 (0, I) onto (0, I) 2 . Therefore, we consider the estimation of m (m è (1), m è (2)), and set ø (ø 1 , ø 2 ), with ø 1 (m, x) m è (1) À x 2 and ø 2 (m, x) 3m è (2) À x 4 . Looking at ø 2 , we must choose ã 4, which implies the condition a . 4 to get (A4) (see (30)). Thus, compared with the contrast method, the application of the moment method adds a restriction on the parameter set. Let us remark that assumptions ( K1)±( K6) are easy to check, and that the asymptotic covariance matrix of the estimators can be explicitly computed.

Model 2. [START_REF] Heston | A closed-form solution for options with stochastic volatility with applications to bond and currency options[END_REF]. We consider for (V t ) the classical square-root process used by [START_REF] Cox | A theory of term structure of interest rates[END_REF] for interest rates. Let

dV t á(â À V t ) dt cV 1a2 t dW t , V 0 ç,
where á, â and c are real numbers. Let us set a 2âáac 2 and ë 2áac 2 . If ë . 0 and a > 1, the stationary distribution ð è is the Gamma distribution with density

ð(è, v) ë a Ã(a) v aÀ1 e Àëv 1 fv . 0g X (32) 
Thus, this model has similarities with the variance-gamma model of [START_REF] Madan | The variance gamma model for share market returns[END_REF]. The moments of ð è are ®nite for all positive p:

m è ( p) E è (ç p ) Ã(a p) Ã(a)ë p X (33) 
In particular, E è (ç) aaë and E è (ç 2 ) a(a 1)aë 2 . Here again, the parameter to estimate is è (a, ë). The mixture distribution Q è can be computed and has the density

q(è, x) (2ë) 1a2 Ã(a)ð 1a2 jxj(2ë) 1a2 2 aÀ1a2 K aÀ1a2 (jxj(2ë) 1a2 ),
where K í is the modi®ed Bessel function of the second kind with index í (see, for example, [START_REF] Luke | The Special Functions and Their Approximations[END_REF]). This distribution belongs to the Barndorff-Nielsen (1978) generalized hyperbolic distributions.

For the contrast method, we must check E è (ç À3a2 ) , I. Since

E è (ç À3a2 ) ë 3a2 Ã(a À 3 2 ) Ã(a) , I if a . 3 2 ,
and I otherwise, this leads to an additional restriction. Assumption (K4) holds for all ã > 2 by an elementary proof. As for (H5), (K3) and (K6), the technical tool is to use that, at I, K í (t) $ e À t ð 1a2 2t À1a2 , to control the polynomial growth of the functions involved. For the moment method, the restriction a . 3 2 is no longer needed. Here also, the asymptotic covariance matrix of the moments estimators can be explicitly computed.

Model 3. The diffusion approximation of the exponential ARCH model [START_REF] Nelson | ARCH models as diffusion approximations[END_REF]) is given by dY t e Z t a2 dB t , d Z t á(â À Z t ) dt r dW t X Both methods can be applied. The moment estimators have been used by [START_REF] Chesney | Pricing European currency options: A comparison of the modi®ed Black±Scholes model and a random variance model[END_REF].

Numerical results

The aim of this section is to investigate the qualities of the estimators in Model 1 and Model 2 for ®nite sample, using 150 simulated paths of (Y t ).

We consider ®rst Model 1, with c 2 1a2 . To simulate the diffusion process V t , we have used a Euler scheme with sampling interval Äa50 and get from this an approximation of the integral V i , for each i. Then, we have computed the moment and the minimumcontrast estimators for each path. Table 1 gives the mean and the standard deviation of the estimates of the parameter (â, á) for both methods and for different values of n and Ä.

First, let us recall that, when á 1X5, the moment method does not provide an asymptotically normal estimator for this parameter. So, they are not present in Table 1. Let us remark that the contrast method provides better results than the moment method does, as can be seen from the means as well as the standard deviations. This is in accordance with the fact that the contrast method takes the distribution of the observations into account more. The accuracy of the estimates of â is better than those of á. This may be explained by the properties of the Student distribution; it is well known that, even for independent observations of the Student distribution, the parameter involving the number of degrees of freedom is badly estimated (see the discussion by [START_REF] Blattberg | A comparison of the stable and Student distributions as statistical models for stock prices[END_REF]). Finally, these numerical results con®rm that n and Ä must be in accordance with the asymptotic conditions nÄ large and nÄ 2 small to get good estimates.

For Model 2, we have chosen values for the parameters which enable an exact simulation of V t using the explicit transition densities (â 2, á 1, c 2 1a2 ). As suggested by Table 2, the same conclusions hold, and the results are even slightly better than for Model 1. 

Theorem 3. 3 .

 3 Recall that ç has distribution ð è . (a) If, Vè, è9 P È, è T è9 A ð è T ð è9 , then (H2) holds. (b) Let è P È. If E è (ç À3a2 ) , I, then u(è, X) belongs to F 2 .

Table 1 .

 1 Simulation results for Model 1 (150 replications)

				Moment method	Contrast method
					Standard		Standard
	Asymptotic Parameter True value	Mean	deviation	Mean	deviation
	n 1500	â	2	2.02	0.13	2.02	0.13
	Ä 0X1	á	3.5	3.97	1.53	3.72	1.26
	n 3000	â	2	2.04	0.09	2.03	0.08
	Ä 0X1	á	3.5	3.52	1.05	3.54	0.84
	n 3000	â	2	2.02	0.11	2.02	0.11
	Ä 0X05	á	3.5	3.83	1.29	3.66	1.06
	n 1500	â	2	2.07	0.34	2.08	0.33
	Ä 0X1	á	1.5	Ð	Ð	1.58	0.53
	n 1500	â	2	2.12	0.23	2.1	0.18
	Ä 0X3	á	1.5	Ð	Ð	1.54	0.41

Parameter estimation for discretely observed stochastic volatility models

Extensions and concluding remarks

Stochastic models for stock prices and the instantaneous standard deviation of the stock returns are generally given by

where only (S t ) is observed. Thus, Y t log S t has a drift term depending only on the instantaneous conditional variance V t . This leads us to consider models such that dY t ì(ó 2 t ) dt ó t dB t X Genon-Catalot et al. (1998) proved that, under appropriate conditions on ì(X), the results of Theorem 2.1 are identical. Therefore, the estimation methods apply in the same way, that is to say as if ì were identically null. This is consistent with the usual results concerning the different rates of convergence for the drift and diffusion coef®cients estimation, as Ä n 3 0.

To include more models of the ®nancial area, a relevant extension would be to assume that the two Brownian motions B t and W t are correlated and to study the estimation of their instantaneous correlation. Another possible extension is to study models where the coef®cients of (V t ) depend on the state (Y t ). More generally, multidimensional processes including observed and unobserved coordinates can be encountered and justify further investigations.
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