N

N

Optimal design for the detection of a major gene
segregation in crosses between 2 pure lines
Jean Michel J. M. Elsen, Pascale P. Le Roy

» To cite this version:

Jean Michel J. M. Elsen, Pascale P. Le Roy. Optimal design for the detection of a major gene
segregation in crosses between 2 pure lines. Genetics Selection Evolution, 1995, 27 (3), pp.275-285.
hal-02702386

HAL Id: hal-02702386
https://hal.inrae.fr /hal-02702386v1

Submitted on 1 Jun 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.inrae.fr/hal-02702386v1
https://hal.archives-ouvertes.fr

Genet Sel Evol (1995) 27, 275-285 275
(©) Elsevier/INRA

Original article

Optimal design for the detection
of a major gene segregation in crosses
between 2 pure lines

JM Elsen!, P Le Roy?

L Institut national de la recherche agronomique, station d’amélioration génétique
des animauz, BP27, 31326 Castanet-Tolosan cedez;
2 Institut national de la recherche agronomique, station de génétique quantitative
et appliquée, 78352 Jouy-en-Josas cedex, France

(Received 15 June 1994; accepted 15 December 1994)

Summary — A simulation method was used to compare different experimental designs for
their power to detect a major gene using a maximum likelihood approach. The optimal
design is most often the production of F2 as the only segregating genetic type, with a
limited effect of the relative numbers of F2s and non-segregating groups (parentals and
F1) on the power. Dominant genes were more easily detected than additive ones. A model
dealing with the heteroskedasticity of the polygenic component was also studied.

major gene / optimization / maximum likelihood / homozygous line

Résumé — Protocoles optimaux pour la détection d’un géne a effet majeur en
ségrégation dans des croisements entre 2 lignées pures. Différents protocoles expéri-
mentauz ont été comparés par simulation sur leur puissance pour la détection d’un géne
a Uaide d'un test du maximum de vraisemblance. Le protocole optimal est le plus souvent
celui pour lequel le seul type génétique ot le géne est en ségrégation est la F2, avec un faible
effet de la proportion de F2 par rapport auz types génétiques sans ségrégation (parentoux et
F1). Les génes dominants sont détectés plus facilement que les génes additifs. Un modéle
considérant I'hétéroscédasticité de la composante polygénique est aussi étudié.

géne majeur / optimisation / maximum de vraisemblance / lignée homozygote

INTRODUCTION

The genetic maps presently under development will soon be a great help in
the detection of quantitative trait loci. Nevertheless, as stated by Goffinet et al
(1994), evidencing major gene segregation without marker information will remain
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important for various reasons: i) genetic maps may not be available for all species;
ii) systematic use of molecular markers is very costly; iii) statistical analysis of
phenotype distributions is a useful preliminary analysis of available data; and
iv) retrospective studies of old experiments without marker information may be
valuable.

The basis for population genetics was established by Mendel, who used crosses
between pure lines of peas to observe the segregation of genes controlling the colour
and appearance of seeds in F2 and backcrosses. Since that time, a number of
crosses between homozygous lines and even between heterogeneous subpopulations
have been conducted in plants and animals as tests of a major gene segregation
between these lines or subpopulations (the parental groups), eg, Hanset (1991) and
Boujenane et al (1991). The subpopulations may often be considered as independent
samples {eg, Bradford and Famula, 1984; Duchet-Suchaux et al, 1992; Loisel et al,
1994).

The underlying hypothesis is usually that the parental groups (P1 and P2) are
homozygous in opposite states (AA and BB) at a particular locus governing the
measured trait. Under this hypothesis, the first cross (F1) is homogeneous with all
animals AB; the F2s (crosses between F1 parents) may be AA, AB or BB with
probabilities of 1/4, 1/2 and 1/4 respectively; the backcrosses (either BC1, crosses
between F1 and P1, or BC2, crosses between F1 and P2) are also heterogeneous
AA or AB animals (BC1) and AB or BB animals (BC2) with proportions 1/2,
1/2.

The statistical analysis of the data obtained from these populations was clearly
described by Elston and Stewart (1973) and Stewart and Elston (1973). They
showed how a maximum likelihood approach could be used to test various genetic
hypotheses differing in gene numbers and types (additive/dominant, autosomal/sex-
linked). Alternative methods were described by Mode and Gasser (1972) and Weber
(1959). The power of this type of experiment has been recently investigated by Janss
and Van der Werf (1992), limiting their study to the case of F2 populations.

In this paper, we describe a study of the optimal structure of the population
defined by the relative and absolute numbers of subgroups (P1, P2, F1, F2, BC1
and BC2). Different structures were compared using simulations and their power
to detect a major gene in a maximum likelihood approach was investigated. Some
information about a more robust model is also provided. The use of simulations for
the evaluation of the statistical properties of the likelihood ratio test is justified by
the non-observation of classical asymptotic distributions in the particular context
studied (Goffinet et al, 1992; Loisel et al, 1994).

METHODS
Model

Two hypotheses were compared. Hy assumes that the difference between the
parental lines P1 and P2 is due to a large number of genes, each with a small
effect in controlling the trait measured, and H; assumes that beyond this polygenic
difference, a major gene is fixed at opposite homozygous states (AA and BB) in
the parental lines.
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Y;; is the performance of the jth individual of the ith genetic type. Six genetic
types are considered (P1, P2, F1, F2, BC1, BC2) with ¢ = 1 to 6 respectively. The
number of individuals in the ith group is n;.

Under Hy, the performance Y;; was modeled as:

Y'ij=llz+li+eij

where p is the general mean and I; the genetic type ¢ effect which can be detailed
using Dickerson’s crossbreeding parameters (Dickerson, 1973). In this study, the
only parameters considered were the direct individual additive effects (r and s for
the parental populations P1 and P2 respectively) and the direct heterosis effect (h):

I

r

la=s
Is=(r+98)/2+h
la=(r+s)/2+h/2
Is=@r+s)/44+h/2
(r+3s)/4+h/2

lg =

e;; is the residual effect which is normally distributed N(0, 02).

Under H;, the performance Y;; is modeled as:

Yij =p+1l +gr+e; with probability  pi

where gy is the major genotype k effect (k = 1 for AA, 2 for AB and 3 for BB)
and p;; is the probability of the kth genotype in the ith genetic type.

Under the preceding fixed alleles hypothesis:

? Group Di1 Pi2 Pi3
1 P1 1 0 0
2 P2 0 0 1
3 F1 0 1 0
4 F2 1/4 1/2 1/4
5 BC1 1/2 1/2 0
6 BC2 0 1/2 1/2

The case where the within-major-genotype variance varies between groups may

be studied simply by replacing o2 with o

2

et

In our simulations, this has been

explored for a limited range of population structures.
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Test statistic

The hypothesis Hy was tested using the likelihood ratio test £ = —21n(Lgo/L1)

where:
6 ny 2
11 H 1 Ly —p—U
Lo = - I A R i
0 o V2moe exp{ 2 ( O

1y —p—li—g\’
H H szk exp D) (_a—>
i=1j5=1 = €

It must be emphasized that, in this model, no familial relationships are considered
between the measured individuals.

The Hy hypothesis (no major gene segregating in F2s and/or backcrosses) was
rejected if the test statistic £ exceeded a threshold A. Due to non-observation of
regulatory condltlons the asymptotic distribution of £ under Hy is probably not
the classical x2 with a number of degrees of freedom equal to the difference between
the number of parameters to be estimated under Hy and Hy (Goffinet et al, 1992;
Jans and Van der Werf, 1992). Moreover, for a limited number of individuals, the
true asymptotic distribution may not be attained. To cope with these difficulties,
empirical rejection thresholds were obtained from simulations.

Cases studied

First, the power was evaluated for different population structures, given a total
number of 180 individuals measured. These situations are given in table I. In all
cases, P1, P2 and F1 were in equal proportions. In the C1 cases, the backcrosses
were not produced and the segregation of the major gene was visible only in the
F2. In the C2 cases, the F2 was absent and the 2 backcrosses were present in
equal proportions. The C3, C4 and C5 cases described the situations where both
F2 and backcrosses were present. The proportion ¢ of individuals belonging to the
‘segregating groups’ increased between C10 and C19, C20 and C26, and C3 and
C5. The proportion of F2s to backcrosses increased between C30 and C35, C40 and
C44, and C50 and C54. The major gene was characterized for each of these cases
by an effect of 2 residual standard deviations between the means of homozygotes,
either additive (g, = 0, go = 1 and g3 = 2, ie, a = (95 — g1)/2 = 1) or dominant
(g1=g92=0and gs=2,ied=gs— (g1 +g3)/2 = —1).

Secondly, the effects of the whole population size (3, n; = 30 to 480 individuals)
and of the major gene effect (4 values for a between 0.25 and lo., and d = 0 or
—a) were evaluated in the case where half of the population was made up of F2
individuals. The other half was equally divided between P1, P2 and F1 individuals.

Finally, considering these types of major genes, the likelihood was modified to
consider the case where the within- ~group variance differs between the F2 (0%,) and
the non—segregatlng subpopulations (O'N%) Simulations were performed considering
02, =1 and o%g = 02,, 0%,/1.25 or 075/1.5, for the structures C10 to C19 and
their equivalent with the total number of measured individuals doubled.
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Table I. Population structures studied for 2 standard deviations gene effects in the
homoskedastic case (number of individuals per genetic type).

Case P1 P2 F1 F2 BC1 B(C2
C10 45 45 45 45 0 0
C11 40 40 40 60 0 0
C12 35 35 35 75 0 0
C13 30 30 30 90 0 0
Cl14 25 25 25 105 0 0
C15 20 20 20 120 0 0
C16 15 15 15 135 0 0
C17 10 10 10 150 0 0
C18 5 5 5 165 0 0
C19 0 0 0 180 0 0
C20 36 36 36 0 36 36
C21 32 32 32 0 42 42
C22 28 28 28 0 48 48
C23 24 24 24 0 54 54
C24 20 20 20 0 60 60
C25 16 16 16 0 66 66
C26 12 12 12 0 72 72
C30 30 30 30 20 35 35
C31 30 30 30 30 30 30
C32 30 30 30 40 25 25
C33 30 30 30 50 20 20
C34 30 30 30 60 15 15
C40 20 20 20 40 40 40
C41 20 20 20 50 35 35
C42 20 20 20 60 30 30
C43 20 20 20 70 25 25
C44 20 20 20 80 20 20
C50 10 10 10 50 50 50
C51 10 10 10 60 45 45
C52 10 10 10 70 40 40
C53 10 10 10 80 35 35
Ch4 10 10 10 90 30 30
C55 10 10 10 100 25 25

Numerical techniques

The results were obtained from simulations. Appropriate subroutines from the NAG
library were used for the generation of genotypes and normal values (GO5CCF,
GO5DDF, GO5CAF). The maximization of the likelihood was performed using a
quasi-Newton algorithm (E04JBF from the NAG Library). Only 1 starting point
was tested for each maximization.

The rejection thresholds under Hy were estimated from the 10% empirical
quantiles of the test statistic distribution, for each population structure studied,
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defined by the group sizes n;. The power at the 10% level was simply estimated for
each case studied by taking the number of test statistic values that exceeded the
corresponding Hy quantile. Two thousand simulations were performed in each of
the Hy and H, cases.

RESULTS AND DISCUSSION
Optimal structure under the homoskedastic model

Figure 1 gives the power of situations C1 and C2 as a function of the ratio ¢ of the
segregating population (F2 or the 2 backcrosses) size to the total population size.
Whereas the 2 types of designs (F2 or BC alone) give a similar power for a dominant
gene, the F'2 must be used in the case of an additive gene, with a power varying
between 60 and 70% against 30 to 40% for the backcross. In the C1 situations the
maximum power is always reached for an equal proportion of segregating (ny = 90)
and non-segregating populations (n; = ny = nz = 30), ie with a ¢ ratio of 1/2.
In contrast, in the C2 situations, this optimal proportion seems to differ according
to whether a dominant (where the optimum is about 3 times more in backcross
individuals than in non-segregating individuals) or an additive gene (the maximum
power being attained with the minimum number of backcross individuals studied)
is considered.

Power

O T T T T T T
.30 40 .50 .60 .70 .80
Proportion t

Fig 1. Power of the design with only 1 type of segregating population (F2 or BC) for
various proportions ¢ of the segregating group (a total of 180 individuals measured, gene
effect a =1sd). F2(d=0: — - ord = —a: —); BC (d = 0: —e—; or d = ~a: —e).

Figure 2 describes the case where the F2 and backcross groups were both
produced (C3, C4 and C5). The power is given as a function of the ratio u of
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the number of F2s to the number of F2 + backcross individuals, for the 3 situations
considered with respect to the ¢t parameter: 1/2 (C3 cases, n; = ng = ng = 30),
2/3 (C4 cases, n1 = ng = ng = 20) and 5/6 (C5 cases, n; = ny = ng = 10). The
power appeared to be very insensitive to the ratio u for a dominant gene and when
considering an additive gene with a small number of parental individuals (¢ = 5/6).
In situations with an additive gene with a larger proportion of parental individuals
(t =1/2 or 2/3), the maximum power was attained by maximising the proportion
of F2s.

Power

1004

80+

60 -

s atd
I &

*--

40 o

204

O T T T T T T
.20 .30 .40 .50 .60 .70

Proportion u

Fig 2. Power of the design with 2 types of segregating population in proportion ¢
for various proportions u of F2s in the segregating group (a total of 180 individuals
measured, gene effect a = 1sd). t =1/2 (d=0: -¢;ord = —a: 4 ); t =2/3(d=0
-¢mord=—a:+4);t=5/6 (d=0:--~ord=—a:—).

Evidence for a major gene comes from the detection of a mixture of subdistribu-
tions within the global distribution of either F2 and/or backcrosses. In principle, the
test statistic used (the likelihood ratio test) makes use of the whole non-normality
of the global distribution. This non-normality is greater when the means of the
subdistributions are more extreme. This phenomenon probably explains the lack of
power of the backcross cases as compared to the F2 cases when an additive gene was
studied. In this situation, the difference between distribution components means of
the global F2 distribution was twice as a high as the difference in either the BC1
or the BC2.

When a hypothesis can be made about the type of dominance, before the
experiment is designed, then maximum power will be attained by limiting the
segregating subpopulation to the single backcross showing segregation. However,
the power of such a design will be zero if the true dominance is in the opposite
direction. Table II compares the power of this design with the power of an F2 when
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a total of 180 individuals were measured, half of which were in the non-segregating
(P1, P2 and F1) populations.

All these results may also be directly related to the proportion of the variance of
the trait due to the major gene in the segregating groups (table IIT); this proportion
increases with the differences between subdistributions means.

Table II. Power of designs with either an F2 or a BC1 as the only segregating group (180
individuals; half in the F2 or BC1).

Type of gene action F2 B(C!
0 0 1 34.2 9.5
0 0.5 1 26.8 14.7
0 1 1 34.2 37.9
0 0 2 93.6 7.8
0 1 2 70.0 37.5
0 2 2 93.6 98.0

Table III. Proportion of the variance of the trait due to the major gene in the F2 and
BC1 (in 0./64).

Type of gene action F2 BC1
0 0 0.5 3 0
0 0.25 0.5 2 1
0 0.5 0.5 3 4
0 0 1 12 0
0 0.5 1 8 4
0 1 1 12 16
0 0 1.5 27 0
0 0.75 1.5 18 9
0 1.5 1.5 27 36
0 0 2 48 0
0 1 2 32 16
0 2 2 48 64

Size of the design

The minimum number of individuals to be measured in order to have a 90% power
for the detection of a gene effect a = 1 standard deviation is 150 when considering a
dominant gene (d = —a) and about 500 when considering an additive gene (d = 0)
(fig 3). Larger populations are required for smaller gene effects. The changes in
curve shape with the gene effect a must be emphasized. These curves are nearly
linear for power under 70% and, in this linear part, the slope (ie the gain in power
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per extra individual measured) increases with a. The resulting increase in size of
the design required for a 70% power does not appear to be linear in 1/a.

Power
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Fig 3. Power of the design for various population sizes and gene effects (P1, P2, F1 and
F2 in proportions 1/6, 1/6, 1/6 and 1/2). a =0.5 (d = 0: -m—; or d = —a: -® ); a = 0.75
(d=0:we—0ord=—a:e);a=1(d=0:—-ord=—a: —).

Janss and Van der Werf (1992) considered a 1 standard deviation additive gene
effect (a = 1) and a 5% significance level and found a 12% power when only F2
individuals were measured (1 000 individuals) but a 100% power when 500 F1s were
added to these 1 000 F2s. From our simulations, the further inclusion of parental P1
and P2 performances in the analyses appears to be extremely useful. We confirmed
these results at the 10% level with some simulations performed with F2 individuals
only. The power of detecting an additive 2 standard deviations gene with 1000
F2s reached only 24%, a value attained with only 30 individuals when the parental
subgroups were included. '

Robustness to heteroskedasticity

Janss and Van der Werf (1992) argued that the inclusion of F1 data decreases the
robustness of the analysis, a false major gene being. easily detected when the F2
group variance is higher than in the F1 population (100% false detection with a
50% variance increase). As described above, this heteroskedasticity can be included
in the model without difficulty.

Figure 4 shows the power of such a heteroskedastic model for various population
sizes, when the performances are simulated with o2, = 1.50%g. Additive and
dominant genes of a 1 standard-deviation effect were considered. The results
obtained with 0%, = 1.250%5 and o2, = o&g were very similar. The detection
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power for additive genes was low and nearly independent of the population size and
structure. In contrast, in the case of a dominant gene, the power increased strongly
with population size and reached its maximum when all individuals belonged to
the F2 population, which is the opposite of the homoskedastic case where the non-
segregating populations were useful.

Power
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Fig 4. Power of the design with various proportions t of F2 individuals in the hetero-
skedastic model (a total of 180 or 360 individuals measured, gene effect a = 1 sd). n = 180
(d=0:—;ord=~a:—-); n=2360 (d=0: »; or d = —a: - -).

This result shows that the information in the non-segregating population derives
from the level of the within-group variance. This variance for the F2 can be
estimated in the parental and F1 groups in the homoskedastic model, but not
in the heteroskedastic model. In the latter, the major gene segregation was only
tested through the non-normality of the F2 group, while in the previous model the
increase of variance between F1 and F2 also contributed to this testing.

CONCLUSION

In general, the generation of backcrosses does not compete with the production of
F2s alone as a segregating population. This is particularly true for an additive gene.
The power of the detection test seems to be poorly sensitive to the proportion of
F2s in the whole population. The optimum appears to be 50% of F2s with equal
proportions of P1, P2 and F1. Large dominant genes are easily detected in such
small populations (fewer than 200 individuals for a 2 standard deviations gene
effect). Additive genes are less easily detected.

These results were obtained by comparing mixed with polygenic inheritance in
the homoskedastic case. To prevent a lack of robustness due to heteroskedasticity,
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a model including variance differences between F2s and parental populations may
be used. In this case, the major gene is detected through the non-normality of
the F2, with a loss of power. Another extreme situation may be found if the
differences between genetic types are due only to the segregation at the major
locus. Comparing this monogenic hypothesis to the polygenic one causes difficulty
since these hypotheses are not nested. This may be solved simulating empirical
quantiles as done in this study or using the Akaike (1973) criteria.
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