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

The current challenge in biomedical research is to detect genetic risk factors involved in common

complex diseases. The power to detect their role is generally poor in populations that have been large

for a long time. It has been suggested that the power may be increased by taking advantage of the

specificity of founder populations; linkage disequilibrium spanning larger regions and kinship

coefficients being stronger than in large populations. A new method is proposed here, the Maximum

Identity Length Contrast (MILC) which, in contrast with other existing methods, does not make the

assumption of unique ancestry for the genetic risk factors. It is thus appropriate for a search for

common genetic risk factors for complex diseases. Statistical properties of the method are discussed

in realistic contexts.



Many genetic studies presently focus on foun-

der populations, i.e. populations that are derived

from a small number of individuals and have

undergone a demographic expansion with neg-

ligible migration after foundation. In fact, these

populations have been fruitfully exploited to

map and clone genes involved in rare monogenic

diseases (Ha$ stbacka et al. 1992; Houwen et al.

1994). For the study of these diseases, it is

assumed that all affected individuals carry a

unique mutation introduced into the population

by one ancestor. Random affected individuals

are thus assumed to carry an identical by descent

(IBD) mutation and to consequently share a

common haplotype in the vicinity of the disease

locus (de la Chapelle, 1993). Non-random

associations of alleles at different loci, usually

referred to as Linkage Disequilibrium (LD), are

thus expected nearby the disease gene. In fact,

disease mutations exhibiting LD with marker
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alleles over large regions (5–15 cM) (Groenwald et

al. 1998; Starfield et al. 1997; Labuda et al. 1996)

have been reported in different founder popu-

lations. The extent of LD around a disease locus

harboring a founder mutation mainly depends on

the time that has elapsed since the mutation

occurred or entered the population (de la

Chapelle & Wright, 1998). LD is a decreasing

function of the genetic distance and can be used

for the fine mapping of a disease gene.

The current challenge in biomedical research is

to detect genetic risk factors involved in common

complex diseases. In the last twenty years,

epidemiological studies of complex diseases have

resulted in a body of convincing arguments that

susceptibility alleles are not rare but common.

The simplest argument is to consider IBD

distributions in affected sib pairs either on the

whole genome or on already known susceptibility

loci. The proportion z
!
of affected sibs pairs who

are IBD¯ 0 at a given locus (i.e. the two sibs

received two different parental alleles at the

locus) is never negligible, showing that, within a

family, the disease may cosegregate with

different parental alleles. This, in turn, indicates

that susceptibility alleles are frequent enough to
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be present in both parents or in double dose in

one parent. The most classical examples are the

IBD distributions in the HLA region for HLA-

associated diseases. The proportions z
!
of affected

sibs who are IBD¯ 0 for HLA are 0.08 for type

I diabetes (Payami et al. 1985) and 0.09 for

coeliac disease (Greco et al. 1998), and thus

clearly non-zero. Conversely, for a rare factor,

very small values of z
!
(i.e. very near to zero) are

expected, as the probability for the susceptibility

allele to be present in both parents or in double

dose in one parent is negligible. In fact, genome

scan linkage analyses performed on complex

diseases have shown that very small values of z
!

can be excluded from the whole genome in most

cases, implying that genetic factors for these

diseases are expected to be common. Further-

more, very few genetic risk factors are presently

identified for complex diseases but those that are

known are common. For instance, it has now

been demonstrated that the ApoE4 allele of the

apolipoprotein E locus is associated with

Alzheimer disease. This allele has a mean fre-

quency of about 15% in human populations. Its

frequency is clearly enhanced among affected

individuals of all studied human populations

(mean frequency of about 30%, The ApoE and

Alzheimer disease meta analysis consortium,

1997). Similarly, the DQA0501–DQB0201 hetero-

dimer is strongly associated with coeliac disease.

Indeed, this HLA heterodimer has a frequency of

80–95% among affected individuals of different

European origin, but also a frequency of 15–20%

in the corresponding general populations

(Clerget-Darpoux et al. 1994).

These factors are neither necessary nor

sufficient to develop the disease. The power to

detect their role is poor in large panmictic

populations. It has been suggested that the

power may be increased by taking advantage of

the specificity of founder populations, in par-

ticular of kinship coefficients stronger than in

large populations and of the extent of LD over

large regions. Furthermore it has been argued

that heterogeneity could be reduced in such

populations (Lander & Schork, 1994).

New methods using LD and combined in-

formation on several linked markers have re-

cently been proposed to locate genes involved in

multifactorial diseases (Lazzeroni, 1998; Service

et al. 1999; Clayton & Jones, 1999). Even if these

approaches allow for an etiologic heterogeneity

for the disease by supposing that not all the

affected individuals carry the disease allele, all

carriers are assumed to have inherited a copy

from one unique ancestor present among the

founders of the population. This hypothesis is

also used in all methods based on the coalescence

theory that have been proposed so far (Mc Peek

& Strahs, 1999; Graham & Thompson, 1998).

However, when a genetic risk factor is frequent

in a large human population, it certainly must

have been frequent among a group of founders 10

to 20 generations earlier (mean time since

foundation for many well known founder popu-

lations such as the Saguenay population of

Quebec, the northern subisolates of Finland etc.).

As an example, the study of the non-human

primate ApoE gene tends to show that ApoE4

(the allele associated with greater risk) is the

ancestral state of the ApoE gene. In fact, Hanlon

& Rubinsztein (1995) showed, in comparing

sequences of ApoE genes in different primates,

that all the non-human primate ApoE alleles

correspond to ApoE4. Hence there is no reason to

hypothesize that this factor would have been

rare among small human groups 200 to 400 years

ago. It is unlikely that carriers of the factor in

the present time have inherited it from only one

unique ancestor of the founding generation.

The aim of the present study is to examine the

use of founder populations to locate such com-

mon genetic risk factors. In this paper, we

present a new statistic, the Maximum Identity

Length Contrast (MILC), that makes no as-

sumption on the existence of a unique ancestral

haplotype. The statistic is based on the same

principle as the Haplotype Sharing Statistic

(HSS), proposed by Van der Meulen & te

Meerman (1997). Like HSS, MILC contrasts

genomic identity lengths observed among

affected individuals with those observed among

random individuals from the same population.

However, MILC uses a different way to contrast
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both groups and consider the maximum of the

statistic over a genomic region. The power of the

MILC statistic has been investigated here on

simulated data. Interests and limitations of this

approach are discussed.



The Maximum Identity Length Contrast Statistic

(MILC)

The principle of MILC is to search for an

excess of haplotype identity among affected

individuals. This excess is expected to signal the

presence of a genetic risk factor.

The sample consists of affected individuals and

their parents, typed for a set of linked markers.

Two groups of haplotypes are considered: those

formed by the parental alleles that are trans-

mitted to the affected offspring and those formed

by the parental alleles that are not transmitted.

These haplotypes may thus be different from

parental haplotypes if recombination occurred.

The ‘non-transmitted haplotypes’ group is rep-

resentative of the overall population in a similar

manner to what has been demonstrated for non-

transmitted alleles (Spielman et al. 1993;

Thomson, 1995) and used as a control group. In

the present study all parents are assumed to be

typed, and chromosomal phases systematically

known for probands. This hypothesis was made

in a first approach for simplicity, as it allows

unambiguous determinations of transmitted and

non-transmitted haplotypes. Haplotype identity

length is characterized in each group and con-

trasted over the two groups.

Computation of the haplotype identity length

Let SLj(t) be the score of identity length at

marker L, for the jth pair of haplotypes within

the transmitted group and SLj(n) the score of

identity length at marker L for the jth pair of

haplotypes within the non-transmitted group.

These scores are computed for each possible pair

of haplotypes at every marker locus L as follow.

Starting from the locus L, marker alleles at that

locus are compared between the two haplotypes

of the jth pair. The comparison is repeated for

right and left adjacent markers as long as alleles

are identical by state. SLj(t) is the distance

between the leftmost and the rightmost markers

with identical alleles. For each marker L, we

consider ML(t) and ML(n) defined respectively as

the mean of SLj(t) over all possible pairs of

haplotypes, j, in the transmitted group and the

mean of SLj(n) over all possible pairs of haplo-

types, j, in the non-transmitted group.

Identity length contrast statistic

Van der Meulen & Te Meerman (1997) have

proposed the comparison of these mean values

between the two haplotype groups at every locus

L. However, to contrast both groups they

consider an absence of LD among marker alleles

under the hypothesis of no genetic risk factor in

the studied genomic region. We showed that this

hypothesis on LD is untrue. Additionally, when

tests are performed on many markers in a region,

investigators usually use the maximum score

observed. The statistic we propose makes no

assumption on the LD. MILC considers DML¯
ML(t)®ML(n) and DM

max
, defined as the maxi-

mum value of DML over all markers used on a

chromosomal region.

To look for an excess of haplotype identity

length in the group of transmitted haplotypes,

we compare the observed value of DM
max

with its

distribution under the null hypothesis of no

difference between groups. To obtain this dis-

tribution, DM
max

is computed a large number of

times on haplotype groups constructed to show

no difference: for each parent, we randomly

reassigned one of the transmitted or non-

transmitted haplotypes to a group, the other

haplotype being assigned to the other group.

From this distribution, the significance level is

determined by obtaining the probability to

exceed the observed DM
max

under the null

hypothesis. Conversely, for a given type one

error α, a threshold Tα can be obtained and

DM
max

can be compared to Tα to conclude.

For a given type I error the power of the MILC

statistic depends on the population genetic

characteristics (kinship coefficient, LD pattern),

on the disease genetic model and on the marker
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Fig. 1. Typing situations studied. Two situations were considered in terms of number and location of
markers on the chromosomes: map 1 and map 2.

map used in the analysis. When working in a

given population, as the genetic model under-

lying the disease is not known, the only element

to be chosen by the investigator is the marker

map. In a first approach, we evaluated the power

at given type I error of the MILC statistic for

different marker typing situations and for a fixed

genetic model.

Population genetic characteristics of founder

populations are highly determined by stochastic

processes occurring during population history:

initial sampling process (there are only a few

individuals and they are thus not necessarily

representative of the population they come from)

and genetic drift (due to small population sizes)

that occurs during the first generations. The

same set of initial and growth population

parameters (number of founders, number of

generations since foundation, number of children

per couple) may lead to different population

genetic characteristics. We performed different

population simulations in order to obtain the

mean power and variance for given population

parameters and disease genetic model.

Population and genetic models used in the

analysis

Populations are simulated with the software

GENOOM, developed by Hadi Quesneville

(Quesneville & Anxolabe! he' re, 1997). Populations

founded by 500 individuals and followed during

10 generations are simulated. The number of

offspring per couple is randomly drawn from a

Poisson distribution with a initial mean value of

r
!
¯ 3 and a maximum cut-off value of 10. The

reproduction rate, r, varies from generation to

generation according to a logistic model (r¯
(r0–2)(1-N}50,000)­2, with N: size of the popu-

lation). Individuals are assumed to live for 3

generations. The mean population size, over 100

population simulations, is 33892 (maximum

value of 37008, minimum value of 30092).

Random mating, no mutation and no migration

are assumed during the 10 generations. Since

different non-homologous chromosomes can be

considered as independent, each individual is

represented by one pair of chromosomes of length

100 cM.

We considered one biallelic disease suscep-

tibility locus (located at position 50cM on the

chromosome). The allele at greater risk (allele 2)

has a frequency of 20% in the population from

which the founders were sampled and the

penetrances are 0.03, 0.06 and 0.30 respectively

for genotypes 1}1, 1}2 and 2}2. The mean disease

frequency over 100 population simulation is

5.00% (maximum value of 5.86%, minimum

value of 4.27%). Two marker maps are investi-

gated: a dense map with ten markers spaced

1 cM apart, located from position 45 cM to

position 54 cM on the chromosome (map 1) and a

wider map with three markers 10 cM apart (map

2), located from position 40 cM to 60 cM (see Fig.

1). Each marker has five equifrequent alleles in

the original population of the founders (mean

heterozygosity of 0.8). One marker is located at

the disease susceptibility locus (negligible re-



Complex diseases in founder populations 259

combination fraction) but this marker is not the

disease susceptibility locus itself (i.e. the marker

is not the functional polymorphism). No marker

allele exhibits any particular linkage dis-

equilibrium with the disease susceptibility locus

in the population from which the 500 founders

are sampled.

Power

The power of the MILC statistic was studied at

a nominal value of 5%, for every simulated

population. The power in one population is

obtained by computing MILC on 500 different

samples of randomly drawn affected individuals

in that population. The power is assessed as the

proportion of samples for which the MILC

statistic is significant at the 5% level. Each

sample consists of 200 affected individuals and

their parents. Power was assessed in 100 popu-

lation simulations. The mean power over the 100

populations and the associated variation interval

are computed. For comparison, TDT test powers

using the GASSOC software (Schaid, 1996) were

also computed on the previously described

populations using the marker located at position

50cM (position of the disease locus).

To evaluate whether the power of MILC

depends on the kinship contrast existing at the

disease locus between affected and control indi-

viduals, we characterized the kinship coefficients

at the disease locus in both haplotype groups, the

haplotypes of affected individuals (transmitted)

and the control haplotypes (non-transmitted).

Kinship coefficient contrast

The kinship coefficient is calculated as the

probability of being identical by descent for two

randomly drawn alleles at a given locus, in a

given generation. To compute this coefficient a

very highly polymorphic marker was simulated

at the disease susceptibility locus location (pos-

ition 50 cM), in order to have 1000 different

alleles in the 500 founder individuals. The kinship

coefficient is computed on the same samples as

the power computations, for both haplotype

groups with 10000 random drawings and allele

comparisons of 2 haplotypes. The coefficients (for

transmitted or non-transmitted groups) assigned

to the population are the mean over the 500

haplotypes groups sampled in this population.

The mean kinship coefficient values and asso-

ciated variation interval over the 100 population

simulations are computed. Mean kinship co-

efficients in transmitted and non-transmitted

haplotype groups are contrasted using a Student

t-test.

Although the power of the MILC statistic

relies on this kinship coefficient contrast, this

contrast is not directly available from data, as

such highly polymorphic markers are not yet

available. The power of the statistic thus also

relies on the information available on this

contrast that is brought by the linkage dis-

equilibrium between the marker alleles and the

locus and also among marker alleles themselves.

Indeed, since the MILC statistic considers the

markers one at a time, sequentially along the

chromosome, its power also depends on the LD

among alleles at adjacent markers. As an il-

lustration, we characterised the LD pattern in

some of the simulated populations, denoted P
!
,

P
"
, P

#
, P

$
and P

%
; first between the susceptibility

locus alleles and the marker alleles and second

between alleles at successive adjacent markers.

We measure the LD by a simple chi-square

test, as the markers used are polymorphic.

This measure is highly dependent on allele

frequencies. But in these populations, even after

10 generations, allelic frequencies at every

marker are very similar : 5 alleles at every marker

locus, with a global mean frequency of 0.199, and

a standard deviation of 0.02. In a given popu-

lation, LD is measured in 500 random samples of

500 affected individuals and their parents and for

the 2 types of haplotype groups. Mean p-value of

the global chi-square test over the 500 measures

is computed for each population.

RESULTS

Table 1 presents the mean powers and

associated variation intervals of the MILC stat-

istic for the two typing situations. The power of

a TDT at the disease locus is also reported. First,

the mean power of the MILC statistic is low in
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Table 1. MILC and TDT power* variations among population simulations of given initial and

growth characteristics with a nominal level of 5%

MILC TDT†
Marker located

Typing situation Map 1 Map 2 on the locus

Power mean 0.43 0.10 0.10
Variation interval [0.02; 0.88] [0.01; 0.33] [0.02; 0.23]

* The power is calculated in every population over 500 samples of 200 affected individuals and their two parents.
Mean power over 100 population simulations is presented.
† TDT tests are performed for the marker located on the susceptibility locus using the Gassoc software (Schaid, 1996).

Table 2. Mean kinship coefficients over all

population simulations in the two types of

haplotype groups

Transmitted
haplotypes

Non-transmitted
haplotypes

Mean kinship
coefficient*

0.0064 0.0055

Variation interval [0.0057; 0.0071] [0.0051; 0.0059]

* Kinship coeffcients are computed in groups of 400
transmitted or non-transmitted haplotypes (see text).

the situation we studied. However it is enhanced

when using a denser map (map 1). Furthermore,

the mean power of MILC with a dense map is 4

times greater than that of the TDT. The use

of the information simultaneously on several

markers may thus increase the power to detect

genetic risk factors.

Another important result is the large difference

of power among population simulations. Using

map 1, the power can vary from nearly 2% to

nearly 90% for some populations. Situations

where the power of the MILC is equivalent

for both marker typing situations were even

observed.

Table 2 presents the kinship coefficients in

both haplotype groups. This coefficient is signifi-

cantly higher (at the 0.001 level) in the trans-

mitted group than in the non-transmitted and

for every population we simulated. As expected,

transmitted haplotypes are more related in the

vicinity of the susceptibility locus than non-

transmitted haplotypes. Furthermore, as shown

in Figure 2, there is a linear increase of MILC

power with the kinship contrast. Indeed, the

linear regression of MILC power over the kinship

contrast t-test value is highly significant (R#¯
0.44, associated p-value! 6¬10−"%). Note how-

ever that, even in the transmitted haplotype

group, the kinship coefficient is low (0.0064).

This is clearly different from the monogenic

context in founder populations where a strong

kinship coefficient is expected for transmitted

haplotypes as all affected individuals are thought

to have inherited the disease allele from one

common ancestor (for a dominant disease a

kinship coefficient close to 0.25 is expected) and

a low coefficient for non-transmitted haplotypes

(representative of the basal level of kinship due

to the population history). The low kinship

observed for both groups in our populations is

due to the characteristics of the genetic risk

factor modelled (frequent at risk genotypes and

low associated penetrances).

Note that the disease locus that we modelled in

this study very roughly approximates the effect

of APOE in Alzheimer disease, considering that

allele 2 represents ApoE4 and allele 1 the other

APOE alleles (The ApoE and Alzheimer disease

meta analysis consortium, 1997) and considering

constant genotype-specific risks with age and

sex. Interestingly, the kinship coefficient values

we obtained are very close to those observed in a

recent study (Vezina et al. 1999) concerning

ApoE4 and Alzheimer disease in the Saguenay

area of Quebec (a founder population with

characteristics similar to our simulations). The

poor contrast between the kinship coefficients

explains the relatively poor power we observed

for the MILC statistic.

Figure 3 shows the LD between alleles at the

susceptibility locus and marker alleles in the

population P
!
. It appears that LD between the

susceptibility locus alleles and the alleles of the

marker located on the susceptibility locus is
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Power of MILC

Value of the kinship contrast (t–test)

Fig. 2. Power of the MILC statistic as a function of the kinship contrast between haplotype groups
(with a nominal level of 5%, for the typing situation 1).

Fig. 3. Linkage disequilibrium between the susceptibility locus alleles and the marker alleles in groups of
1,000 transmitted or non-transmitted haplotypes in the population P

!
. Mean p-values of the global chi-

square test. The global chi-square test is performed in 500 different haplotype groups built with 500 random
samples of 500 affected individuals and their parents from population P

!
. The mean p-values of the global

chi-square test over the 500 measures are reported.



262 C. B  

Table 3. Linkage disequilibrium between different marker pairs in groups of 1000 transmitted or

non-transmitted haplotypes in the population P
!

Marker locations
Linkage disequilibrium (p-values*)

Transmitted Non-transmitted
Distance Marker 1 Marker 2 haplotypes haplotypes

10 cM 40 50 0.0858 0.2529
10 cM 50 60 0.0007 0.0292

1 cM 45 46 0.0024 0.0136
1 cM 46 47 0.0024 0.0072
1 cM 47 48 0.0064 0.0001
1 cM 48 49 0.0020 0.0015
1 cM 49 50 0.0006 0.0022
1 cM 50 51 0.0006 0.0129
1 cM 51 52 0.00001 0.00002
1 cM 52 53 0.0024 0.0587
1 cM 53 54 0.0020 0.0021

* The global chi-square test is performed in 500 different haplotype groups built with 500 random samples of 500
affected individuals and their parents from population P

!
. The mean p-values of the global chi-square test over the

500 measures are reported.

significantly stronger among transmitted haplo-

types.

LD can be stronger for loci 6 cM apart (marker

44 cM and disease susceptibility locus) than for

loci 1cM apart (marker 49 cM and disease

susceptibility locus). LD is thus not a simple

decreasing function of the genetic distance as

observed around a disease mutation in a mono-

genic context. Table 3 presents the LD between

alleles at adjacent markers 1 cM apart (map 1)

and at markers 10 cM apart (map 2). In this

population P
!
, LD may be equivalent for markers

10 cM apart and for markers 1 cM apart (LD

between markers 50–60 cM and markers 50–

51 cM for the transmitted group) and even

sometimes stronger (markers 50–60 cM and

markers 47–48 cM for the transmitted group).

We present in Table 4 the power of the statistic

in the population P
!

for both typing situations.

Indeed, this allows us to compare the power of

Table 4. Power of the MILC statistic with a

nominal level of 5% for map 1 and map 2 and

power of the TDT test for the marker located on

the susceptibility locus in the population P
!

MILC (Map 1) MILC (Map 2) TDT

0.33 0.30 0.11

The power is calculated using 200 individuals and their
2 parents.

the statistic at a given kinship contrast but with

two different pattern of LD. In this case, MILC

power is equivalent for typing situations 1 and 2,

meaning that markers 10 cM apart in this

population are as informative for the disease

susceptibility locus as markers 1 cM apart.

The results presented here on one population

(P
!
) illustrate the large variability of LD

observed among chromosomal regions. Figure 4

presents the LD among marker alleles 1 cM apart

in groups of transmitted haplotypes for a set of

population simulations. It appears that the large

variability of LD is also observed among popu-

lation simulations. The LD patterns can be

strongly different from one population to the

other. This may largely explain the variability of

power observed in Table 1 for the MILC statistic.



Unlike other methods that have been proposed

previously, the MILC statistic presented in this

paper makes no assumption of unique ancestry

for the genetic risk factors. It is thus appropriate

for the search of common genetic risk factors for

complex diseases.

The present study was conducted by simu-

lating a marker map on a single chromosome

carrying a disease locus. This situation corre-

sponds to a candidate gene or candidate region
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1

Fig. 4. Linkage disequilibrium between markers 1 cM apart in groups of 1000 transmitted haplotypes in 5
different populations (Pop0 to Pop4). Mean p-values of the global chi-square test are reported.

strategy. We compared the power of MILC with

that of the TDT using a marker located on the

disease locus. This is the most powerful situation

for the TDT. However, if MILC is performed on

the whole genome, the significance level must be

adjusted for multiple testing. As the statistic

uses the maximum of the contrast on a chromo-

somal region, the correction deals with the

number of regions tested. When considering

chromosomal arms, since the tests applied to

different arms are independent, a Bonferroni

correction may be applied. This correction will

lead to an important decrease of power as

compared to the situation presented in this

paper. Note that the correction would be even

more drastic for a systematic TDT.

The use of information on several consecutive

markers seems to enhance the power to detect

genetic risk factors. However this increase in

power depends on the existence of LD among

marker alleles. We showed that LD patterns are

highly variable in founder populations among

chromosomal regions as well as among popu-

lations. Indeed stochastic effects are important

in such populations and particularly in the

creation and evolution of LD. If, as supposed in

our simulation study, no particular LD is present

among founders, LD in the first generation can

only be created by the initial sampling process of

a small group of individuals : the founders are not

necessarily representative of the population they

come from. During the population growth phase

two forces act on LD. Recombination tends to

reduce initial LD and genetic drift, due to the

small population sizes in the initial generations,

tends to randomly create LD. Consequently the

power of the genetic study of complex diseases is

highly variable. In particular, the large power

variability of the MILC statistic among popu-

lation simulations may be closely linked to this

LD variability. Interestingly, recent studies tend

to confirm this significant variation in LD among

human populations (Kidd et al. 1998; Goddard et

al. 1999).
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In our study, no initial LD is modelled between

the susceptibility locus and the marker alleles in

the initial population. However, LD around

genetic risk factors for complex diseases has been

observed in several populations. In this way, LD

between APOE and marker alleles spanning over

less than 5 kb has been observed (Seixas et al.

1999). We could thus realistically model an

initial LD between the susceptibility locus and

the marker located on it. On the other hand,

some intragenic polymorphisms are in linkage

equilibrium with APOE.

However, the existence of initial LD between

the susceptibility locus and the marker located

on it would probably have enhanced the final LD

and thus the power of MILC as well as the power

of the TDT. For an optimal use of the MILC, a

good knowledge of the LD among the markers

that are available in the population is thus

necessary. Preliminary population studies are

required in order to use the best marker map.

The existence of stochastic processes has

another important consequence: the strength of

LD is not a simple indicator of the genetic

distance. The power to locate precisely genetic

risk factors for complex diseases may be poor for

any fine-mapping method based on linkage

disequilibrium, in contrast to rare genetic risk

factors for monogenic diseases.

In a first approach, it has been assumed in the

present paper that all parents were typed and

chromosomal phases systematically known for

probands. Indeed, when parents are typed, if the

markers are close and polymorphic, phases can

be reconstructed in most of the situations.

However, discarding families for which phases

are ambiguous leads to inflation of the type I

error rate (Curtis & Sham, 1995; Knapp, 1999).

Further work will be required to correct for this

bias as well as to consider situations where

parental genotypes are not available.

The power of MILC depends on many para-

meters (initial population size, growth para-

meters, genetic model, marker map charac-

teristics etc) and all the situations could not be

considered here. In particular, we assumed that

the number of offspring during the growth period

is Poisson distributed. As it has been shown

(Austerlitz & Heyer, 1999) that, for the popu-

lation of Saguenay Lac St Jean (French Canadian

founder population), zero-geometric distribution

is a better approximation of the observed

distribution, it could be interesting to assess the

consequences of a change in this distribution on

the power of MILC.

However, our results suggest that the random

sampling of affected individuals in founder

populations, even when integrating information

on several markers, does not seem to be a

strategy as powerful for complex diseases as for

monogenic diseases. It could be related to the

fact that the genetic risk factors involved in

complex diseases are different to those involved

in monogenic disease: they are possibly common

factors, neither necessary nor sufficient to deve-

lop the disease. Extensions of the method in

order to account for known genealogies in the

sampling of affected individuals are under study.

Indeed, this information is available in many

isolates and may likely enhance power.
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