Bruno Goffinet 
email: goffinet@toulouse.inra.fr
  
Sophie Gerber 
  
  
  
  
Quantitative Trait Loci: A Meta-analysis

This article presents a method to combine QTL results from different independent analyses. This method provides a modified Akaike criterion that can be used to decide how many QTL are actually represented by the QTL detected in different experiments. This criterion is computed to choose between models with one, two, three, etc., QTL. Simulations are carried out to investigate the quality of the model obtained with this method in various situations. It appears that the method allows the length of the confidence interval of QTL location to be consistently reduced when there are only very few "actual" QTL locations. An application of the method is given using data from the maize database

A meta-analysis consists of combining data from dif-of qualitative developmental genes (Khavkin and Coe 1997, 1998). ferent sources in a single study. This technique is mainly used by researchers in medical, social, and Comparative analysis of QTL between species reveals the existence of homologous QTL for plant height and behavioral sciences [START_REF] Hedges | Statistical Methods for Meta-Analysis[END_REF]. Its application in genetics and evolution is illustrated in recent maturity within the Poaceae (sorghum, maize, rice, wheat, and barley;Lin et al. 1995). Similar observations publications [START_REF] Britten | Meta-analysis of the association between on another species. The existence of model species on multilocus heterozygosity and fitness[END_REF][START_REF] Allison | Comparative mapping in F2:3 and ferent species is illustrated by several studies, for in-F6:7 generations of quantitative trait loci for grain yield and yield components in maize[END_REF][START_REF] Van Zandt | deme formation in phytophagous insect populations[END_REF], and the usefulness of for traits involved in domestication suggest that few genes with a large effect have determined the pheno-these kinds of methods for pooling information when raw data are not available is emphasized (Lander and types studied [START_REF] Veldboom | Comparative trait loci in maize in stress and nonstress environments. I. Grain analysis of QTLs affecting plant height and maturity across the yield and yield components[END_REF]. Comparing species is also a means to find new QTL, increasing their poten-Kruglyak 1995; [START_REF] Allison | Comparative mapping in F2:3 and ferent species is illustrated by several studies, for in-F6:7 generations of quantitative trait loci for grain yield and yield components in maize[END_REF].

Since the first publication of a quantitative trait locus tial use for plant breeding, as in the tomato (Fulton et al. 1997). Moreover, the existence of small common (QTL) localization using molecular markers (Paterson et al. 1988) a large number of species have been studied regions on linkage maps between taxa that diverged a long time ago may provide the opportunity to extend for numerous markers and traits. Some of the data obtained are now available online, as in the maize database results obtained in one species [START_REF] Veldboom | Comparative trait loci in maize in stress and nonstress environments. I. Grain analysis of QTLs affecting plant height and maturity across the yield and yield components[END_REF] and permit the cross-utilization of resources that have (at http://www.agron.missouri.edu), where structured been developed for a given species (Kowalski et al. QTL data sets are continuously updated. Having data 1994). concerning different populations, it would be interest-Several statistical methods to detect QTL have been ing to know whether QTL identified for a given trait in developed [START_REF] Sakamoto | Complex plant traits: time for polygenic analysis. tion Criterion Statistics[END_REF]. A QTL, once detected, is one population correspond to those detected in other described by its position on a linkage group, and possipopulations, or whether QTL locations identified in bly a confidence interval around this position, an R2 or a one species correspond to QTL or other types of loci lod score. When several crosses are available and studied detected in corresponding regions of other species. The simultaneously for the same trait, a first statement is to QTL aspect of the database was created to encourage consider that the QTL are common to both crosses but systematic description of QTL studies and to facilitate that their alleles are different. Detecting QTL by interval these kinds of comparisons [START_REF] Byrne | Reporting and accessing QTL information in USDA's The conservation of gene order between species pro-Maize Genome Database[END_REF]. Hence, mapping consists then in testing at every point of the a recent revision of the QTL described in the database chromosome the existence of a QTL with a potential suggests that QTL associations coincide with clusters effect on each cross. This is the case when offspring of different males are considered in the same study in animal genetics with a model where the QTL effect is suggest "consensus" positions that do not actually corre-is the estimated QTL effect. We do not make use of this information in this article, except as a possible way, spond to any real position. The problem lies in testing between one or several QTL in the same linkage group when combined with map density and the number of observations, of estimating the variance of the QTL's (Hyne and Kearsey 1995; Goffinet and Mangin estimated position. Actually, the larger the QTL effect, 1998). Another statement is to estimate QTL indepenthe smaller the var(x ˆi). dently in every cross and to test whether they are located

The n experiments are considered as independent. on the same place or not. When two crosses are consid-This is clearly correct when the individuals measured ered, the similarity of the positions detected in the in the different experiments are different. It is an apcrosses can be tested by using confidence intervals for proximation when these experiments represent differeach position. When more than two QTL are involved, ent traits measured on the same individuals or when the problem is more acute. The question to be answered two or more QTL are detected for the same trait in an is not only whether there is a common position but also experiment. We study in the simulation section the efto determine the number of different positions.

fect of considering independence between the experi-In this article we suggest an approach for choosing ments when there are actually dependences between the best model to fit a set of data. Our aim was to some experiments. Independence between experiment elaborate a meta-analysis of several QTL related to the i and iЈ means independence between x ˆi and x ˆiЈ ; that is, same trait and mapped on the same linkage group in basically the individuals used in the two experiments different independent studies. The question we wanted are not the same, even supposing that the parent lines to address was the following: How many "real" QTL do are the same. the QTL detected in the different studies representone, two, three, or as many as the number detected

The set of x ˆi, i ϭ 1, n is denoted X ˆ. throughout the studies? Once this question is answered,

The different models: Let k ϭ 1, . . . , n represent the positions of the real QTL can be estimated. This different models for the real position x i of the n QTL. approach should help to gather data obtained from

In model k ϭ 1, we consider that all the n QTL are different populations and extract meaningful results for located at a single position. In model k, we consider the species under investigation.

that there are k different positions for the n QTL, and model n corresponds to the case where the n QTL are located at n different positions.

METHODOLOGY

For each experiment i and model k we denote x ˜i [k] the The QTL experiment summary: Consider a set of n estimate of position x i . We use the following estimates: QTL experiments concerning the same linkage group.

k ϭ 1: x ˜[1] i ϭ x ϭ 1 ⁄ n R i x ˆi.
These different experiments may represent several k ϭ 2: [2] 1 and [2] 2 are the maximum-likelihood esticrosses between different lines, or several sires, or differmates of the possible values of x i in the two-population ent traits, or different locations for the same trait, or mixture model. To estimate these parameters, we condifferent environmental conditions and experimental sider all the possible distributions of the n QTL into designs.

two groups. For each distribution, we compute the We consider that for each experiment i (i ϭ 1, . . . , maximum-likelihood estimator of the mean of each n), the summary of the information is the estimated group and choose the best distribution as the distribuposition of the QTL x ˆi for this experiment in this linkage tion maximizing the likelihood. group. We assume that the x ˆi are normally distributed around the true position x i of the QTL in experiment

We have

x ˜[2] i ϭ [2] 1 if |x ˆi Ϫ [2] 1 | Ͻ |x ˆi Ϫ [2]
2 | and i, with a variance var(x ˆi) ϭ ␥ E,i . As this variance can be x ˜ [2] i ϭ [2] 2 otherwise. generally estimated with a large number of observations, k Ͻ n: The same rule as for k ϭ 2 applies with [k] 1 , we assume that it is consistently estimated and therefore [k] 2 , . . . , [k] k the k possible values of the k-population can be considered as known. Nevertheless, we investimixture model. Notation [k] represents the number gate in the simulation section the effect of an imperfect of QTL in this model. As for k ϭ 2, we consider all estimation of this parameter.

the possible distributions of the n QTL into k groups This Gaussian and unbiased approximation can be conand choose the distribution with the maximum likelisidered as correct for QTL with a large effect. In these hood. cases, one can use the classical asymptotic Gaussian distribution of the maximum-likelihood estimation of the We have x ˜ [k] i ϭ [k] j , where j is such that |x ˆi Ϫ [k] j | is parameters. For QTL with small effects, Mangin et al. minimum for j ϭ 1, . . . , k. (1994) have shown that it is not perfectly correct. Nevertheless, it is a simple and useful approximation and we k ϭ n: x ˜i[n] ϭ x ˆi. consider it as correct for all the detected QTL.

The other information available in a QTL experiment Model selection: The problem lies in finding a crite-rion to choose from the different models k ϭ 1, . . . , Consider first, for example, the case n ϭ 20, where n. It is known [START_REF] Titterington | The major quantitative trait loci cal Analysis of Finite Mixture Distributions. John Wiley & Sons, New for plant stature, development and yield are general manifesta-York. tions of developmental gene clusters[END_REF] that the Akaike more configurations are studied. The value of bias decriterion is not a correct way of comparing models in pends strongly upon the value of the number k 0 of pathe case of mixture models. We propose herein an adaprameters in the actual model. Nevertheless, the main tation of the Akaike criterion to deal with our models.

aim of correcting the log-likelihood is to prevent the Consider a model with k parameters ⌰ [k] ϭ [k] 1 , [k] 2 , choice of a model with more than k 0 parameters when . . . , [k] k and the n corresponding values of the QTL the number of parameters is actually k 0 . We observed positions X ϭ (x i ) iϭ1,n . The log-likelihood of the observed that the difference between bias(X 0 , k 0 ; k 0 ) and bias (X 0 , vector X ˆis denoted L(⌰ [k] , X; X ˆ). We denote k 0 the actual k 0 ; k 0 ϩ 1) depends little upon the values of X 0 . For number of parameters, ⌰ [k] 0 the actual value of the paexample, when the actual model has k 0 ϭ 2 parameters, rameters, and X 0 the actual value of the n QTL positions.

the difference between the bias when using a model The maximum-likelihood estimates are denoted ⌰ ˆ [k] with 3 parameters and a model with 2 parameters is and

X ˜[k] ϭ (x ˜[k] i ) iϭ1
,n and the corresponding log-likeli-(see Table 1) 12.7 Ϫ 3.9

ϭ 8.8 [configuration (config) hood L(⌰ ˆ[k] , X ˜[k] ; X ˆ).
2], or 10.6 Ϫ 2.0 ϭ 8.6 (config 3), or 10.3 Ϫ 2.1 ϭ 8.1 The aim of the Akaike criterion (Sakamoto et al. (config 4). This value tends to converge to a stable 1986) is to estimate the mean expected log-likelihood value as the difference between the parameters i is (MELL):

increasing. We may therefore use the value 8.1 as a limit value. These limit values are 13 for k 0 ϭ 1, 8.

1 for k 0 ϭ MELL ϭ E (⌰ ˜[k] ,X ˜[k] ) (E X ˜*(L(⌰ ˆ[k] , X ˜[k] ; X ˆ*)).
2, 6.7 for k 0 ϭ 3, and 15.9 for k 0 ϭ 4. In this case, k 0 ϩ In the second expectation

E X ˆ*, the estimated values ⌰ ˆ[k] ,
1 is taken as n. We observed slightly different limit values X ˜[k] are fixed, and the expectation is taken for indepenwhen using unbalanced configurations (data not dent possible values of observations X ˆ*, with the same shown). probability distribution function as X ˆ.

We propose, therefore, to use the following expres-In regular situations, it is well known that

L(⌰ ˆ[k] , X ˜[k] ; sions of AIC*(k) to choose from the models k ϭ 1, 2, X ˆ) Ϫ k,
where k is the number of free parameters of 3, 4, n ϭ 20: the model, is an asymptotically unbiased estimator of MELL. Therefore, it is recommended to choose a model AIC*

(1) ϭ Ϫ2 ϫ (L(⌰ ˆ[1] , X ˜[1] ; X ˆ) Ϫ 1) minimizing the Akaike information criterion, AIC ϭ AIC*(2) ϭ Ϫ2 ϫ (L(⌰ ˆ[2] , X ˜[2] ; X ˆ) Ϫ 1 Ϫ 13) Ϫ2 ϫ L(⌰ ˆ[k] , X ˜[k] ; X ˆ) ϩ 2 ϫ k.
In our cases of mixtures models, 1 shows the values of this bias for differ-AIC*(20

L(⌰ ˆ[k] , X ˜[k] ; X ˆ) Ϫ k AIC*(3) ϭ Ϫ2 ϫ (L(⌰ ˆ[3] , X ˜[3] ; X ˆ) Ϫ 1 Ϫ 13 Ϫ 8.1) is not an unbiased estimator of MELL, except for k ϭ AIC*(4) ϭ Ϫ2 ϫ (L(⌰ ˆ[4] , X ˜[4] ; X ˆ) Ϫ 1 Ϫ 13 1 and k ϭ n. We propose to estimate numerically bias (X 0 , k 0 ; k) ϭ MELL Ϫ E(L(⌰ ˆ[k] , X ˜[k] ; X ˆ)) in different Ϫ 8.1 Ϫ 6.7) situations. Table
) ϭ Ϫ2 ϫ (L(⌰ ˆ[n] , X ˜[n] ; X ˆ) Ϫ 1 Ϫ 13 Ϫ 8
.1 ent values of n and k, and different values of k 0 and X 0 of the actual model, that is, when using a model with Ϫ 6.7 Ϫ 15.9) k parameters when there are actually k 0 parameters and the actual parameter values are X 0 . The different con-It appears that these coefficients are approximately configurations l, l ϭ 1, 10 are described in Table 2. The stant or a linear function of n when n changes. We can therefore propose the following expressions for AIC*(k) computations are based on E,i ϭ √␥ E,i ϭ 10 cM. For n ϭ 20, each configuration is doubled (ϫ4 for n ϭ 40). m/type is the number of experiments of the type described in the line that is with an actual expectation i and actual standard deviation E,i;0 ; E,i is the standard deviation used in the simulations for this type.

that can be used for any value of n such that 10 Յ n Յ efficient when n becomes Ͼ40 or for chromosome 40:

length Ͼ2 M. The expressions for AIC*(k) were obtained using a AIC*(1)

ϭ Ϫ2 ϫ (L(⌰ ˆ[1] , X ˜[1] ; X ˆ) Ϫ 1)
particular situation for the E,i and independence be-

AIC*(2) ϭ Ϫ2 ϫ (L(⌰ ˆ[2] , X ˜[2] ; X ˆ) Ϫ 0.7 ϫ n)
tween the x ˆi. Nevertheless, we propose to use these expressions in general situations including different and

AIC*(3) ϭ Ϫ2 ϫ (L(⌰ ˆ[3] , X ˜[3] ; X ˆ) Ϫ 1.11 ϫ n)
variable values for the E,i and nonindependence. Their AIC*(4

) ϭ Ϫ2 ϫ (L(⌰ ˆ[4] , X ˜[4] ; X ˆ) Ϫ 1.44 ϫ n)
efficiencies in these situations are investigated by simulations in the following section.

AIC*(n) ϭ Ϫ2 ϫ (L(⌰ ˆ[n] , X ˜[n] ; X ˆ) Ϫ 2.27 ϫ n).
Note that we do not propose expressions for k ϭ 5, . . . , n Ϫ 1. The reason for that is the inefficiency of COMPARISON OF MODEL SELECTION STRATEGIES the use of the corresponding models when 10 Յ n Յ Alternative strategies and comparison indicators: We 40 and the length of chromosome is shorter than 2 M. Nevertheless, models with Ͼk ϭ 4 parameters could be now compare the quality of different estimates of x i obtained with the two alternative strategies of choosing val in a QTL experiment, one needs to use four times a model: the initial number of observations. The conventional strategy S 1 becomes equal or better when there are strategy S 1 . x ˜i(S 1 ) ϭ x ˆi. This is the "conventional" strategy, many actual positions (config 15) or when the actual which retains the estimated position.

QTL positions are narrow in regard to variance (constrategy S 2 . Choose the model l 2 giving the minimum fig 4, 18, and 19). Nevertheless, the greatest loss is value of the AIC*(l 2 ) criterion. The corresponding %02ف for the confidence intervals. Except for config estimate of

x i is x ˜i(S 2 ) ϭ x ˜[l 2 ] i .
13, the conclusions are the same for the three comparison indicators. For each of these h ϭ 1, 2 strategies, we compute two

Step 2. Configurations 24-27: When comparing config kinds of indicators:

24 with config 1, and config 26 with config 12, it The mean squared error of prediction R Sh ϭ 1 ⁄ n R n iϭ1 appears that the variability among the E,i does not

E(x i Ϫ x ˜i(S h )) 2 .
change the behavior of the strategies for all the crite-The length of the confidence interval at 95 and 90% ria. Nevertheless, the comparisons between config 25 for the position of the QTL. To obtain this length, with config 11 and config 27 with config 8 show that we compute the quantities |x i Ϫ x ˜i(S h )| and calculate the gain in using S 2 is less when there is a variability the quantiles q(0.95) and q(0.90) of its empirical disamong the variances when using the 0.95% confitribution over all the QTL. The smaller this confidence interval criterion. The difference between condence interval, the better the location estimator x ˜i(S h ).

fig 25 and 11 is more important than the difference Simulation results: We compare different configurabetween config 24 and 1 because it is possible to tions concerning k 0 and X 0 in four steps. In the first detect two populations whose means differ by 0.4 with step, we consider the standard deviation E,i ϭ √␥ E,i as E,i ϭ 0.1, but it becomes more difficult when E,i ϭ constant among i ϭ 1, n and known; that is, the actual 0.15. standard deviation E,i;0 used in the simulations is the

Step 3. Configurations 28-31: As previously, the comparsame as the standard deviation E,i used in the model.

isons between config 24 and 28 and between config In the second step, the standard deviations are known 26 and 30 show some decrease in the gain when using but different from one observation i to another. In the S 2 , but not a very substantial one. The gain in using S 2 third step, the standard deviations are different and for the 95% confidence interval continues to decrease unknown; that is, the standard deviation E,i;0 used in when comparing config 25 with 29 and config 27 with the simulations is different from the standard deviation 31. of the model. In the fourth step, we investigate the

Step 4. Configurations 32-35: Globally the comparisons effect of nonindependence between the experiments between config 28 and 32, config 29 and 33, config by adding into the simulation model a correlation ϭ 30 and 34, and config 31 and 35 show a small decrease 0.8 between x ˆi and x ˆiЈ for i ϭ 1 and iЈ ϭ 2, i ϭ 3, and in the gain when using S 2 for the different indicators. iЈ ϭ 4 and so on. This choice is arbitrary. In all these cases, the number of observations is n ϭ 20, the x ˆi values Nevertheless, the use of S 2 in all these configurations are simulated as normally distributed N(x i , ␥ E,i;0 ), and continues to be advantageous (config 35) or very advanwe perform 500 simulations. The configurations are tageous (config 32 and 34) for all the indicators. The described in Table 2 and the results in Table 3. The conclusions are less clear for config 33, as it depends reason for the choice of n ϭ 20 is that it is a common on the indicator. number of experiments that are presently found in the We do not give the loss in gain for all types of configuliterature. The choice of the configurations is linked to rations through the three last steps. For example, the the length of maize chromosomes (between 1 and 2 series config 20, 26, 30, and 34 have the same behavior M). The configurations try to cover the range of possible as the same kind of series beginning with config 6. repartitions of QTL positions. It does not try to be a Discussion: The results show that if there are actually "sample" of the reality as we do not know what the reality one, two, three, or four different locations for the QTL is. In Table 3, we give the value of the mean squared studied, strategy S 2 proposed in this article is able to give error of prediction R S h , and the mean length of the 90 a better estimation of the x i than the use of estimated and 95% confidence interval of the QTL position, for positions x ˆi. The different comparison indicators try to both strategies S 1 and S 2 .

measure the quality of this estimation. They give consistent results. Our method combines different QTL loca-Step 1. Configurations 1-23: It appears that the gain tion estimates x ˆi, as is usually done in meta-analysis studobtained with strategy S 2 is substantial in several situaies even if they manipulate other types of data (e.g., tions for the different comparison indicators. For ex-Britten 1996; Allison and Heo 1998; Van Zandt and ample, the length of the 95% confidence interval is

Mopper 1998; [START_REF] Vøllestad | of fluctuating asymmetry in relation to heterozygosity[END_REF]. However, these divided by 4.5 when using S 2 when there is actually studies deal with what would correspond to only one only one QTL position. In several situations, this length is halved. Note that to halve a confidence inter-common QTL location in our case. The values are indicated in boldface when S 2 is better than S 1 for all the indicators and in italic when no strategy is better for all the indicators. See Table 2 for a description of configurations.

The theory is developed for independent experi-A particular situation is the case where two different QTL are detected on the same chromosome for the ments and known variance. We apply this theory for nonindependent observations in the simulation section same trait and in the same experiment. In this case, considering the two QTL as independent will not take and consider the effect of imperfect knowledge of the variance. The quality of the results in these cases shows the previous information into account.

Imagine a situation where we have all the markers that the method is robust and that there is no need for a specific theory to take nonindependence and estima-and phenotypic information for the different experiments and a join map of all the markers. It would then tion of the variances into account. be possible to perform a global linkage analysis and to we discard them from the analysis and use only the other 19 QTL. look for common QTL in each position as in [START_REF] Haley | Power of tests for QTL detection tive trait loci in crosses between outbred lines using least squares. using replicated progenies derived from a diallel cross[END_REF] or Rebai and [START_REF] Haley | Power of tests for QTL detection tive trait loci in crosses between outbred lines using least squares. using replicated progenies derived from a diallel cross[END_REF]. The question Our linkage data span from bin 3.4 to bin 3.6 according to the nomenclature of the maize database. of distinguishing between one, two, three or more QTL becomes a different problem in this case. As shown, for

Looking through the different studies in which the data were collected, we were able to estimate confidence example, in [START_REF] Goffinet | Toward a unified genetic map of higher plants, more than one QTL on a chromosome[END_REF], the distinction between these different hypotheses is not easy.

intervals for the majority of QTL positions. If we consider these positions to be normally distributed and a The expressions for AIC*(k) are given for k ϭ 1, 2, 3, 4, n. It would be interesting to obtain this expression confidence interval C(90) of 90%, the standard deviations E,i of the different QTL can be estimated as for k Ͼ 4, but as noted previously, it would only be useful for values of n Ͼ 40 and for a chromosome C(90) ϭ 2 ϫ 1.645 ϫ E,i cM. These values are given in Table 4. For those QTL where no confidence interval whose length is Ͼ2 M. However, according to the dense linkage maps existing nowadays for many different spe-could be evaluated, the value of E,i was taken as 6, 10, or 15 cM, corresponding to confidence intervals of 20, cies, mean chromosome lengths never exceed this value.

33, or 50 cM, the second value equaling the mean of our estimated confidence intervals. The QTL number AN APPLICATION USING THE MAIZE 1 is quite far from the others. This QTL must have a GENOME DATABASE large variance: its position is likely to be inaccurately Using the maize database (at http://www.agron. estimated, since it is located in an interval of 42.6 cM missouri.edu), we collected the data concerning QTL without any marker and 16 cM apart from the nearest related to yield and located on linkage group 3. We marker [START_REF] Veldboom | Comparative trait loci in maize in stress and nonstress environments. I. Grain analysis of QTLs affecting plant height and maturity across the yield and yield components[END_REF]. For these reasons, looked through the original publications and were able we attributed a E,i of 20 cM to this QTL for further to construct a "consensus" map, where all the QTL could analysis. be localized. This map was based on core markers that

We first tested our model with 19 QTL, with a E of were present in the different publications. The distances 10 cM; then we included the 5 QTL localized relative between two markers could differ between publications to marker umc10 in the data, that is, 24 QTL with the but were quite similar: we took the average values for different values of E,i . The results are given in Table 5 our map. A total of 24 QTL could be detected; their and are discussed in the next section. position is given in Figure 1, and their description is in Discussion: In Table 5, the underlined number is the Table 4. Five of them were mapped relative to marker best value of the criterion. In all cases, the model with umc10 (QTL numbers 12,13,14,15,and 21), whose two positions is favored by the criteria, whatever the value of E and the number of QTL considered. localization on the map was not precise. At this stage The 19 QTL are well represented by two real QTL a given QTL is very small; there are many possible genes, located on positions 30.30 (QTL 1) and 73.58 (QTL and the candidate can be chosen in two different ways. 2; see large arrows in Figure 1). QTL 1-11 would be First, the candidate gene can be chosen on an a priori representative of a first QTL at 30.30 cM, QTL 16-24 belief that, due to its function, the gene is associated would be a second one at 73.58 cM (Figure 1). The trait with the trait of interest. Second, the gene can be susaffected by QTL 1 is mainly plant height whereas QTL pected to be the candidate because it is located in the 2 mainly affects ear traits (Table 4).

area of the QTL: this is a positional comparative candidate-When the QTL located relative to locus umc10 are gene analysis [START_REF] Rotschild | QTL analysis: further uses of domestic livestock. Probe 8: 13-20. 'marker regression[END_REF]. Unless the included in the analysis, the results are not much af-QTL position confidence interval is very narrow, the initial fected [Table 5 (24 QTL) and Figure 1]. The estimation candidate gene can be incorrect. To increase the power of the positions for the models with two QTL are close of detection, the confidence interval must be narrowed, to those estimated with 19 QTL.

or the results from several genome-wide surveys must be combined (Keightley et al. 1998), which is precisely what we suggest in this study. Gathering QTL data to-CONCLUSION gether should be a good way to obtain a better estimation of a QTL position and thus to specify a colocation As the number of studies concerning QTL detection with a candidate gene. Moreover, the reduction of the increases, articles dealing with the use of results from confidence interval associated with QTL location is an several studies concentrating on different species important goal (see, for instance, Kearsey and Far-(Kearsey and Farquhar 1998) or on a single one quhar 1998), so the reduction provided by the method [START_REF]Mapped genomic locations for affecting testcross performances of elite european flint lines. developmental functions and QTLs reflect concerted groups in[END_REF]Coe 1997, 1998) are now available. A presented in this article is therefore of advantage. major step toward a more accurate identification of a

In the maize genome, functional clusters were found QTL consists of finding the proper candidate gene.

associating QTL and genes for growth, development, A candidate gene for a given trait is a sequence of a and stress response. The genomic location of the QTL gene of a known biological function involved with the used in our example (chromosome 3, bins 4-6) condevelopment or physiology of the trait. However, the likelihood that a given candidate gene corresponds to tains, for instance, genes for auxin and ABA sensors, genes for reduced or distorted growth of shoot, leaf, vides a framework for the comparative analysis of complex phenotypes [START_REF] Veldboom | Comparative trait loci in maize in stress and nonstress environments. I. Grain analysis of QTLs affecting plant height and maturity across the yield and yield components[END_REF]. Using meta-male and female inflorescence, loci for reduced plant vigor, and loci for a transcription binding factor (Khav-analysis to extract meaningful results for a particular species may in this way have a greater impact. kin and Coe 1997). Moreover, according to these authors, chromosomes 1 and 3 seem to carry 40% of all developmental genes. Thanks to the associated skills of LITERATURE CITED physiologists and geneticists, as a growing number of genes are mapped and as their function is increasingly

Figure 1 .

 1 Figure 1.-QTL related to yield on linkage group 3 of the maize genome.

TABLE 1 Value of bias(X 0 ,k 0 ;k) in different situations

 1 

	n:			10					20					40		
	k:	1	2	3	4	n	1	2	3	4	n	1	2	3	4	n
	k 0 ϭ 1 Config 1	1	7.6	9.2	9.7	10	1	14.0	17.5	18.8	20	1	27.1	33.8	36.6	40
	k 0 ϭ 2 Config 2	1	2.9	7.4	8.9	10	1	3.9	12.7	16.3	20	1	5.3	23.2	30.5	40
	Config 3	1	2.1	6.7	8.6	10	1	2.0	10.6	15.4	20	1	1.9	18.4	28.3	40
	Config 4						1	2.1	10.3	15.2	20					
	k 0 ϭ 3 Config 5	1	9.1	4.4	7.5	10	1	16.3	5.4	12.3	20	1	29.7	7.5	21.2	40
	Config 6	1	1.9	3.8	7.2	10	1	2.5	4.4	11.2	20	1	0.5	5.2	17.9	40
	Config 7						1	27.6	3.0	9.7	20					
	k 0 ϭ 4 Config 8	1	4.2	9.8	5.5	10	1	4.6	16.6	7.1	20	1	6.6	32.0	10.0	40
	Config 9	1	2.6	10.5	4.3	10	1	2.4	16.5	4.6	20	1	2.9	25.8	4.9	40
	Config 10						1	2.3	26.0	4.1	20					

TABLE 2 (

 2 Continued)

	Configurations	m/type	i	E,i	E,i;0	Configurations	m/type	i	E,i	E,i;0
	Config 25	2	0.0	0.1	0.1	Config 29	2	0.0	0.1	0.1
		3	0.0	0.07	0.07		3	0.0	0.1	0.07
		3	0.4	0.15	0.15		3	0.4	0.1	0.15
		2	0.4	0.1	0.1		2	0.4	0.1	0.1
	Config 26	3	0.0	0.1	0.1	Config 30	3	0.0	0.1	0.1
		2	0.0	0.07	0.07		2	0.0	0.1	0.07
		3	0.8	0.15	0.15		3	0.8	0.1	0.15
		2	0.8	0.1	0.1		2	0.8	0.1	0.1
	Config 27	2	0.0	0.1	0.1	Config 31	2	0.0	0.1	0.1
		1	0.0	0.07	0.07		1	0.0	0.1	0.07
		1	0.5	0.1	0.1		1	0.5	0.1	0.1
		1	0.5	0.07	0.07		1	0.5	0.1	0.07
		1	1.0	0.15	0.15		1	1.0	0.1	0.15
		1	1.0	0.1	0.1		1	1.0	0.1	0.1
		2	1.5	0.15	0.15		2	1.5	0.1	0.15
		1	1.5	0.1	0.1		1	1.5	0.1	0.1
	Config 32	5	0.0	0.1	0.1	Correlation				
		3	0.0	0.1	0.15	ϭ 0.8				
		2	0.0	0.1	0.07	between	1,2; 3,4; etc.		
	Config 33	2	0.0	0.1	0.1	Correlation				
		3	0.0	0.1	0.07	ϭ 0.8				
		3	0.4	0.1	0.15	between	1,2; 3,4; etc.		
		2	0.4	0.1	0.1					
	Config 34	3	0.0	0.1	0.1	Correlation				
		2	0.0	0.1	0.07	ϭ 0.8				
		3	0.8	0.1	0.15	between	1,2; 3,4; etc.		
		2	0.8	0.1	0.1					
	Config 35	2	0.0	0.1	0.1	Correlation				
		1	0.0	0.1	0.07	ϭ 0.8				
		1	0.5	0.1	0.1	between	1,2; 3,4; etc.		
		1	0.5	0.1	0.07					
		1	1.0	0.1	0.15					
		1	1.0	0.1	0.1					
		2	1.5	0.1	0.15					
		1	1.5	0.1	0.1					

TABLE 3 Mean squared error of prediction R S h , length of the confidence interval at 90% q(0.90) [respectively, 95% q(0.95)] computed with 500 simulations in different configurations for both strategies
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		Config 1	Config 11	Config 12	Config 6
	Strategies	S 1	S 2	S 1	S 2	S 1	S 2	S 1	S 2
	R S h (*100)	1.03	0.075	1.02	0.545	1.08	0.140	1.03	0.455
	q(0.90)	0.168	0.041	0.165	0.068	0.165	0.055	0.168	0.056
	q(0.95)	0.199	0.047	0.198	0.095	0.198	0.071	0.199	0.071
		Config 13	Config 8	Config 14	Config 15
	Strategies	S 1	S 2	S 1	S 2	S 1	S 2	S 1	S 2
	R S h (*100)	1.01	0.885	1.02	0.520	1.01	1.010	1.02	1.50
	q(0.90)	0.166	0.135	0.168	0.089	0.167	0.169	0.167	0.203
	q(0.95)	0.199	0.249	0.197	0.117	0.197	0.253	0.196	0.238
		Config 16	Config 17	Config 18	Config 19
	Strategies	S 1	S 2	S 1	S 2	S 1	S 2	S 1	S 2
	R S h (*100)	0.255	0.035	0.500	0.100	2.30	1.94	4.085	3.775
	q(0.90)	0.083	0.027	0.116	0.039	0.249	0.235	0.332	0.281
	q(0.95)	0.099	0.033	0.138	0.048	0.296	0.372	0.394	0.400
		Config 20	Config 21	Config 22	Config 23
	Strategies	S 1	S 2	S 1	S 2	S 1	S 2	S 1	S 2
	R S h (*100)	0.261	0.034	0.510	0.067	2.35	0.675	4.055	2.120
	q(0.90)	0.084	0.028	0.117	0.039	0.252	0.091	0.333	0.136
	q(0.95)	0.100	0.034	0.140	0.048	0.300	0.113	0.394	0.185
		Config 24	Config 25	Config 26	Config 27
	Strategies	S 1	S 2	S 1	S 2	S 1	S 2	S 1	S 2
	R S h (*100)	1.26	0.078	1.295	0.845	1.295	0.262	1.35	0.980
	q(0.90)	0.184	0.038	0.186	0.083	0.186	0.059	0.188	0.109
	q(0.95)	0.225	0.047	0.231	0.161	0.231	0.083	0.232	0.178
		Config 28	Config 29	Config 30	Config 31
	Strategies	S 1	S 2	S 1	S 2	S 1	S 2	S 1	S 2
	R S h (*100)	1.230	0.132	1.295	0.881	1.295	0.394	1.342	1.025
	q(0.90)	0.181	0.045	0.186	0.098	0.186	0.081	0.188	0.133
	q(0.95)	0.223	0.056	0.231	0.211	0.231	0.132	0.232	0.203
		Config 32	Config 33	Config 34	Config 35
	Strategies	S 1	S 2	S 1	S 2	S 1	S 2	S 1	S 2
	R S h (*100)	1.225	0.229	1.371	1.015	1.368	0.523	1.365	1.056
	q(0.90)	0.178	0.059	0.191	0.116	0.191	0.102	0.190	0.144
	q(0.95)	0.220	0.079	0.233	0.264	0.233	0.148	0.234	0.209

TABLE 4 QTL related to yield on linkage group 3 of the maize genome
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	Identification		Estimated	
	in Figure 1	Trait	E,i (cM)	Reference
	1	Kernel weight	a	Veldboom and Lee (1996)
	2	Cob diameter	16	Beavis et al. (1994)
	3	Plant height	8	Beavis et al. (1994)
	4	Test weight	a	Ajmone-Marsan et al. (1995)
	5	Plant height	9.6	Beavis et al. (1994)
	6	Kernel row number	6.5	Austin and Lee (1996)
	7	Plant height	12	Beavis et al. (1991)
	8	Plant height	12	Beavis et al. (1991)
	9	Plant height	6.7	Scho ¨n et al. (1993)
	10	Kernel weight	9.8	Austin and Lee (1996)
	11	Kernel weight	15.3	Veldboom and Lee (1994)
	12	Grain weight	a	Maize Database, CIMMYT (1994) b
	13	Plant height	a	Maize Database, CIMMYT (1994) b
	14	Test weight	8	Beavis et al. (1994)
	15	Plant height	a	Maize Database, CIMMYT (1994) b
	16	Ear diameter	5.1	Veldboom and Lee (1994)
	17	Ear number per plant	8.5	Veldboom and Lee (1994)
	18	Ear number per plant	a	Veldboom and Lee (1996)
	19	Ear diameter	7.6	Austin and Lee (1996)
	20	Kernel weight	7.6	Austin and Lee (1996)
	21	Plant height	a	Maize Database, CIMMYT (1994) b
	22	Ear number per plant	5.5	Austin and Lee (1996)
	23	Plant height	14.9	Scho ¨n et al. (1994)
	24	Ear length	6.8	Veldboom and Lee (1994)

a No information available in the reference. b http://www.agron.missouri.edu:80/cgi_bin/sybgw_mdb/mdb3/reference/67081.

TABLE 5 Application of the models to the maize data 19

 5 QTL (QTL nos. 12, 13, 14, 15, and 22 not included) 

	Unknown E,i ϭ 10 cM					
	Models	k ϭ 19	k ϭ 1	k ϭ 2	k ϭ 3	k ϭ 4
	AIC*(k)	Ϫ15.41	60.33	Ϫ45.94 a	Ϫ37.26	Ϫ32.35
	Estimated positions (cM) (QTL no. 1 being at 0 cM)			
	k ϭ 1	54.86				
	k ϭ 2	30.30	73.58			
	k ϭ 3	23.59	38.19	73.58		
	k ϭ 4	23.59	38.19	68.40	81.34	
			24 QTL			
	Unknown E,i ϭ 6 cM					
	Models	k ϭ 24	k ϭ 1	k ϭ 2	k ϭ 3	k ϭ 4
	AIC*(k)	Ϫ23.39	72.97	Ϫ55.96	Ϫ48.45	Ϫ45.09
	Unknown E,i ϭ 10 cM					
	Models	k ϭ 24	k ϭ 1	k ϭ 2	k ϭ 3	k ϭ 4
	AIC*(k)	Ϫ17.26	44.10	Ϫ56.08	Ϫ45.91	Ϫ39.53
	Unknown E,i ϭ 15 cM					
	Models	k ϭ 24	k ϭ 1	k ϭ 2	k ϭ 3	k ϭ 4
	AIC*(k)	Ϫ12.40	37.94	Ϫ53.34	Ϫ42.50	Ϫ34.87
	Estimated positions (cM)					
	k ϭ 1	55.09				
	k ϭ 2	31.48	72.04			
	k ϭ 3	31.48	64.59	78.36		
	k ϭ 4	23.59	38.87	64.59	78.3	

a Underlined, best value of the criterion.