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Abstract - A model is used to explore whether local density-dependent recruitment relationships can be observed when considering 
a larger scale. A virtual population of spawners is tracked within an artificial environment composed of cells. Spawners can move 
from one cell to another on a spatial grid defined as a square lattice (lattice scale) made of 20 x 20 jointed hexagonal cells (local 
scale). Five spawner’s behaviours are experimented successively: i) spawners stay in the same cell to spawn; ii) they move randomly 
towards one of the neighbouring cells; iii) they move towards the least populated neighbouring cell; iv) they move towards the most 
populated neighbouring cell; and v) they move randomly towards a neighbouring cell and then move towards the most populated 
neighbouring cell. When the migration of spawners is achieved, spawners reproduce only once, recruitment takes place and then 
they disappear. The recruitment is an event which occurs at a local scale: at the scale of the cell. Using Ricker’s stock-recruitment 
relationship, in each cell the number of recruits is a function of the spawners. Random migrations and migrations towards the less 
populated cell allow a homogeneous distribution of the spawners throughout the lattice. Whereas in the three other cases, this distri- 
bution is not homogenised. The homogenisation of the lattice allows synchrony between local populations and then a stock-recruit- 
ment relationship is observable at the lattice scale. Simulations show that local density-dependence is not always detectable when 
considering large spatial scale. This result strengthens the idea that the choice of spatial scale is essential when studying stock- 
recruitment relationship. 0 Ifremer/Elsevier, Paris 

Spatial dynamics / stock-recruitment relationship / Ricker’s relationship / density dependence / spawning behaviour / 
individual based model 

R&urn6 - ModClisation de dynamiques spatiales et de relations locales de densit&di5pendance chez des populations de pois- 
sons : detections de caractdristiques B 1’6chelle globale. Le modkle Clabor6 pour cette Ctude a pour objectif de mettre en Cvidence 
l’importance de I’Cchelle spatiale dans la dCtection de relations de densit&dependance chez des populations de poissons & savoir si 
des relations stock-recrutement existant Bun niveau local peuvent Cgalement Ctre observCes & une plus grande Cchelle. Pour cela, une 
population de poissons geniteurs a Ct6 simulCe dans un environnement artificiel compose de 20 x 20 cellules hexagonales, la cellule 
reprksente l’&helle locale et l’environnement l’tchelle globale. Cinq comportements migratoires ont 636 modClisCs au tours de simu- 
lations successives : i) les gCniteurs ne changent pas de cellule et se reproduisent dans la cellule oh ils sont apparus ; ii) ils se dCpla- 
cent vers une des huit cellules voisines ; leur choix &ant alCatoire ; iii) ils se dCplacent vers la cellule voisine la moins peuplCe ; iv) 
ils se dCplacent vers la cellule voisine la plus peuplCe ; et v) ils se dkplacent d’abord vers une des cellules voisines, puis vers la cellule 
voisine la plus peuplCe. Quand tous les gCniteurs ont migrC. ils se reproduisent et meurent. Le recrutement a lieu & 1’6chelle locale. 
Dans chaque cellule, le nombre de recrues est d&ermine par la m&me fonction stock-recrutement de Ricker qui prend en consi- 
dCration le nombre de gCniteurs prCsents dans la cellule au moment de la reproduction. Les migrations altatoires et les migrations 
vers la cellule voisine la moins peuplCe permettent d’avoir une distribution homogkne de gCniteurs dans l’environnement. Cette 
homogCntisation entre les cellules induit une synchronisation entre les diffkrentes populations locales et la possibilit& d’observer 
une relation stock-recrutement & l’dchelle de l’environnement entier. En revanche, pour les trois autres modes de migration, les gCni- 
teurs ne sont pas r6partis de faGon homogkne. Les simulations montrent que les relations de densitdCpendance dCfinies Bun niveau 
local ne sont pas toujours dktectables 8 un niveau global. Ces rCsultats prouvent que l’&ude d’un systkme passe en premier lieu par 
une bonne dkfinition de 1’Cchelle spatiale d’Ctude. OIfremer/Elsevier, Paris 
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1. INTRODUCTION 

The concept of density dependence regulation 
appears to be the dominant contribution of the ecolo- 
gical theory, as it introduces stability and resilience in 
population dynamics [17]. In fishery science, the rela- 
tionship between recruitment and spawning biomass is 
a subject of intense debate [5, 181 since it was forma- 
lised mathematically by Ricker [24] and Beverton and 
Holt [4]. According to this relationship, the number of 
recruits can be deduced from the number of spawners. 
This constitutes one of the most fundamental issues for 
the management of fish populations [ 191. Many inves- 
tigations attempt to model fish stock-recruitment rela- 
tionship. Non-linear deterministic equations have been 
proposed to translate mathematically the effect of den- 
sity dependent regulator mechanisms [4, 5, 24, 281. 
The Ricker stock-recruitment relationship is one of the 
most common mathematical models used in fisheries. 
This model attempts to describe the quantity of recruit- 
ment that is produced by the parental stock. His formu- 
lation produces a dome-shaped curve. As parental 
stock increases in size, the efficiency of recruitment 
(the number of recruits produced per spawning fish) 
decreases. This decline in recruitment for high stock 
values reflects density-dependent effects. In his inter- 
pretation, Ricker assumes that cannibalism is the main 
regulatory mechanisms within larval and juvenile 
populations: an increase in the mature stock not only 
increases the number of eggs laid in a given reproduc- 
tive season, but it also decreases their rate of survival. 
Ricker’s stock-recruitment relationship has the follow- 
ing mathematical formulation: 

R = a S exp(+‘) 

where R is the number of recruits, 
S is the size of the stock of genitors (number of 
genitors), 
a is the density-independent probability of sur- 
vival, 
p is the coefftcient of density-dependent mortal- 
ity. 

However such a relationship between recruits and 
spawning stock is rarely reflected in the body of fish- 
eries’ data: empirical data do not allow satisfactory 
adjustments and the detection of a density-dependence 
relationship is rarely obtained [6]. Several scientists 
also believe that there is no strong relationship 
between stock abundance and recruitment [ 13, 19, 341 
and thus think that recruitment overfishing is almost 
impossible [15]. Many fisheries are then managed 
without consideration for maintaining a sustainable 
abundance of spawners [29]. Several investigations 
that deal with density-dependence regulation in biolog- 
ical populations (mostly insect populations) question 
this manner of analysing the data [ 14, 23, 3 11. Turchin 
[31], for example, shows that an analysis that does not 
consider time lags is unsuitable to detect density- 
dependent regulation in populations that exhibit 
delayed density-dependent mechanisms. For insects 

populations, a wrong scale of study will not reveal the 
density-dependence relationship as it may be obscured 
by averaging over areas of heterogeneous population 
density [23]. And density-dependence is rarely 
detected in large scale studies, while the converse is 
true in smaller scale studies [23]. These observations 
stress the importance of studying spatial population 
structure when studying stock-recruitment relation- 
ship [23]. 

By simulating different spatial population structures 
(or spatial variances in density) and dynamics, we will 
focus on proper spatial scales to detect a density- 
dependent relationship. The purpose of this paper is to 
provide conclusive evidence that the choice of the spa- 
tial scale of study can be determinant in detecting a 
density-dependent relationship. 

2. METHODS 

2.1. General modelling principles 

2.1.1. The model 
The model implemented in C++ is a hybrid model 

(we develop this point further in the general discus- 
sion). The model is made up of two components: an 
environmental and a biological unit. The environment 
is composed of a mosaic of potential spawning areas. 
It is represented by a homogeneous lattice divided 
into a number of jointed hexagonal cells (a hexagonal 
shape ensures better respect for spatial isotropy than a 
squared shape). We call the whole lattice ‘the lattice 
scale’ and a single cell ‘the local scale’. The environ- 
mental component, controlled by simulation parame- 
ters is characterised by the total number of cells 
(number of cells in a line x number of cells in a 
column) and by the lattice boundaries; opposite edges 
may or not be considered to be joined to form a toroi- 
dal space. The biological component is made of a 
set of individual fish. The fish have two possible 
states: recruit and spawner. Spawners reproduce only 
once and locally in a cell. The new recruits become 
spawners, then they migrate. The life cycle of spawn- 
ers is therefore made up of two stages: migration and 
reproduction. Only the first stage is described with an 
explicit individual-based approach. For reproduction, 
each spawner is identical and does not transmit any 
specific property to its offspring. In each cell, the 
result of the reproduction is expected to only depend 
on the number of spawners present in the cell. A 
Ricker’s stock-recruitment relationship (appendix I) is 
used in this study because it seems to be the most 
appropriate for regulating a wide range of number of 
spawners. 

2.1.2. Principle of the simulation 

At the beginning of the simulation, spawners are dis- 
tributed randomly throughout the lattice. The local 
population is composed of spawners that are in a par- 
ticular cell; the lattice population is composed of all 
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the spawners that are in the lattice. During an iteration, 
the number of recruits in each cell is determined by the 
number of spawners present in the cell (local recruit- 
ment) using the Ricker’s stock-recruitment equation. 
Spawners reproduce only once and then die. The 
recruits then become spawners and may migrate or 
stay in the cell according to the spawner’s behaviour 
parameter considered. This ultimate phase completes 
an iteration and the simulation of the following itera- 
tion begins with spawning. 

The duration of a simulation is determined by the 
number of spawning seasons. A simulated spawning 
season consists of four phases which are executed suc- 
cessively in one iteration cfigure 1): 

(i) Spawning and recruitment: in each cell, the num- 
ber of recruit is density-dependent following Ricker’s 
stock-recruitment relationship. The parameter, deter- 
mining whether the dynamics are constant, cyclic or 
chaotic, is a simulation parameter and is constant for 
all cells during the entire simulation; 

(ii) Death of spawners: when recruitment is achieved, 
all spawners die; 

(iii) Maturation of recruits: in each cell, recruits 
become spawners; 

(iv) Spawners behaviour: behaviour of spawners is a 
simulation parameter defined at the beginning of the 
simulation and is the same for the entire simulation 
and for all spawners. 

Figure 1. Individual based model flow chart. Each sim- 
ulation is characterised by parameters which are defined 
at the beginning of the simulation. a: The parameter CL 
of Ricker’s stock-recruitment relationship (appendir I); 
&seasons: the number of iterations; nb-lines: the num- 
ber of cells in a column: nb-columns: the number of cells 
in a line; nb-genitors: the initial number of genitors; be- 
haviours: the kind of genitors’ behaviour (one behaviour 
without migration and four behaviours with different 
kinds of migrations). The number of spawning seasons 
(number of iterations) determines the duration of a sim- 
ulation. A spawning season consists of four phases 
which are executed successively. The portions within the 
dashed lines depict the fish behaviours during a spawn- 
ing season. 

Five different behaviours are considered. They are 
derived from reproductive strategies and ecological 
expectations: 

(i) Homing strategy: successive generations repro- 
duce at the same geographic location and spawners do 
not migrate; 

(ii) Opportunistic strategy: the most common hypo- 
thesis postulates that an individual will try to select the 
environmental conditions that maximize its total repro- 
ductive output [21]. If environmental conditions have 
equal suitability then spawners do not have preferential 
spawning site, they may reproduce in any site. Each 
spawner migrates randomly towards one of the neigh- 
bouring cells; ‘neighbouring cells’ is used to indicate 
the environment composed by the current cell and by 
the six neighbourhood cells; 

(iii) Density-dependent habitat selection: in field 
studies where population density varied sufficiently, it 
is common to observe differential utilisation of habitat 
depending on population size [16]. As a consequence, 
the ‘density-dependent habitat selection’ states that the 
population size and the local density are important fac- 
tors that influence the choice of a habitat and hence 
the relative distribution of the population among habi- 
tats. Habitats may be ordered in terms of basic ‘suitabi- 
lity’ [7]. Due to density-dependent effects such as the 
increasing density of individuals in a habitat, the rea- 
lised suitability decreases. In an ‘ideal free distribu- 
tion’, all individuals choose the most suitable habitat. 
For this scenario, an ideal free distribution is simu- 

Number of iterations 

Rick&s parameter 

Number of spawners 

Establish Population Spawning and 
recruitment 

c 

.L 
Death of spawners 

Spawners behaviours 
* 

Maturation of recruits 

0 END 
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Table I. Results of simulations in a 20 x 20 closed lattice and for a duration of 200 reproductive seasons. Initial lattice density is equal to 5, p = 0.01 
and CL = 2.72, 11.5 or 17.71 which induces a theoretical local dynamic constant, cyclic or chaotic, respectively. For each behaviour and Q value tested, 
the system settles into a characteristic dynamical behaviour. The dynamics of variations has been determined for the entire simulation by the calcu- 
lation of the Lyapunov exponent [2, 3, 321. 

Parameters Dynamics at the lattice scale Synchronisation of cells 

Behaviours Theoretical local 
dynamics 

Magnitude of lattice 
density variations 

Dynamic 
of variations 

No migration 
Constant Nil 
Cyclic Strong or n 
Chaotic Medium 

Random migration Constant 
Cyclic 
Chaotic 

Nil 
Strong 
Strong 

Migration towards 
the least populated 
neighbouring cell 

Constant 
Cyclic 
Chaotic 

Almost nil 
Strong 
strong 

Mixed migration 
constant 
Cyclic 
Chaotic 

Very low 
LOW 
Low 

Ii1 
Non chaotic 
Non chaotic 
Non chaotic 

Non chaotic 
Non chaotic 
Chaotic 

Non chaotic 
Non chaotic 
Chaotic 

Chaotic 
Chaotic 
Chaotic 

Synchronous 
Synchronous 
Non synchronous 

Synchronous 
Synchronous 
Almost synchronous 

Synchronous 
Synchronous 
Almost synchronous 

Non synchronous 
Non synchronous 
Non synchronous 

lated, each spawner migrates towards the least popu- 
lated neighbouring cell which is supposed to be the 
most suitable habitat. If there are more than one, the 
destination is chosen randomly among these cells; 

(iv) Schooling strategy: schooling is common in fish 
population, particularly for pelagic fish. Fish gather by 
reciprocal attraction governed by stimuli. Each 
spawner migrates towards the most populated neigh- 
bouring cell. If there are more than one, the destination 
is chosen randomly among these cells; 

(v) Dispersion and concentration: each spawner 
migrates a first time randomly towards one of the 
neighbouring cell and then migrates towards the most 
populated neighbouring cell. This behaviour is a com- 
bination of behaviour (ii) and (iv). The first movement 
of random dispersion allows a redistribution and a 
mixing of the population throughout the lattice. The 
second step simulates the phenomena of looking for a 
reproduction area. 

Movements are asynchronous. Spawners are organ- 
ised as a list of individuals. Each spawner is considered 
successively. An individual chooses a destination cell 
and migrates towards this cell. This implies that the 
choice of each spawner’s destination is influenced by 
the choice of the preceding one. 

2.2. Simulations 

The simulations are divided in two different ways. 
The first simulations for each spawners’ behaviour 
were realised with three deterministic dynamics: 
damped oscillations converge to a stable equilibrium 
point, become cyclic of period 2 or chaotic (respec- 
tively: CI = 2.72, 11.55 and 17.71). To allow a compar- 
ative analysis, the lattice structure and the number of 
iterations were the same: 20 x 20 closed lattice and 
200 iterations. The lattice was large enough to inhibit 

the edge effect and to notice the impact of the spatial 
scale. The number of iterations has been chosen such 
that they are long enough to allow the colonisation of 
the entire environment and to allow the establishment 
of the characteristic lattice of the population’s dynami- 
cal behaviour. 

For comparative purpose, we have focused on testing 
the importance of spatial and temporal scale by chang- 
ing the size of the lattice (5 x 5 lattice) and the number 
of iterations (5 000 iterations). Simulations have been 
done for a = 17.71 (chaotic dynamic) with migrations 
towards the least populated neighbouring cell. 

3. RESULTS 

When movements are introduced in a lattice com- 
posed of 20 x 20 cells, each cell becomes occupied by 
spawners and the system settles into a characteristic 
dynamical behaviour. Every behaviour has a resulting 
lattice dynamic that is similar to that obtained with 
other behaviours. Results of these simulations are pre- 
sented in table I. 

3.1. Simulation 1 

3.1.1. Behaviour without migration and behaviour 
with migration towards the most populated 
neighboun’ng cell 

Individuals gathering in the most populated cells 
induce the formation of isolated local populations 
whose dynamics are independent of each other. This 
behaviour is quite similar to a system made up of iso- 
lated populations (without migration). 

- Simulation with a = 2.72. All local densities tend 
towards a fixed density equal to In a/0.01. At the lat- 
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a 
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Figure 2. Example of behaviour without movement: 

E 
jj 500. .Z 

200 reproductive seasons, 20 x 20 cells, initial lattice 8 
; 500. 

density equal to 5, fl = 0.01 and c1= 17.71. a) Graph of 3 8 & 
synchronisation. Local density of each cell changes 
independently of the other, cells are not synchronised. 
b) Graph of lattice stock recruitment-relationship. Scat- 
tered points are localised in a reduced space. 

-I 300. #A..!.:: ;.y :q*!./: <:. (” !v;, ..;, 300. 

100. 100. 

I I 
100 300 500 700 100 300 500 

tice scale, the dynamic is stable and the lattice density 
tends towards an equilibrium value. 

- Simulation with a = 11.55. The dynamic of each 
cell is similar. All local densities alternate in a stable 2- 
point cycle. Local dynamics are then synchronised. 
The term ‘synchronisation’ is used to indicate that 
there is a correlation between local dynamics. This 
correlation does not exclude a lag: synchronised cells 
are either in phase or in opposite phase. This synchro- 
nisation induces, at the lattice scale, a stable cyclic 
oscillation between two density points. Values of the 
two fixed points depend on the number of cells which 
are in phase and in opposite phase. If the number of 
cells in phase is equal to the number of cells in oppo- 
site phase, the lattice density tends towards a constant 
point. 

- Simulation with a = 17.71. Local dynamics are 
chaotic, they can not be synchronised: the graph of 
synchronisation reveals that the local density of each 
cell changes independently of the others (figure 2a). 
When plotting the local number of recruits for each 
cell during an iteration, graphs show that each cell 
gives a different number of recruits. The total density 
of recruits can not be deduced from Ricker’s relation- 
ship; it represents the sum of local densities resulting 
from the Ricker relationship. Then, the stock-recruit- 
ment graph shows scattered data points localised in a 
reduced space (figure 2b). 

3.1.2. Behaviour with random migrations and 
migrations towards the least populated 
neighbouring cell 

Random movements induce a homogenisation of the 
population: they allow synchronisation between local 
dynamics and the emergence of a Ricker’s stock- 
recruitment relationship at the scale of the lattice. It is 
even more obvious for behaviour with movements 
towards the least populated neighbouring cell. 

- Simulation with a = 2.72. The lattice is uniform; 
at equilibrium, all local populations reach the same 
density. Therefore if a spawner leaves a cell, it is 
immediately replaced by an immigrant from a neigh- 
bouring cell. This phenomenon allows a lattice 
homogenisation. Then the dynamics at the lattice scale 
Aquat. Living Resour. 1 I (5) (1998) 

Local density Spawners 

is similar to the one defined by Ricker’s stock-recruit- 
ment relationship at the cell level and the lattice den- 
sity tends towards a fixed point equals to In alO. 1. 

- Simulation with a = 11.55. Migrations allow a lat- 
tice homogenisation and population dynamics at the 
lattice scale is also cyclic of period 2. 

- Simulation with a = 17.71. When the system is 
stabilised, the graph of instantaneous stock-recruit- 
ment relationship shows that each cell has almost the 
same local spawner density and thus produces almost 
the same number of recruits. Migrations allow a syn- 
chronisation between cells (figure 3a). The lattice den- 
sity seems to oscillate between two attractive areas 
@gure 3b), and the values of the Lyapunov’s exponent 
reveal a chaotic dynamic (appendix 2). 

3.1.3. Behaviour with mixed movement 
Migrations do not allow a lattice homogenisation, 

thus cells can not be synchronised and the dynamic at 
the lattice scale does not look like a Ricker’s stock- 
recruitment relationship. In comparison with our pre- 
vious results, this behaviour presents two particulari- 
ties: 

- the lattice density fluctuations are smaller than 
density fluctuations of previous simulations and at the 
lattice scale, there is a regulatory phenomenon which 
does not appear for the previous simulations; 

- whatever the a value, the Lyapunov’s exponent 
value (appendix 2) shows that the dynamic at the lat- 
tice scale is chaotic; lattice dynamic properties are not 
a function of the local a. 

3.2. Simulation 2 

A comparative study of behaviour with migrations 
towards the least populated neighbourhood cell shows 
that the detection of a stock-recruitment relationship is 
sensitive to the number of reproductive seasons and to 
the size of the lattice (figures 3-6). 

3.2.1. From 200 to 5 000 reproductive seasons 
in a 20 x 20 lattice, a = 17.71 (chaotic) 

Values of the two attractive areas observed for 
200 reproductive seasons are shifting during the simu- 



310 0. Anneville et al. 

700 

E 
E 
g 500 
8 
‘E 
9 

300 

100 

300 500 700 100 300 500 
Local density Spawners 

a 

I 

b 

700 

100 

;, , 

300 500 700 100 300 500 
Local density Spawners 

Figure 3. Example of behaviour with movement 
towards the least populated neighbourhood cell: 
200 reproductive seasons, 20 x 20 cells, initial lattice 
density equal to 5, p = 0.01 and o! = 17.71. a) Graph of 
synchronisation. There is a synchronisation between 
cells; each cell has almost the same local spawner den- 
sity and thus produces almost the same number of 
recruits. b) Graph of lattice stock recruitment-relation- 
ship. The lattice density oscillates between two attrac- 
tive areas. 

Figure 4. Example of behaviour with movement to- 
wards the least populated neighbourhood cell: 
5 000 reproductive seasons, 20 x 20 cells, initial lattice 
density equal to 5, p = 0.01 and CL = 17.71. a) Graph of 
synchronisation. There is a small desynchronisation 
between some cells. b) Graph of lattice stock-recruit- 
ment relationship. The values of the two attractive 
areas are shifting during the simulation and a Ricker’s 
stock-recruitment relationship appears at the lattice 
scale. 

lation (&ures 3, 4). For 5 000 reproductive seasons, 
we observed a relationship which is similar to a 
Ricker’s stock-recruitment relationship. In the long- 
term, the apparent oscillation disappears and a global 
chaotic behaviour is observed. The stock-recruitment 
relationship at a lattice scale becomes more apparent 
with increasing simulation time. However, the curve 
presents differences compared to the curve of the local 
Ricker’s relationship: 

@gut-e 6b). Because the lattice is made up of a few 
cells, the migrations allow a rapid and strong synchro- 
nisation between all the cells, which can be maintain 
over time (figures 5a and 6a). A time scale of 
200 iterations is enough to observe a lattice dynamic 
similar to the local ones and then the lattice dynamic 
exhibits a chaotic behaviour. 

- It is thick; 4. DISCUSSION 

- The extreme values of density are missing. 4.1. The model 
We hypothesised that migrations allow the conserva- 

tion of a synchronisation between local chaotic dynam- 
ics. But they are slightly desynchronised (figure 4a). 
This desynchronisation, which evolved with time, is 
not strong enough to prevent, on the long-term, the 
emergence of a Ricker’s stock-recruitment relationship 
@gure 4b). The desynchronisation maintains differ- 
ences of density between cells. These differences 
between local densities are responsible for the 
observed particularities (thick and truncated) of the 
curve (we will discuss this observation later). 

3.2.2. From 200 to 5 000 reproductive seasons 
in a 5 x 5 lattice, a = 17.71 (chaotic) 

If the spatial grid is small (lattice 5 x 5), a Ricker’s 
stock-recruitment relationship appears for 200 repro- 
ductive seasons &p.u-e 5b). After 5 000 reproductive 
seasons, this relationship is always clear (no thickness, 
complete) and looks similar to the local one 

Recently, there has been a growing interest in the 
importance of considering space in animal population 
dynamics [S-12, 20, 25-27, 301. One of the key ques- 
tions was to understand the effects of movements 
between spatially separated populations. Using an 
individual based approach seems to be a constructive 
way to simulate specific individual behaviour and it 
allows a better understanding of the dynamics of the 
entire system. However, in this study, we have defined 
an hypothesis on the environment and fish behaviour 
(identical reproductive local behaviour) which allows 
the simplification of the computation: conceptually 
spawners are always considered as individuals but 
reproduction is modelled at a local population level 
while migration is considered at an individual level. 
The hypothesis on migrations allows the comparison 
of our model with a stochastic matrix framework : 

S r+, =W,) 
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a 1 b 

Figure 5. Example of behaviour with movement 
towards the least populated neighbourhood cell: 
200 reproductive seasons, 5 x 5 cells, initial lattice 
density equal to 5, p = 0.01 and cr = 17.7 1. a) Graph of 
synchronisation. The cells become rapidly synchro- 
nised. b) Graph of lattice stock-recruitment relation- 
ship. At the lattice scale, a Ricker’s stock-recruitment 
relationship appears. 

Figure 6. Example of behaviour with movement 
towards the least populated neighbourhood cell: 
5 000 reproductive seasons, 5 x 5 cells. initial lattice 
density equal to 5, p = 0.01 and a = 17.71. a) Graph of 
synchronisation. There is a synchronisation between all 
cells. b) Graph of lattice stock-recruitment relationship. 
At the lattice scale, a stock-recruitment relationship 
appears and is similar to the local one. 
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with S, : the vector of the number of spawners in each 
cell at time t before reproduction, 
S;: the vector of the number of recruits in each 
cell, 
S, + ,: the vector of the number of spawners in 
each cell at time t + 1 after migrations. 

Each component of S; is deduced from the corre- 
sponding component of S, by Ricker’s function. The 
relation between S,, , and St depends on the experi- 
mental behaviour: 

-if there is no migration or migration towards the 
most populated neighbouring cell, after a short period: 
s -S. 1+1- f’ 

- for random migrations: S, + , = (M + E)& MV takes 
the value 0 or l/9 in function of the ranges of the cells i 
and j; 

- for migrations towards the least populated neigh- 
bouring cell and mixed movements, the process lead- 
ing from S, to S, + , can not be written within a matrix 
where M is independent of S. But in the first case, it is 
obvious that the process tends to homogenise the num- 
ber of spawners in the cells. In contrast, in the second 
case, the dynamic of S, has no stable attractor. 

4.2. Comments on studied bebaviours and results 

The values a and p have been chosen to allow a sys- 
tematic exploration of the different dynamical behav- 
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iours which are generated by Ricker’s equation. The 
purpose was more to test each behaviour which can be 
produced by the relationship than applying a fixed 
value which has been found to be characteristic for a 
given population. 

The lattice may be viewed as an oceanic area where 
each cell is a potential spawning area in which larvae 
and juveniles grow until recruitment. The length of 
individual paths is then representative of the distance 
between natal and reproductive sites. Mechanisms of 
regulation and limitation involved in density-depen- 
dence concept occur at a local spatial scale, i.e. the 
local population where a regulation by mechanisms 
such as competition and cannibalism do exist. As it 
was emphasized by Ray and Hasting [23], the detec- 
tion of such a relationship, which occurred at a defined 
scale, requires an appropriate spatial scale when stud- 
ied. When the spatial scale of study is large compared 
to the spatial scale on which regulatory mechanism 
acts, then local density heterogeneity smooth the pop- 
ulation oscillations and do not allow to detect a den- 
sity-dependence relationship. 

4.2.1. Behaviour without migration 
In the first scenario, the distance between the natal 

and the reproductive cell is nil: individuals reproduce 
in their native site. It is a simulation that may represent, 
in a sense, natal homing. If there are no exchanges of 
spawners between spawning sites, simulations of sta- 
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ble local dynamics lead to an entire system with stable 
properties. On the other hand, as it has been underlined 
by Wilson et al. [33], the sum of local chaotic dyna- 
mics leads to the stability of the entire population com- 
pared with the dynamics of local populations. We can 
assert that the smooth oscillations observed at the lat- 
tice scale are a statistical consequence. Even if, in each 
of these sites, the number of recruits is locally deter- 
mined by Ricker’s relationship, at a larger scale, such a 
relationship is not observed. The lattice does not seem 
to be regulated by density-dependent mechanisms even 
if this is the case in each individual cell. 

4.2.2. Behaviour with migrations 

Investigations where individuals move randomly 
through their neighbourhood may stand for a situation 
in which individuals do not have determined spawning 
sites. There is a mixing between local populations and 
we have shown that these movements have a homoge- 
nising role. They allow synchrony to develop between 
local populations. This phenomenon is more obvious 
with migrations towards the least populated neighbour- 
ing cell. It gives a lattice dynamic which is the same as 
the local one. And even at the lattice level, a stock- 
recruitment relationship is detectable. Nevertheless 
such a relationship is more obvious if the number of 
local populations is small because a synchronisation 
between populations is more likely to establish itself if 
there are few populations. The difficulty of detecting a 
complete stock-recruitment relationship, when consid- 
ering a large scale, may be linked to the differences of 
density between each local population. It seems that 
maximal values of the average density are smaller than 
those of the local ones: at a large scale, the resulting 
relationship seems to be shrunk in a smaller range of 
density compared to the local ones. This observation 
may be linked to the divergence of density between 
local cells: the higher the difference between local den- 
sities is, the smaller the range of density values. 

Movements towards the least populated neighbour- 
ing cell do not seem ecologically realistic. Individuals 
act to limit competition (for space, food, etc.) but to 
reproduce, they generally concentrate in favourable 
environments. This behaviour can be compared with 
the last investigated (mixed movements) in which there 
is a first phase of dispersal after recruitment and a 
second phase of concentration for reproduction. In this 
case, movements do not allow a synchronisation 
between local populations and we can not detect a 
stock-recruitment relationship at a lattice scale. Never- 
theless as the lattice density is almost stable, we notice 
the presence of a lattice population regulation phenom- 
enon. The regulatory properties of the local stock- 
recruitment relationship also act at the lattice popula- 
tion scale. 

When movements are introduced, we have shown 
that the equilibrium stability properties of local sys- 

tems remain entirely unaffected by random and den- 
sity-dependent migrations as environment is entirely 
uniform (at equilibrium, all local populations have the 
same density). As it has been argued by Rohani et al. 
[25], when dispersal to and from local populations is in 
balance it does not alter the equilibrium properties of 
local populations. However, simulations with mixed 
behaviours show that any movements can induce an 
unstable lattice dynamic. These results match the 
observations which assume that in some cases, dis- 
persal can have destabilising consequences on the 
entire system. Highly asymmetric dispersal in preda- 
tor-prey interactions [1] and in host-parasite interac- 
tion [22] can have a destabilising effect on the 
population, even if at a local scale, populations are sta- 
ble. Ruxton [27] shows that if the migration rate is 
important enough, density-dependent migrations may 
have a destabilising effect. But the majority of investi- 
gations confirm that in a wide range of situations the 
strength of coupling between neighbours, and the size 
of the environment do not have a substantial influence 
on the local stability [25, 261. Local coupling have 
been shown to affect qualitative features of unstable 
dynamics [26]. Concluding that migrations mostly do 
not affect local stability does not mean that migrations 
have no consequences on the structure and behaviour 
of the whole system. For example, such a migration 
can enhance persistence of the whole population 
despite probability of local extinction [ll]. By 
strengthening the idea that individual movement 
behaviours have consequences on the dynamics, we 
have shown that the scales employed can strongly 
influence the detection of populations patterns and 
processes. And migrations between local populations 
may strongly influence results. 

5. CONCLUSION 

Observation of population dynamics can be influ- 
enced by the spatial scale of the study. Populations can 
be, for example, regulated by local density-dependence 
regulatory phenomena which become undetectable at 
the scale of the entire population. Stock-recruitment 
relationship can not always be observable with a clas- 
sical stock-recruitment relationship, but this does not 
mean that it does not exist. Thus, even if stock-recruit- 
ment relationship is not observable at the population 
scale, spawner abundance should not be ignored when 
managing fish population. 

These observations can be used in domains other 
than fisheries science. Nevertheless, the problems dis- 
cussed here, such as migratory behaviour and stock- 
recruitment relationship, are very important to under- 
stand population dynamics and it requires further 
attention in the future. 
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APPENDIX 1 This equation is similar to the logistic equation: 

Ricker’s stock-recruitment model [24] attempts to 
describe the quantity of recruitment that is produced by 
the parental stock. His formulation produces a dome- 
shaped curve. Ricker’s stock-recruitment relationship 
has the following mathematical formulation: 

R = a S exp(+‘) 

where 
R is the number of recruits, 
S is the size of the stock of genitors (number of 
genitors), 
a is the density-independent probability of sur- 
vival, 
p is the coefficient of density-dependent morta- 
lity. 

When R and S are in the same units, the equilibrium 
S, is determined by solving the equation: 

S, = a S, exp(-8X “) 

N 
k(l -$I, 

t+ 1 = N,e 

The cz value determines whether the dynamics of the 
system is constant, cyclic or chaotic 1171. As a 
increases above 2, the solution of the equation 
becomes unstable and forks into a pair of points, 
between which the population oscillates in a 2-point 
cycle. This cycle of period 2 is stable for 2 < a < 2.526. 
When increasing a beyond this (2.656 > a > 2.526), the 
2-point cycle becomes unstable and each of the points 
forks into 2 further points. The population alternate 
between 4 points. As a continues to increase, popula- 
tion oscillates to stable cycles with 8, 16, etc. points. 
There is a limiting value of a whereby cycles of period 
2” become unstable and bifurcate into stable cycles 
of period 2” + ‘. For a below this limiting value 
(a > 2.692) the population settles into a chaotic behav- 
iour. 

Dynamical behaviour Value of the growth rate 

log,(a) 
s, = - 

P 
By introducing the parameters S, and 

a = S, p = log,(a) 

the stock recruitment Ricker’s equation becomes: 

R = S exp 

a 

Stable equilibrium point 2>a>o 
Stable cycles of period 2” 

2-point cycle 2.526 > a > 2.000 
4-point cycle 2.656 > a > 2.526 
g-point cycle 2.685 >a > 2.656 
16, 32, 64, etc. 2.692 >a > 2.685 

Chaotic behaviour (cycles of arbitrary a > 2.692 
period, or aperiodic behaviour, depending 
on initial condition) 

Dynamics of a population described by logistic equation [ 171. 

APPENDIX 2 

A defining feature of chaos is the sensitive depen- 
dence upon initial conditions. This feature is quantified 
by the Lyapunov’s exponent [2, 3, 321. These values 
are the long time average exponential rates of diver- 
gence or convergence of nearby states. If a system has 
at least one positive Lyapunov’s exponent, then the sys- 
tem is chaotic: the larger the positive exponent, the 
more chaotic the system or in other words, the shorter 
the time scale of system predictability. To confirm 
chaos, it is necessary to confirm that the dominant 
exponent is positive. Lyapunov’s exponents are calcu- 
lated using the software Santis. 

Given the time series X(t) (which correspond to the 
values obtained by an entire simulation), a n-dimen- 
sional phase space is reconstructed with delay coordi- 
nates. One locates the nearest neighbour (in the 
Euclidean sense) to an initial point and denotes the dis- 
tance between these two points L(t,). At a later time t,, 
the initial length will have evolved to length L’(t)). The 

length element is propagated through the attractor for a 
time short enough so that only a small scale attractor 
structure is likely to be examined. One now looks for a 
new data point that satisfies two criteria reasonably 
well: its separation, L’(t,), from the evolved fiducial 
point is small and the angular separation between the 
evolved and the replacement elements is small. If an 
adequate replacement point can not be found one 
retains the points which were being used. This proce- 
dure is repeated until the fiducial trajectory has tra- 
versed the entire data file, at which point one 
estimates: 

where M is the total number of replacements steps. In 
this fixed evolution time algorithm the time step 
A = tk - tk _ i (evolution time in parameters) between 
replacements is held constant. 
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