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Modelling Radiative and Energy Balance on
Heterogeneous Areas from Remotely-Sensed
Radiances

by F.A. Bouguerzaz * A. Olioso * M. Rafty

RESUME

L’évapotranspiration (LE), la photosynthése (A.), ['albédo
et la fraction absorbée du rayonnement photo-
synthétiquement actif (fAPAR) sont des variables constituant
une importante source d’information pour ’analyse et la
gestion des écosystémes agricoles et naturels. Les modéles
de Transferts Sol-Végétation-Atmosphere (SVAT) permettent
actuellement de quantifier ces variables. Les modéles
SVAT incluent des paramétrisations détaillées des
échanges d’énergie, d’eau et de quantité de mouvement
entre les surfaces terrestres et I’atmosphere. Ces modeles
ont en général été établis pour des surfaces
«homogenes», i.e. pour lesquelles les caractéristiques des
paysages sont considérées homogénes. Les paramétres de
ces modeles décrivent la physiologie et la géométrie des
plantes ; ils sont mesurables a ['échelle d’un milieu
homogeéne, mais ne permettent pas la description des
variables intéressantes sur des surfaces hétérogénes. A
plus large échelle, comme les modéles SVAT ne sont pas
linéaires, I’hétérogénéité des paysages peut entrainer des
erreurs substantielles dans I’estimation de ces variables.
Ceci est une raison majeure des difficultés d’utilisation de
ces modeéles avec des données satellitaires (luminances).
Sur la base de résultats théorigues récents, nous
définissons un nouveau modéle adapté aux pixels
hétérogenes, appelé modele «spatialisé ». Nous considérons
des pixels constitués de divers couverts homogénes pour
lesquels la connaissance des paramétres individuels permet
le calcul des variables précédentes. Le modéle résultant
permet de dériver ces variables a partir des mesures de
luminances a l’échelle des pixels. L’analyse de ces résultats
sur des zones hétérogenes, en utilisant des simulations
locales, montre une bonne précision du modeéle spatialisé
pour quantifier LE, A, albédo et fAPAR. Ces résultats
démontrent également ['importance des changements
d’échelle et ouvrent la voie a diverses applications.

Mots-clefs : Télédétection, Hétérogénéité, Flux de
chaleur latente, Photosynthése, Albédo, fAPAR.

SUMMARY

Evapotranspiration (LE), photosynthesis (A.), albedo and
the fraction of absorbed photosynthetically active radiation
(fAPAR) constitute an important source of information for
the analysis and management of agricultural and natural
ecosystems. Soil-Vegetation-Atmosphere Transfer (SVAT)
models currently allow quantification of these variables.
SVAT models are highly parameterized abstractions of
energy, moisture, and momentum exchanges between the
land and the atmosphere. These models have usually been
designed for homogeneous surfaces, where landscapes are
considered as having homogeneous surface characteristics.
Then, the models depend on various parameters noted (p)
of the physiology and geometry of plants, that are only
measurable at local scale and do not allow for the
description of the variables for heterogeneous areas. At a
larger scale, since SVAT models are non-linear, landscape
heterogeneity can lead to substantial errors in the estimation
of the variables of interest. This is the key reason for the
difficulty in using these models with satellite data
(radiances).

On the basis of recent theoretical results, we define a
new model adapted to heterogeneous pixels, called the
spatialized model. Namely, we consider a pixel region
covered with various homogeneous cover types for which
the knowledge of the individual parameters (pl ... pk)
allows the computation of the aforementioned variables.

The resulting model yields these variables from global
radiances at the pixel scale. The comparison of the results
over heterogeneous areas using local simulations shows
reliable precision of the spatialized model in the quanti-
fication of LE, A, albedo and fAPAR. These results
demonstrate the importance of the scale change problem
and open the way to larger applications.

Keywords: Remote Sensing, Heterogeneity, Latent
Heat Flux, Photosynthesis, Albedo, fAPAR.
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INTRODUCTION

Remote sensing has the potential for providing synoptic surface
information that is relevant to vegetation productivity and
energy balance modelling. It is then necessary to use a physical
model, simulating the energy and mass transfers between the
soil, the vegetation and the atmosphere, which is able to assimilate
data from remote sensing measurements (Delécolle et al.,
1992, Olioso et al., 1999a). Soil-Vegetation-Atmosphere
Transfer (SVAT) models have been implemented to relate
remote sensing measurements (radiances) to the energy and
water functioning of soil and vegetation canopies (Soer, 1980;
Taconet et al., 1986; Hope et al., 1988; Van de Griend and Van
Boxel, 1989; Lynn and Carlson, 1990; Olioso 1992). These
models use simple, but realistic, descriptions of radiative,
turbulent, and water transfers including the description of
stomatal control of transpiration fluxes and, on some occasions,
of photosynthetic fluxes. These models assume the knowledge of
surface properties concerning vegetation and soil, such as canopy
structure, albedo, absorption of radiation by the canopy, water
status of the soil and the vegetation (stomatal conductance
characteristics, capacity of water extraction by the roots,
hydraulic characteristics of the soil, etc.). Various remote sensing
data may be useful to drive SVAT models. Spectral reflectances
in visible and near infrared may give information on the structure
of vegetation canopies, as LAI, albedo or the fraction of Absorbed
Photosynthetically Active Radiation (fAPAR) (e.g., Jackson 1984,
Asrar et al., 1984; Sellers 1985, Baret and Olioso 1989; Dugay and
LeDrew 1992; Ottlé and Vidal-Madjar 1994; Sellers er al., 1996;
Friedl 1996; Gillies er al., 1997). Thermal infrared is a privileged
domain, since it is closely related to energy balance via surface
temperature. It may give information on the soil or plant water
status (e.g., Soer 1980; Camillo 1991; Kreis and Raffy 1993; Ottlé
and Vidal-Madjar 1994; Olioso et al., 1996b; Friedl 1996; Gillies
etal., 1997; Calvet et al., 1998).

SVAT models have usually been designed for homogeneous
surfaces (they are generally based on “big-leaf” formulations,
where landscapes are considered as having homogeneous surface
characteristics). It is easy to identify the type of canopy and the
relevant input parameters at the field level. At a larger scale,
since SVAT models are non-linear, landscape heterogeneity can
lead to substantial errors in the estimation of fluxes. This is
what happens when employing remote sensing data (radiances)
because of the low spatial resolution of many sensors that may
be used for monitoring energy balance (e.g., thermal infrared
from meteorological satellites such as NOAA or METEOSAT).
However, only a few studies have analyzed the effect of spatial-
ly distributed surfaces and the potential errors caused by the
estimation of fluxes from radiances over heterogeneous pixels:
Sellers et al., (1992 and 1995) exploited the linearity between
vegetation indices and some model parameters; Friedl (1996)
also found a linear relationship between simulated fluxes and
surface temperature; Moran et al., (1997) analyzed the scaling
characteristics of fluxes in relation to remotely-sensed variables
over heterogeneous landscape in semi-arid environment; Kreis
and Raffy (1993) proposed to define effective media by inverting
SVAT models against surface temperature measurements;

Canadian Journal of Remote Sensing/Journal canadien de télédétection

Raffy (1992 and 1994) defined ‘spatialized’ models and
analyzed the errors due to scaling.

In this article, attention has been focused on the ability of the
‘spatialized’ model, as defined by Raffy (1992 and 1994), to
reproduce the albedo (a), fAPAR, the photosynthesis (A.), and
the evapotranspiration (LE) from reflectance and surface
temperature measurements over heterogeneous areas. The
ALiBi SVAT model (Olioso, 1992) has been used to compute
a, fAPAR, A, and LE, as well as spectral reflectances and surface
temperature at the local scale for different surface conditions.
The local data have been aggregated to a larger scale in order
to simulate heterogeneous pixels. Then, we attempt to answer
two questions:

1. Which models perform best to compute the four variables
a, fAPAR, A, and LE from remotely-sensed radiances over
a heterogeneous pixel ?

2. What are the biggest differences from real values of these
variables?

DESCRIPTION OF THE ALIBI MODEL
(LOCAL SCALE)

1) Turbulent and Water Transfers, Photosynthesis

The model used in this study has been described in detail by
Olioso (1992 and 1996a; see also Bouguerzaz 1997). This
model describes the soil (subscript s) and the vegetation (sub-
script v) energy balances. The energy balance for a vegetated
surface (soil surface + vegetation canopy) is given by

R,=LE+ H + G, (Wm™) (1)

Soil surface and vegetation energy balances are also computed
in order to take account of their different behaviours

Ry, =LE,+ H, (Wm™) (la)

Rys = LE; + Hg + G; (Wm™) (1b)
where R, =R,, + R;s (W.m™? is the net radiation,
LE = LE, + LE the latent heat flux (corresponding to evapo-
transpiration), H = H, + H the sensible heat flux and G, the
ground heat flux. Each flux is computed following specific
formulations considering meteorological boundary conditions
at reference levels in the atmosphere and in the soil. As an
illustration, the heat fluxes from the vegetation layer (LE, and H,)
are expressed as

pc | 1\~
LE, = - (__ + _> (ey (Ty) —eqe) 2
Y \& A
H, = pcphv(Tv = Tae) &)

with p the air density, ¢, the air specific heat, -y the psychometric
constant, &, the turbulent transfer coefficient in leaf boundary
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layers, g, the vegetation surface conductance (which depends
on leaf stomatal conductances), ¢, and T, the vapour pressure
and the temperature of the air inside of the canopy, e; (T,) the
saturated vapour pressure at the vegetation surface temperature
T,. Stomatal conductances are computed as a function of
incident PAR at the leaf surface, leaf water potential, and
vapour pressure deficit of the air at the leaf surface (as in
Winkel and Rambal, 1990). The vegetation surface conductance
is given by the sum of the leaf stomatal conductance over the
whole canopy (see Olioso et al., 1996a). The heat fluxes from
the soil (LE, and H;) are similarly described, but the soil surface
conductance depends on the surface soil moisture. The various
turbulent exchange coefficients involved in the calculations of
heat fluxes (Figure 1) are related to canopy structure (height
and LAI) and to the properties of the atmosphere (wind speed
and stability).

The flux LE, is also expressed as a function of a hydraulic
conductance (G,) and the difference of water potential between
leaves (i/7) and the soil in the root zone (i) in order to describe
the extraction of water by the roots:

LE, = Gy(ths — ) @

The calculation of canopy photosynthesis (A.) follows a
similar procedure as the calculation of surface vegetation
conductance (Olioso et al., 1996a). It is obtained by the integration
of the leaf photosynthesis over the whole canopy. The leaf
photosynthesis is calculated as a function of incoming PAR at
leaf surface (Q)), leaf water potential () and saturation deficit
at leaf surface (Dg):

A1 = Apmin t Aimax ~ Aimin) 8a (Qp) 24(¥) 8a(Dy) (&)

where A;.,, and A, are the minimum and the maximum leaf
photosynthesis, and each g, function varies between 0 and 1.
The integration from the leaf to the canopy uses radiative transfer
to compute g, (Qp) at the leaf surfaces and takes account of the
hydraulic effects introduced by the term g () g,(D¢) which is
calculated at the canopy scale:

AC = lAIC A[mm +(A]max - A[m]n) g(l(l/][) ga(D:))

LAlc f7/2 (27
[ sooton oy depdtpa - ®

where ¢, and 6, are the azimuth and zenith angles of leaves and
L is the Leaf Area Index and LAlc its value for the whole
canopy.

Resolution of energy balance (Equation 1) together with
energy balance equations for the soil surface and the vegetation
(Equations la and 1b) and the equation for water extraction
(Equation 4) and turbulent fluxes (including Equation 2 and 3)
makes it possible to compute the energy fluxes, the canopy
photosynthesis and the soil and vegetation surface temperature
(T, and T;). Main inputs are the meteorological forcing (air
temperature and humidity, wind speed and incident radiations),
parameters describing the canopy structure (LAlc, height), the
capacity of roots to extract water (represented by G,), and the
soil water status (surface soil moisture and root zone water
potential).

2) Radiative Transfers:

The radiative transfers are described from the SAIL model,
which was developed by Verhoef (1984 and 1985) to simulate
directional spectral reflectance of vegetated surfaces. As part of

the ALiBi model, the SAIL model
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is also used to simulate radiation
absorption by the soil and the
canopy (consequently the albedo),
canopy emissivity and brightness
temperature in the thermal infrared
(Tp), and PAR distribution inside of
the canopy (consequently fAPAR).
For a single-layer uniform and
homogeneous canopy, simulations
depend upon the following para-
meters: biophysical parameters
(LAlc, Leaf inclination angle distri-
bution); spectral parameters (leaf
hemispherical reflectance and
transmittance and soil hemispherical
reflectance); illumination source
parameters (solar zenith angle and

PREDICTIONS

ﬂ H‘.i' LES

Soil
Figure 1.

fraction of incident diffused light)
and view direction parameters
(view zenith angle and relative

Schematic structure of heat fluxes in the ALiBi model. g¢ and g, soil and vegetation surface conductance;
hg and h,, : turbulent exchange coefficients; H, Hg and H),: sensible heat fluxes; LE, LEs and LE,: latent heat
fluxes; e; and ege: vapour pressure in the atmosphere above and inside the canopy; Rg: incident solar
radiation; T;; and T.: air temperature above and inside the canopy.

azimuthal angle between the solar
and view directions). In the solar
domain, leaf optical properties are
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calculated using the PROSPECT model (Jacquemoud and Baret,
1990) as a function of only three parameters characterizing the leaf
mesophyll structure (N), the chlorophyll a+b concentration (Cp),
and the water depth. The model used here takes into account
the dry matter content introduced by Fourty and Baret (1996).
In the thermal domain, specific optical properties are used: no
leaf transmittance, low leaf and soil reflectances (0.04 and 0.05,
respectively, corresponding to emissivity of 0.96 and 0.95).

The albedo () is computed by summing the canopy hemis-
pherical reflectance over the whole solar spectrum:

C‘:Z a) Py @)
A

where A represents a spectral band, «, the hemispherical
reflectance in this band, and P, the proportion of solar energy
in this band compared to the global radiation (actually, the
calculation takes account of diffuse and direct radiations
separately). Eleven bands, where the soil and the leaf optical
properties were considered constant, were used over the whole
solar spectrum.

The fraction of Absorbed Photosynthetically Active
Radiation (fAPAR) is calculated from the difference between
the energy entering and leaving the canopy:

APAR

FAPAR = 8

f PAR, (®
with

APAR = PAR,+ PAR,, —(PAR, + PAR) ©9)

where PAR, is the incident radiation at the top of the canopy,
PAR, the radiation transmitted by the canopy to the soil, PAR,
the radiation reflected at the soil surface and PAR, the upward
radiation reflected by the vegetated surface.

The infrared brightness temperature (T}) is computed from
the vegetation (7)) and the soil (T,) surface temperatures
(which are solutions of energy balance equations), through a
radiative transfer description including the effect of incident
atmospheric radiation in the measurement waveband (R, »):

ATp) = €, arfr (Ty) + Trax €arfa (Tg)
T Prda Rgara (10)

where €, 4 ) and € 4 ) are the vegetation and soil emissivity in
the direction of observation (the subscript d refers to the
directionality of the viewing), 7; 4 ) the vegetation transmission
coefficient for thermal radiation, p; 4, the canopy reflection
coefficient, f;(Tp) a function of the temperature to calculate the

thermal emission in the measurement waveband (Olioso,
1995).

Canadian Journal of Remote Sensing/Journal canadien de télédétection

DESCRIPTION OF THE SPATIALIZED
MODEL

In the following, we consider one soil-pixel {} (i.e., the IFOV,
the Instantaneous Field Of View) of an area I}l and we() a current
point of the surface. The point w can be considered as a micro-
scopic pixel with local multi-spectral radiances:

Uw) = (£(0),bf@), (@) .

These radiances are naturally bounded for we(). Then, we
consider a bounded domain De IR" , which satisfies the
condition:

Hw) eD for we() . 11)

In the natural environment observed by radiometry, the
media k called “homogeneous” corresponds, generally, to a
convex zone Dy of little extent in the spectral domain which
satisfies the condition D, C D; (V k=1 to K).

At the global scale, the ‘n’ measurable radiances on £ are:

L(Q) = (L,(€D), Ly(D),...... Lo((D)) . (12)

If we assume that all the atmospheric corrections are done
and a perfect sensor, the radiances measured by the sensor in
the i" channel is:

Li(Q) = f () do . (i=lton)  (13)

10

Physical models used in remote sensing describe the
dependence of a physical parameter ¢ to the measured radiance
f(w) at every point w of the area. Then for each w this parame-
ter is expressed by a relation to f(w) of the form:

¢ =R({w)), Ve | (14)

In the most general case, the actual value we aim to reach is

rp(l) = ﬁ J;) R(Aw)) dw . (15)

For the instrument that observes ), all the distributions ?
defined on () and satisfying Equations 11 and 13 constitute a
class of indistinguishable signals (Figure 2). Let us note this
class 7. Raffy (1994) shows that the set of all the possible in
situ values of re(L) defined by Equation 15 when f(w)emse
constitute exactly an interval:

r7(L) € [RUD), RAD)] (16)
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o
Radiometric measurement

Figure 2.

Representation of a model R (thick line) in the case of one radiometric

dimension. R, and R” (thin lines) are the bounds of the convex hull

defined by the graph of R. For a given radiance L' the spatialized

method gives R.(L') and RA(L").

where R, and R” are the bounds of the convex hull defined by
the graph of R. This mterval defines the maximum gap that
might occur between ry (L) and the computed value R(L)
obtained with the model R applied at the heterogeneous pixel
scale with the radiance data L:

L) =R"() ~ R, (L) . (17)
This gap depends on the non-linearity of R and the hetero-
geneity of the pixel ). Without any information on the distribution
. we c0n51der that ry (L) is uniformly distributed within
[Ry (L) R~ (L)]when Z(ED. In this situation, the model which
minimizes, in the mean, the error due to the change of scale in
the heterogeneous pixel (} is:

RO = %[Rv(ﬁ) +RA@D); LeD . (18)

Following Raffy (1992, 1994), this model is called the
spatialized model.

Let us apply the spatialized model to the variables computed
by the ALiBi model at the local scale. Despite the complexity
of the terms 1nterven1ng in the ALiBi model, the latter can take
the general form R(f(w) p(w)) where f(w) (Cw), Cyp(w),

Crp(w)) is the reflectance in red (R) and near-infrared (NIR)
bands and the thermal radiometry (TIR) and p(w) is a vector
containing characteristic parameters of each homogeneous
medium (vegetation structure, physiological characteristics of
plants, soil and plant water status). The variables to spatialize
can be classified in two categories:

a) the variables computed by taking into account radiative
processes only: « and fAPAR . They are related to the canopy
behaviour in the visible and near-infrared domains. In this
case we consider only the reflectances (€x(w), {yr(®)), and
the model value R(?(w),p(w)) to spatialize the variables:
a(fw),B(w)), and fAPAR(f{w) (w)).

b) the evapotranspiration (LE) and the photosynthesis (4,):
in addition to the reflectances, we mtroduced the thermal
infrared radiance €(w) to spatialize LE(K(w) plw)) and

Al w), Bw)).

EXPERIMENTAL MEASUREMENTS AND
CONSTRUCTION OF HETEROGENEOUS
LLANDSCAPES (GLOBAL SCALE)

To simulate an agricultural type landscape, we consider three
canopy covers, wheat, maize and soybean, and bare soils. Each
type of cover is simulated in different physiological and
phenological states. In the present case, the physiology and the
phenology of a canopy cover are characterized by a set of input
parameters of the model F(w). To simulate realistic landscapes
we make a selection from among a variety of parameters whose
variation limits are related to the type of cover. This set of para-
meters allows us to simulate the three covers in several possible
states (state of growth, water status of soil and plants) while
remaining within the limits of reality. For all these covers,
physiological, biological and soil parameters are involved: leaf
area index (LAlc), vegetation height (h), soil moisture (in the
surface layer and in the root zone), leaf angle distribution (the
Beta distribution described by Goel and Thomson (1984) is
used), leaf optical properties, hydraulic conductance (G,) and
parameters for the response functions of stomatal conductance and
leaf photosynthesis (involved in functions g,). Air temperature
(T,), air vapour pressure (e,), wind speed (), all at a reference
height above the canopy, and incident global radiation constitute
the meteorological forcing at each time step of the model
(every 15 minutes). We have also simulated, through the variation
of the soil hemispherical reflectance, the spectral reflectance of
bare soil of different types varying by its brightness from a dark
soil to a bright soil.

Changing the input parameters, we can simulate each cover
on two different dates: one in June and the other in September.
In June, the media composing the covers are at a different state
of growth from media to media, e.g., the wheat is more developed
than the maize or soybean, considering its high LAI. On another
hand we can also change the cover and the soil moisture state
by considering several values of the surface soil moisture 6,
and the hydraulic conductance G,. Those two parameters have
a great influence on the estimation of some of the variables,
particularly those variables which depend on hydraulic effects.
We should also bear in mind that the aerodynamic and meteo-
rological conditions change between the two dates because
June is generally a drier month than September. Those conditions
are described by the meteorological variables, aerodynamic
parameters and incident radiations. Table 1 gives the limits of
variation of the parameters selected to simulate the three covers
in June and September. The parameters concerning the soybean
and wheat canopies are obtained from field experiments
conducted at INRA Research Center near Avignon (France,
43°54' N, 4°48’ E) (Olioso, 1992; Gonzalez-Dunia, 1995,
Olioso et al., 1999b). Another set of parameters is obtained
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Table 1.

Variation limits of input parameters for the simulations of the three covers: wheat,
maize and soybean. Afmin = —1.0 (umole m2s™')and g fmin = (0.0001ms™) .

September: 0.0

September: 1.4 - 2.5

Parameters p Wheat Maize Soybean
LAlc (Canopy Leaf June: 4 -8 June: 0.95 - 4 June: 0.5 - 4.5
Area Index) September: 0.0 September: 3 - 8 September: 3 - 7
h (canopy heightinm) | June: 0.7 - 0.0 June: 0.45-1.0 June: 0.1 - 0.9

September: 0.4 - 1.0

N (leaf structure

13-15 1.0-1.45 1.3-1.86
parameter)

Cus (Mgem™) 30.0 - 55.0 25.0 - 40.0 35.0 - 50.0
Af max (Pmole m” s™) 25.0 - 35.0 45.0-55.0 25.0 - 35.0

-1
& f max (ms )

0.0123 - 0.0166

0.0142 - 0.0171

0.0123 =0.0166

G, (Wm™/MPa)

moist: 350 - 550
dry: 150 - 300

moist: 350 - 550
dry: 150 - 300

moist: 350 - 550
dry: 150 - 300

6j-5) (m*/m’)

moist: 0.15 - 0.30
dry: 0.05-0.10

moist: 0.15 - 0.30
dry: 0.05-0.10

moist: 0.15 - 0.30
dry: 0.05 - 0.10

state (LAlc = 3.5 for maize
and 4.25 for soybean). More
precisely, the LAI is higher
for the developed media. We
remark on this figure that for
the same type of media, the
albedo and fPAPAR increase
with increasing LAIL
Figures 4a and 4b
illustrate the repartition of
red and  near-infrared
reflectances (£x(w), €y (w))
in the radiometric domain
and the diurnal evolution of
brightness temperature simu-
lations, respectively. We can
see that the higher the moisture
the lower the temperature.
This temperature is trans-
formed into a radiometric
measure ¢p(w) from relation
(Equation 10). Increases in
red and NIR reflectances
mainly result from an
increase in LAI. For the same

from an experiment on Maize (in Grignon near Paris, in 1994
unpublished data).

The variability in the parameters make it possible to generate
a variability in canopy spectral reflectances, thermal infrared
radiance, and fluxes. The difference between the simulations of
diurnal evolution of albedo and fAPAR in the case of young and
developed media is shown in Figure 3 for June. For the same
media, the input parameters differ between its early growth
(LAIc = 0.95 for maize and 0.5 for soybean) and developed

vegetation type, the more
developed covers (high LAI and C,;) have a higher chloro-
phyllian activity (lower red reflectance) and a higher internal
diffusion of the infrared radiation (yielding a higher NIR
reflectance). An important point deserves some clarification. In
the (red, NIR) domain when maize and soybean are in the same
growth state, the convex envelopes characterized by the Dy
domains almost overlap in /R On the other hand if we add the
thermal channel, the convex domains Dy characterizing the
covers in /R’ are more separated (but still overlapping).

0,36
' “ 1 i
0,34 4 0.9
0,32 4 0,8 -
0,7 -
0,3 |
S LR
5 0,28 < 051
< <
0,26 4 0,4 4
a 0,3 |
0'24 7 -'~— R 00000cC '
e e e 0,2 -
0,22 4 0.1 -
0,2 T T T T r T T : 0 T T : . . , . :
4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20
Local solar time Local solfar time
Figure 3.

Diurnal evolution of albedo and fraction of absorbed photosynthetically active radiation (fAPAR) simulations on selected input parameters. —0— early
growth maize (LAlc = 0.95); —e— developed maize (LAIc = 3.5); — — — — early growth soybean (LAlc = 0.5);

developed soybean (LAlc = 4.25).
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Figure 4.
Radiometric data simulated to construct the domain D. (a) Red and near-infrared reflectances of the media used to simulate a landscape in June.
(b) Diurnal evolution of brightness temperature simulations in degree Celsius on selected input parameters. —0— dry maize (G‘, =277 Wm™/ MPa ;
0[0_5]= 0.109 m* / m* ); —e— moist maize (Gp =463 Wm2/MPa ; 0[0_5] =0.185 m* / m*); —A— dry soybean (Gp =285 Wi/ MPa ; 0l0-5] = 0.089 m*/ m*);
—A— moist soybean (Gp = 530Wm™/ MPa); 0[0_5] =0.185 m* / m*).

Examples of diurnal simulation of A, and LE in September curve. The apparition of a ‘plateau’, which increases with water
are illustrated on Figure 5. They show the influence of moisture stress, may be noticed (see Olioso er al., 1996a). We can see
on these variables. Input characteristics parameters ﬁ,,,(wj) for that both photosynthesis and latent heat flux are very sensitive
maize and ﬁv(wj) for soybean are taken. The difference in to the moisture state of the media.
moisture state is expressed by the hydraulic conductance G, and The simulation of this variability is necessary to create different
the surface soil moisture 6,5, Those figures show characteristic degrees of spatial heterogeneity. Indeed, one can simulate a
shapes for the diurnal courses of photosynthesis and latent heat heterogeneous scene made of different quasi-homogeneous
flux. We can see first a dissymmetric behaviour for photo- media. Quasi-homogeneity here refers to the fact that the same
synthesis with a depletion in the afternoon, which depends on type of canopy cover may be in different physiological, bio-
the water stress. Latent heat fluxes exhibit more symmetric physical and water status. Spatial heterogeneity is increased
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when one considers the three types of cover and bare soil. The
values of reflectances, radiances and variables simulated at
14:00 local solar time are considered in the following of this
study. The main reason lies in the fact that this corresponds to
the time of NOAA-AVHRR overpasses.

An agricultural scene is simulated at the local scale to represent
a natural heterogeneous landscape. It represents a reference
scene constituting a spatial grid of 100x100 local pixels
wi(j = 1 to 100°). Each pixel wj is considered as homogeneous
in the sense that only one metgum covers it. Then each pixel w;
is characterized by a vector ({(wy), Rk(Z(wj), f)’k(wj)) and linked
to the type and state of the medium “k” that covers it (k = 1 to 4).
This same scene is simulated at the global scale by incorporating
the local pixels w; within blocks of 10x10 pixels. Then we
obtain 100 new heterogeneous pixels £). So pixels {2 at a global
scale constitute a mixture of wheat, maize, soybean and bare
soil. For each pixel (), reflectances and thermal radiances
(La(£), Ly;p(£2), Lyp(€}) are obtained by averaging the data
(f(w), Cyp(w), €rp(w)) of local pixels according to Equation
13. In the same way, () is calculated with the actual values
r; (L) of the variables «, JAPAR, A, and LE as defined by
Equation 15.

In order to analyze the error of spatialization as a function of the
type of mixture and the degree of heterogeneity, we simulate four
scenes representing different heterogeneous types of landscapes in
June and four in September: the composition of the scenes is given
in Table 2. These scene compositions correspond to the case of the
albedo and fAPAR spatialization with the data simulated in June.
For photosynthesis and evapotranspiration, we use the data
collected in September to simulate reflectances, brightness
temperature and variables. The wheat being sown in September,
we consider the same composition of the scenes by replacing the
proportion of wheat by maize and soybean.
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The relative mean deviation is:

N (RML(Q) — RYLEY))

1
E2=— =
N r7(C(Qi))

(20)

and the relative error, E3, when we apply the spatialized model:

N / I (L) — RAOQ)

1
E3=— _
N ,-=|\ r7(C(Q4))

2y

SPATIALIZATION OF a, fAPAR, A,
AND LE:

The graphs of the mean values of the variables and errors E1
over the scenes, as a function of scene heterogeneity and moisture
states are presented in Figure 6 for «, fAPAR, A, and LE. The
mean value represents the average of the variable over the
entire scene. We can see that the mean values of the variables
vary in agreement with the scene composition. Most of the
variables have their lowest value in the Scene No.1 since it is
composed of a high percentage of bare soil, which has no PAR
absorption or photosynthesis. This is not always the case for
LE, depending on the moisture state of the scene, since wet
bare soil may have a large evaporation. Highest values usually
occur in the Scene No.4 which is composed of a large proportion
of vegetation. We can also see that A. and LFE are higher for a
moist cover than for a dry cover: state No.4 has the highest A,
and LE values for all the scenes, because all its media are in a
moist state; conversely, state No.1, in which all media are dry
has the lowest values.

Then, for A, and LE, which depend on hydraulic
effects conversely to fAPAR, we study the effect
of the media moisture state on the error of
spatialization. The difference in moisture state is
expressed by the hydraulic conductance G, and

Table 2.

Composition of the four scenes both in June and in September (mean
proportions 1{};| of each media in the different pixels () for each scene),

and of the four moisture states.

the soil moisture 6,5, Four states of moisture ] I
are considered in the four precedent scenes: Maize | Wheat | Soybean | Bare Soil
they are given in Table 2. Scene 1 June 41% - - 59%
D September 41% - - 59%
RESULT D DI
SULTS AN SCUSSION Scene 2 June 10% 37% 10% 43%
Fog each pixel (), where the measured radiance September 28.5% _ 28.5% 43%
is L)) , the maximum deviation between the
actual in situ value of the variable given by | Scene 3 June 315% | 10% 15% 43.5%
quation 5 and the globaLcomputable Xalue September 36.5% - 20% 43.5%
R(L(Y) is given by RMLIY) — RULID) |“geene 4 June 35% | 35% | 24% | 6%
(Raffy, 1992,1994). Then, September | 525% | - | 415% | 6%
N 5 N Moisture State 1 September dr — dr dr
El =L > ®RALQ) - RE@Q) (19) | L, P ’ ’ ’
N < Moisture State 2 September dry - moist dry
Moisture State 3 September moist - dry dry
expresses the average possible deviations for Moisture State 4 September moist - moist moist
N pixels (here, N=100).
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We observe, for all the variables, that the maximum error
due to the heterogeneity (E1 which represents the mean of the
range of each variable for given values of the radiances)
increases with the scene number. This is consistent with the
scene heterogeneity, which is also increasing. We notice that
the errors E1 are low for albedo and fAPAR, while large values
occur for A, and LE. For these two last variables, the error E1
is often just lower than the actual value of the variable and
sometimes even greater. Indeed, the error El reaches about 15
micromole/m2/s for an A, mean value of 13 micromole/m2/s in
Scene No.4, state No.2. For A, the moisture state No.2 is the
one that gives the greatest error El for each scene; for LE it is
the moisture state No.3 that gives the greatest error.

Figure 7 presents the relative errors due to the heterogeneity
(E2) and the relative spatialized errors (E3 obtained when using
the spatialized model) for all the variables as a function of the
scene number and moisture states. Error E2 is around 15-20 %
for @ and 20-35 % for fAPAR. For those variables, error E3 is
less than 5 %. The error E2 is greater for LE (between 30 and
80 %) and even more for A, (between 30 % and 150%). As for
El, the higher values of E2 are in moisture state No. 2 for A
and in moisture state No. 3 for LE. In the case of LE, and for
each scene, we can see that the relative error E2 is lower when
all the media are in the same moisture state (state No.l, all are
dry, and No.4, all are wet). This is different for A, the lowest
errors occurred only for state No. 4. Considering the scene
number, the highest errors usually occurred for Scene 4 and 1
in the case of LE and 3 and 1 in the case of A,. Errors E3 are
always smaller than E2. They are lower than 25 % for LE
(below 10 % except for Scene 2) and lower than 60% for A,
(below 30 % except for Scene 1). As for E2, the lower errors
E3 usually occurred in moisture states No.l and 4 for LE and
moisture state No. 4 for A.. The largest errors E3 usually
occurred for Scene 2 in the case of LE, and for Scene 1 in the
case of A,..

The small errors (El, E2 and E3) obtained for albedo and
JAPAR show that the estimation of these variables from
reflectance measurements in the red and the near-infrared is
quite insensitive to the heterogeneity of the observed scene.
Actually, this means that models relating reflectances to albedo
and fAPAR are almost linear. Indeed, in many studies, the albedo
was computed from a weighted average of reflectance in several
spectral bands (Jackson 1984, Wydick er al., 1987, Toll 1989,
Wang and LeDrew 1989, Duguay and LeDrew 1992).
Estimations were usually based on more than 2 spectral bands,
in contrast to the present study, to account for spectral
reflectance variations in the visible and for reflectances in the
middle infrared. However, two spectral bands, one in the visible
and one in the near-infrared, may be enough: most of the incident
solar energy is present in these two domains and variations in
spectral reflectances (due to change in surface state) in these
two domains are actually rather spectrally homogeneous. fAPAR
presents larger errors than albedo, but these errors are still low.
Many studies have also found quasi-linear relationships
between fAPAR and vegetation indices (Asrar er al., 1984,
Sellers 1985, Baret and Olioso 1989).
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The large errors El and E2 obtained for LE and A, show that
the estimation of these variables from reflectances and thermal
measurements is sensitive to the heterogeneity of the observed
scene. The analysis of these errors is a difficult task. Different
sources of heterogeneity affect the calculation of the convex
hull which defines R, and R”: the number of different types of
surfaces; the type and phenological stage of plants constituting
the surfaces; and the water status of the surfaces. These factors
affect the variability of the investigated variables, LE and A, as
well as the variability of the radiances. “Measured” values of
radiances also depend on the proportion of the different surfaces
constituting the scene; these “measured” values determined the
domain inside of the convex hull, which is taken into account in
error calculations. The intervals between R, and R, and then
errors El, increase when the variability increase in the domain
of measurement and when at the same time non-linear relations
exist between the investigated variables and the radiances.
Concerning the estimation of LE and A, in our conditions,
some of the factors that affect error values are described below,
as well as a partial explanation of some of them.

* Differences exist between LE and A, because these variables
do not always have the same behaviour depending on the
land use. Bare soils have evaporation but not photosynthesis.
As simulated scenes often include bare soils, the variability
of A, may be larger than the variability of LE (this may
explain the larger errors E2 for A, than for LE).

Both A, and LE increase for each canopy cover, while surface
temperatures decrease, when water availability increases.
States 1 and 4 are quite homogeneous, since all the media
are in the same water conditions. They generally present
lower E1 and E2 errors compared to moisture states 3 and
2, which contain surfaces with different water conditions
and then are more heterogeneous. It is also interesting to
note that for a given type of canopy, many works have
shown that variations in water status generate a linear
relationship between the fluxes and the surface temperature
(see Seguin and Itier 1983, Choudhury 1989 or Friedl
1996, for instance). In these conditions, spatialization
errors are low as shown by Friedl (1996).

Because of the large differences in aerodynamic roughness
(related to vegetation height) between bare soil, low canopy
(soybean or wheat) and high canopy (maize), simulated
surface temperatures may be very different at a same moisture
state. However, as at a same moisture state the variability in
fluxes is low, errors may be still low. The effect of aero-
dynamic roughness was also shown by Moran et al., (1997).

An important point to assess are the differences between E2
and E3, and then the validity of the spatialized model. Errors
E3 are always significantly lower than E2, showing the good
performances of the spatialized model when quantifying A, and
LE over heterogeneous pixels. Also, the comparison between
the errors E3 and E1 shows that the relative error of spatialization
E3 is lower when the scene is heterogeneous. Indeed, the scene
heterogeneity increases the gap (R* — Ry) and decreases the
spatialization error E3.
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CONCLUSION

The general problem of the role of heterogeneity in remote
sensing models has been dealt with in the particular case of
photosynthesis, evapotranspiration, albedo and fraction of
photosynthetically active radiation absorbed, and their estimation
from global radiances of the pixel. We used the ALiBi SVAT
model to compute these variables at local scale. This model
depends on various parameters noted p and representing the
physiology and the geometry of plants, only measurable at the
local scale, and does not allow for the computation of the variables
of interest for heterogeneous areas. This is the key reason for
the difficulty in using SVAT models with satellite data.

In this study, we use a new method that allows computing the
maximum error of spatialization, knowing only radiance Z(Q) eD.
Moreover, a spatialized model often reduces the errors due to
both scaling and pixel heterogeneity. The spatial heterogeneity
is strongly scaling related. We studied the scaling problem by
simulating spatially heterogeneous landscapes. We also
analyzed the effect of the mixture of moist media with dry
media in the same landscape.

We showed that the albedo is a variable almost insensible to
heterogeneity. This is because the albedo is expressed as a
quasi-linear function of red and near-infrared reflectances.
Indeed, linear models are not affected by the scaling problem.
The fAPAR also presents a small error, because the relation
between the absorption efficiency and the reflectances is
almost linear. However, the error due to the heterogeneity is
large for the evapotranspiration LE and the photosynthesis Ac.
This error may exceed the actual value of the variable itself. For
the same type of heterogeneous landscape, the relative error due
to the heterogeneity is different between A and LE. It shows
that sensitivity to the scale problem depends on the type of
model and its non-linearity. The mixture of moist media with
dry media in the same scene also increases the error in the
estimation of these variables. Consequently these variables are
not accurately computed directly without taking into account
the change of scale problem. In this situation, the spatialized
model gives more accurate results: the comparison between
maximum relative error due to the heterogeneity and the error
of the spatialized model shows the precision of the spatialized
model in the quantification of these variables.

We conclude that the spatialized model gives accurate results
in the computation of latent heat flux over heterogeneous land-
scapes (the results are somewhat less accurate for photosynthesis).
The use of this spatialization method can be generalized and
can be applied to the study of diverse areas, with any levels of
heterogeneity and model types. We will evaluate further the
validity of this method by comparison to experimental remote
sensing data in the frame of the Alpilles-ReSeDA program
(Olioso et al., 1998).
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