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Summary - Estimation and testing of homogeneity of between-family components of
variance and covariance among environments are investigated for balanced cross-classified
designs. The variance-covariance structure of the residuals is assumed to be diagonal
and heteroskedastic. The testing procedure for homogeneity of family components is
based on the ratio of maximized log-restricted likelihoods for the reduced (hypothesis
of homogeneity) and saturated models. An expectation-maximization (EM) algorithm
is proposed for calculating restricted maximum likelihood (REML) estimates of the
residual and between-family components of variance and covariance. The EM formulae to
implement this are iterative and use the classical analysis of variance (ANOVA) statistics,
ie the between- and within-family sums of squares and cross-products. They can be applied
both to the saturated and reduced models and guarantee the solutions to be in the
parameter space. Procedures presented in this paper are illustrated with the analysis
of 5 vegetative and reproductive traits recorded in an experiment on 20 full-sib families of
black medic (Medicago lupulina L) tested in 3 environments. Application to pure maximum
likelihood procedures, extension to unbalanced designs and comparison with approaches
relying on alternative models are also discussed.

genotype X environment interaction / heteroskedasticity / expectation-maxi-
mization / restricted maximum likelihood / likelihood ratio test

Résumé - Inférence relative à des composantes familiales homogènes de variance et
de covariance entre milieux dans des dispositifs factoriels équilibrés. Cet article étudie
les problèmes d’estimation et de test d’homogénéité des composantes familiales de variance
et de covariance entre milieux dans des dispositifs factoriels équilibrés. La structure
des variances et des covariances résiduelles est supposée diagonale et hétéroscédastique.



La procédure de test d’homogénéité des composantes familiales repose sur le rapport des
vraisemblances restreintes maximisées sous les modèles réduit (hypothèse d’homogénéité)
et saturé. Un algorithme d’espérance-maximisation (EM) est proposé pour calculer les
estimations du maximum de vraisemblance restreinte (REML) des composantes résiduelles
et familiales de variance et de covariance. Les formules EM à appliquer sont itératives
et utilisent les statistiques classiques de l’analyse de variance (ANOVA), c’est-à-dire
les sommes de carrés et coproduits inter- et intrafamilles. Elles s’appliquent à la fois
aux modèles réduit et saturé et garantissent l’appartenance des solutions à l’espace des
paramètres. Les méthodes présentées dans cet article sont illustrées par l’analyse de
5 caractères végétatifs et reproductifs mesurés lors d’une expérience portant sur 20 familles
de pleins frères testées dans 3 milieux chez la minette (Medicago lupulina L). L’application
au maximum de vraisemblance stricto sensu, la généralisation à des dispositifs déséquilibrés
ainsi que la comparaison à des approches reposant sur d’autres modèles sont également
discutées.

interaction génotype x milieu / hétéroscédasticité / espérance-maximisation / maxi-
mum de vraisemblance restreinte / rapport de vraisemblance

INTRODUCTION

There is a great deal of interest today in quantitative and applied genetics in
heterogeneous variances. Ignoring such heterogeneity, as is usually done, may
substantially affect the reliability of genetic evaluation and thus reduce the efficiency
of selection (Hill, 1984; Visscher and Hill, 1992).

There is concern not only about estimating dispersion parameters for hetero-
skedastic models, but also about testing hypotheses for the real degree of hetero-
geneity which can be expected from experimental results. In this respect, Visscher
(1992) investigated the statistical power of the likelihood ratio test in balanced
half-sib designs for detecting heterogeneity of phenotypic variance and intra-class
correlation between environments.

In that approach, the (family) correlation between environments (p) is assumed
to be equal to 1, and heterogeneity of between-family components of covariance
among environments in only due to scaling of variances.

The aim of this paper is to extend that approach to the case of true genotype
by environment interactions (p # 1). Our attention will be focused on: i) cross-
classified balanced designs; and ii) the null hypothesis involving homogeneity
of between-family components of variance and covariance between environments.
This variance-covariance structure has been widely used for analyzing family data
recorded in different environments, in particular due to its close link with a 2-
factor classification model (ie family and environment) with interaction (Mallard
et al, 1983; Foulley and Henderson, 1989). Moreover, even for balanced designs,
the estimation of the 2 parameters involved in this simple structure via maximum
likelihood procedures has no analytical solution in the general case when no
assumption is made about the residual variances. This motivated the proposal made
in this study to use the expectation-maximization (EM) algorithm (Dempster et
al, 1977) to solve the problem.



THEORY

Generalities

Let us assume that the records from the balanced cross-classified layout family (or
genotype) x environment can be written as:

where y2!! is the performance of the kth progeny (or individual) (k = 1, 2, ... , n)
of the jth family (or genotype) ( j = 1, 2, ... , s) evaluated in the ith environment
(i = 1, 2, ... , p) ; bij is the random effect of the jth family in the ith environment,
assumed normally distributed, such that Var(bij) = aBi, Cov(bij,bi’j) = O’Bii,, for
i ! i’, and Cov(bi!,bi!!!) = 0 for j # j’ and any i and i’; and e2!k is a residual

effect pertaining to the kth progeny in the subclass ij, assumed A!77D(0, <7!) viz,

normally and independently distributed with mean zero and variance U2 wi
Using vector notation, ie yjk = {Yijk}, !! = Igil, bj = {bij} and ejk = {e2!k} for

i = 1, 2, ... , p, the model [1] can alternatively be written as:

where bj rv N(0,!3) and ejk rv N(0,E!), with EB = {a-Bii’}’ standing for the
(p x p) matrix of between-family components of variance and covariance between
environments and £w = Diag{Qwi } for the (p x p) diagonal matrix of residual
components of variance. 

&dquo;

Actually, this approach consists of considering the expression of the trait in
different environments (i, i’) as that of 2 genetically related traits with a coefficient
of correlation pii, = asi!!/!B!!s!&dquo; (Falconer, 1952).

In a given environment (i), this 1-way linear model generates the classical
ANOVA statistics, ie the between-family (SB!, Bi) and within-family (Swi, Wi)
sums of squares and mean squares, respectively, whose distributions are propor-
tional to chi-squares:

Due to the cross-classified structure of the design, one also has to consider a sum
(SB..,) and a mean (BZi!) between-family cross-product for each (ii’) combination
of environments:



If we let yj_ = lyij. 1, Y.. = {Yi..}, then the matrix SB = {BBi&dquo;} } with elements
from [3a] and [4], such that: 

&dquo;&dquo;

has a Wishart distribution, denoted W(r, s - 1), with parameters (s &mdash; 1) and
r = Eyv + nEB, thus generalizing to a matrix of between-family sums of squares
and cross-products the (o,2 wi +naBi)X!s_1! distribution arising in (3a!.

In the 1-dimensional case, the set of SB! and Sw. are independent, location
invariant sufficient statistics for a-1 and wi similarly the matrices SB and
Syv = Diag{5w,} have the same property for EB and Eyv. Hence, one can write
the density of [5] as

Similarly,

Using [6a] and [6b] in the expression for the log likelihood,

where Ct is a constant. This leads to:

with W = Diag{Wd = Syv/s(n - 1) and tr(.) = the trace operator.
Notice that maximization of [7] yields REML estimators of EB and Eyj, because

the marginally sufficient statistics SB and Syir are used in the log-likelihood
function. Under the saturated model (a wi 2 7! 0,2 Wi, and UBij, 0 !8.!!.!!! for any

i, i’, i&dquo; and i&dquo;’), the partial derivatives with respect to oBg and 0’2 wi of minus twice
the log likelihood (-2L) are: 

’&dquo;



8F/8aB;;, is a (p x p) matrix having n as the (i, i’) element and 0 elsewhere,
so that the equation [8a] = 0 gives f = B. Similarly, 8£w /8a/j has 1 as the ith

diagonal element and 0 elsewhere. Given that Ew and W are diagonal matrices
and that f = B, the solutions to equations [8a] = 0 and [8b] = 0 are

provided that B &mdash; W is positive definite. The maximum of the log-likelihood
function is then (apart from a constant):

Otherwise, REML estimates of EB and EW are no longer identical to ANOVA
estimates and require the use of another algorithm for their calculation (see
Appendix A).

The null hypothesis consists of assuming the homogeneity of the between-family
components of variance (’di, or2 = CT2 ) and covariance (Vi # i’, a-Bii’ = CB) as
postulated in many analyses of genotype by environment experiments (Dickerson,
1962; Yamada, 1962; Mallard et al, 1983). The approach presented in this paper
allows us to test this simplified structure of EB against Falconer’s saturated model
for any structure of the residual variances. The nulle hypothesis (Ho) considered
here can be written as:

where Ip = identity matrix of order p and Jp = (p x p) matrix of ones.
Under Ho, REML estimation of EB and Eyv becomes much more complex. Here

8F/8a§ = nIp and ar/aCB = n(JP - Ip) result in the following equations:

were lp = (p x 1) vector of ones.
Since r-1 -I- F-’BF-1, the REML solution for the residual components ([8b])

is no longer Êw = W and the system of equations [8b] (see also (B11!), [12a] and
[12b] has no analytical solutions in the general case. This was the reason motivating
our search for another approach for computing REML solutions to EB and £w
under Ho.

An EM diagonalization approach

The expectation-maximization approach is a very efficient concept in maximum
likelihood estimation (Dempster et al, 1977). It has been widely used for calculating
ML and REML estimates of variance components of linear models (Meyer, 1990 ; -!



(auaas, 1992). The basic principle is to treat the unobservable random variables bij
and e2!! as missing data. Actually, the EM algorithm will not be applied directly
to the model described in [1] and [2] but after a spectral decomposition of EB
according to its eigenvalues and vectors, ie:

In this formula, A = Diagf6il is the (p x p) matrix of eigenvalues 6i, with 6i
repeated as many times as its multiplicity order, and U = (U1, U2, ... , Ui, ... , Up)
is the (p x p) matrix of the corresponding p normed eigenvectors Ui of EB (U’U =
IP). Under the special form shown in !11!, EB has only 2 distinct eigenvalues:

with multiplicity orders 1 and (p &mdash; 1) respectively. Moreover, the matrix U of
eigenvectors does not depend on the values of 61 and 62, U’ being the Helmert
matrix of order p, see for example Searle, 1982 (p 71 and 322) for more details
about such matrices. For instance, for p = 3,

Due to the invariance property of (RE)ML estimators, the one-to-one transfor-
mation in [14a] and [14b] allows us to change the parameterization from (<T1,CB)
to (61,b2), or more conveniently to (<!i,T) where T = 61 + (p &mdash; 1)62, the back
transformation is:

From the spectral decomposition of E$, the model in [2] can be written as:

where U is defined as before and the vector fj = { fi! is such that fj N N(0,A).
Using the Dempster et al (1977) terminology, a complete data set x can be

constructed from /-1, fj, ejk for j = 1,2,...,s and k = 1, 2, ... , n, whereas the
incomplete data set is the vector y of observations. 

’

Let us first consider the case of EB. If the fj ’s were known, sufficient statistics
for 61 and T would be, under the normality assumption:



REML would then be obtained by equating the expectation of these sufficient
statistics, ie:

to their calculated values (M step). Actually, these sufficient statistics are not

directly observable and the EM algorithm proceeds first by estimating them by
taking their conditional expectation given the observed data set (E step). Since
such an estimation depends on the value of the unknown parameters, the procedure
is iterative and consists of implementing the 2 usual steps:
E step: at iteration (t!, calculate

M step: compute 6!&dquo;’I and T[t+1] from the following equations:

As shown in Appendix A, the (p x p) matrix A’l can be expressed as:

where U, B and r are defined as above (see !13!, [5a] and [5b] respectively) and C!t!
is the matrix of variance of prediction errors of [t] = E(fj ) y, 8!t] , r[t], S!), the best
predictor of fj at iteration [t] such that:

Similarly, sufficient statistics for Ew under the complete data set x are:

and the E and M ’steps are as follows: 
’



For the E step, at iteration [t], calculate:

using the following formula based on the same reasoning as previously (see Ap-
pendix A):

sums of squares and cross-products (y.. being defined as

For the M step compute the next value of Eyv from:

Formulae [25] and [24a]-[24b] define the E and M steps, respectively, of an EM
procedure equivalent to that described previously but applied to untransformed



parameters. Notice that in this scheme tr(P)/p (average diagonal element of P) and
((1’P1) - tr(P!!/p(p - 1) (average off-diagonal element of P) behave as sufficientstatistics for aB and CB with respect to the complete data set.

Formulae for the residual components are unchanged with UC[t]U’ = :EW
1 E!y! and M[t] = n£ §I (riti 1. For the saturated model, the formulae
to apply are the same for EW and, simply, Eft+&dquo; = Illtlls for EB.
Testing procedures

Hypotheses of interest concern the vector 0 of parameters involved in the matrices
of between-family (EB) and within-family (Ey!) components of variance and
covariance between environments. The theory of the generalized likelihood ratio
can be applied to that purpose, as already proposed by Foulley et al (1990, 1992),
Shaw (1991) and Visscher (1992) among others.

Let Ho : 0 E 80 be the null hypothesis and HI : 0 6 8 - 80 its alternative,
where 8 refers to the complete parameter space and Oo, a subset of it pertaining
to Ho. Under Ho, the statistic

where L(0;y) is defined as in !7!, has an asymptotic chi-square distribution with r
degrees of freedom, r being the difference in the numbers of estimable parameters
involved in e and Oo (Mood et al, 1974).

Here e contains p(p + 3)/2 parameters corresponding to p residual components
of variance and p(p + 2)/2 between-family components of variance and covariance
between environments whilst Oo has p+2 2 parameters only (p residual components,
<T1 and CB), so that r = !p(p+ 1)/2! - 2.

In the Neyman-Pearson approach of hypothesis testing, Ho is rejected at the
a level if the calculated value of A(y) exceeds a critical value Àc such that

Pr(xr > Àc) = a. However, the likelihood ratio statistic .!(y) in [24] can also
be interpreted as the difference in degree of fit via maximum likelihood procedures
by 2 models: a reduced model(R) with parameter vector 0 E Oo and a full model

(F) with 0 E O encompassing both the null hypothesis and its alternative. In the
theory of significance testing (Kempthorne and Folks, 1971), this statistic is also
used as a measure of strength of evidence against the reduced model or the null
hypothesis. The lower the probability under Ho of exceeding this statistic evaluated
from the data (also referred to as the P-value or significance level or size of the
test), the stronger the evidence against Ho.

Example

Data used here to illustrate the procedures are from an experiment carried out in
Montpellier (south west of France) on 20 full-sib families of black medic (Medicago
lupulina L) tested in 3 different environments (control, harvesting and competition
treatments).

The experimental design was described in detail by H6bert (1991). There were
2 replicates per environment and the 20 genotypes were randomly allocated to each



replicate. Thirty-six traits were recorded and the variable used was the mean of the
5 plants cultivated in each replicate so that p = 3, s = 20 and n = 2.

Basic ANOVA statistics for the between-family and within-family sums of

squares and cross-products are given in table I for a subset of 5 traits.

Firstly, the null assumption that the diagonal terms of Ew were equal was tested
via a Bartlett’s test based on ANOVA mean squares statistics. P values were 0.007,
0.08, 1.4 x 10-7, 8 x 10’! and 0.04 so that this assumption can be reasonably rejected
(except perhaps for trait 2).

Test statistics about EB and estimates of EB and £w under both the reduced
and saturated models are given in table II. P-values for vegetative yield traits,
represented here by dry matter weight (trait No 3) and dry matter weight/max
plant size diameter (trait No 4), were very low, indicating a large heterogeneity in
genetic variation between evironments with full-sib variances substantially reduced
in the harvesting (i = 1) and competition (i = 3) environments compared with the
control (i = 2). In contrast, the harvesting and competition environments do not
generate a meaningful level of stress compared with the control for the expression
of genetic variation of days to 1st ripe pod (trait No 2) and relative pod weight
(trait No 5). These 3 environments then behave as ’exchangeable’, as statisticians
would say. In this example, genetic correlations between environments were rather
high and it would have been interesting to test for some traits (eg No 1 and 5)
using the assumption that these correlations are equal to unity by Visscher’s (1992)
procedures.





DISCUSSION

This paper describes a further contribution to the solution of the problem of
testing homogeneity of between-family components of variance and covariance
between environments in the case of balanced cross-classified designs. The testing
procedure is based on the likelihood ratio test as already advocated by Shaw (1987)
in quantitative genetics. This study extends that of Visscher (1992), which was
restricted to the case of pure scaling effects between environments (ie all genetic
correlations between environments equal to one).

The choice of an EM algorithm for computing REML estimates of EB and Ew
under the null hypothesis allows us to make explicit the equations of the iterative
process to implement via formulae based on the usual ANOVA statistics. This
algorithm does not require any constraint on the value of these ANOVA statistics ( eg
B - W can be non-positive definite) provided the starting values for EB are within
the parameter space. A simple reason for this is that the E phase under the restricted
model involves the conditional expectation (given the data) of sums of squares, eg

£ f£ and e e !! as estimators of variance. Because E (L flf ly, A = 8!t! ) is

j 7 k j 
,

always positive definite (Foulley et al, 1987), this property of the EM algorithm is
also true under the saturated model; it can then be used to provide REML estimates
of EB and Ew when ANOVA estimators are not permissible (eg for traits 1, 3, 4
and 5 in the example).

Some authors such as Anderson (1984) and Shaw (1987) advocate the use of
ML rather than REML procedures to test hypotheses about variance covariance
matrices. Our EM algorithm can be easily adapted to obtain such ML estimates of
EB and Ew. It suffices to replace (s-1)B+r in formulae [19] and !21! for A and Q
respectively by (s-1)B corresponding to the change in the conditional expectation
(given the data) of n (yj. - p) (yj_ - !)’ according to whether g is considered as

j
a parameter of interest (ML) or a nuisance factor to be integrated out (REML).

This algorithm can also retrieve the usual ANOVA estimates for EB and Ew
using the 2-way crossed-mixed model:

involving fixed environmental effects (hi), random family effects [sj - NIID (0, a/ ) ] ,
random interactions [hsij - NIID(0,afl!)] and residuals [eijk °° NIID(0,a£)].
In fact, Foulley and Henderson (1989) showed that this is an equivalent model
for a simplified version of the multiple trait model in [1] restricted to EB =

(U2 B - CB)Ip + CBJp and Ew = Q!2,yIP with 0,2 B = Qs + or2!’, h CB = or . and ow 2 = Ore. 2
Notice however that this simplified multiple trait model differs from that considered
throughout this study (see [11]) not only by the assumption of homoskedastic
residual variances but also by its restriction to a positive covariance (CB) between
environments.

For instance, for trait 1 (days to flowering), EM-REML estimates of variance and
covariance components obtained from the algorithm described in [17] to [22] with
a-W+1] = tr(fl!’1)/nsp in [23] are: Q2 B = 80.86 ! CB = 79.89 ! and Q2 W = 26.39. These



values can easily be checked with ANOVA estimatps: a2 = 79.89; &2, = 0.97; and
a2 = 26.39. Here again, the EM algorithm provides estimates within the parameter
space, which is not always the case with ANOVA estimators as shown for instance
with trait 5 : &1 = 79.50, CB = 79.43 and a2 = 23.23 with EM versus as = 79.65,
!hs = -1.02 and Qe = 24.07 with ANOVA.

The EM algorithm is a first-order procedure and therefore has close relationships
with a maximization procedure based on zeroed first derivatives. As shown in

Appendix B in the case of EB, the difference between the formulae to implement
in the 2 iterative procedures consists of replacing (s - 1)B + r!t! in [19] by sB in
the 1st derivative algorithm (B being a sufficient statistic for r in the saturated
model). Again, the use of EM guarantees staying in the parameter space whereas
there is no obvious proof of that for the 1st derivative algorithm. Moreover, the EM
approach turns out to be easier to understand and to use than the other one, which
relies mainly on algebraic tricks. As far as REML estimates of £w are concerned,
a functional iteration algorithm based on first derivatives was also proposed in
Appendix B due to the lack of an obvious analogue of the EM formulae.

Finally, this EM reasoning can be extended to an unbalanced structure of data
and to additional nuisance fixed effects cross-classified with family effects, ie to an
extended version of model [1] such as

where 13 is a vector of fixed effects including the ith classification for environment
and effects of other factors to be adjusted for, and x’ijk is the corresponding
incidence (row) vector. Under that model, the E and M steps defined in [17] and
[18a] and [18b] for EB and in [21] and [23] for Ew are still valid. However, the E-
statistics in !17!, [21] and [24b] are not evaluated as functions of ANOVA statistics
but directly from the numerical values of the BLUP and the variance of prediction
errors of the fj or b!’s. In this situation, also, the EM algorithm should be applied
systematically to both the reduced and saturated model for Ey!. Another approach
would be to write [28] under its equivalent form (for CB > 0):

where hi, sj and hsjj are defined as in [25] and e2!! N NID(O, o,2w.). Under such
a mixed-model structure, one can then use the methods developed by Foulley et
al (1990, 1992) and San Cristobal et al (1993) for calculating REML estimates
of variances in the presence of heterogeneous residual components. However, the
procedure derived in this paper remains definitively more general, for instance, it
can also be easily applied to a non-diagonal structure of Ew using formulae [17] to
[22] unchanged and [23] slightly modified into E!+l] = S2!t!/ns.

This paper deals with a null hypothesis of constant between-family variance
and covariance. In some instances, a more appropriate null hypothesis would be a
constant between-family correlation (p) between environments (a-Bii’ = /9<?’B,<!B,/)
and/or of constant intraclass correlation [a-1i = t(a-1i + or2 wi )]. Testing procedures
for these assumptions will be reported in a separate article. 

&dquo;
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APPENDIX

An EM algorithm for REML estimations of EB and Ew (part A)

EB and Eyv under Ho

An explicit formula for A can be obtained by successively conditioning and
deconditioning the expression in [17] with respect to the mean vector p, ie:

where 0 stands for the vector of parameters involved in the matrices of between-
family (EB) and within-family (Ew) components of variance and covariance

between environments and 0 1’ is the current estimate of 0 at iteration !t!.
s

Now, conditionally on y, p and 0 = 0’l , the expectation of Efjf can be
j=1

decomposed into:

This decomposition is especially helpful because it allows us to introduce the
usual statistics of Gaussian models, ie the conditional mean fj = E(f! ly, 1-1, e) and
its prediction error variance Cj = Var(f! !y, !, 0). Here, we have:



The next step is to specify the expression for:

with respect to the distribution of 41y, e. On account of assumptions made in !1),
the distribution of this random variable is N[y.., (EB/s) + (Ew/ns)), so that:

The formula for the variance of prediction error in [A3b] does not depend on p,
so that the expression of (Al] reduces to:

where C!t! is defined as in [A3b] using 0! as a current estimate of 0 in Ew and
EB, the matrices B and U being constant over rounds of iteration.

The next values of the unknown components of EB (ie aB and CB or 61 and T)
are computed at the M step from the diagonal elements of A’l (!18a! and !18b!).

The diagonal terms of the matrix

Ew under the complete data set x since:

Because this statistic is not observable, it is replaced by its conditional expec-
tation given the data y and e = 9!. As for B-components, this expectation is
calculated after conditioning and deconditioning with respect to the mean vector
!, ie:

By definition of a quadratic form, one has:



where &dquo;0 and C are as before.

From [A9a], the quadratic L êjkêjk can be written as
jk

with M = nUCU’E-1
The next step is to take the expectation of each element in the right-hand side

with respect to the distribution of gly, 0. Then

where T designates the matrix of total mean squares and mean cross-products,
Similarly,

Placing [All], [A12] and [A13] in [A8] and noting that the conditional variance
in [A9b] does not depend on !, gives

In fact, ft is evaluated conditionally on 0 = 0!, ie by taking F = Fl’], C = Cl’l
and M = M’l in [A. 14]. The next value of or2 wi is obtained from [A.6] (M step)
with Qii replacing Qii, ie by o, 2[t+l] - !2[t]/ns.



EB and Eyjr under the saturated model

Actually, the EM algorithm described previously can be easily accomodated to deal
with the saturated model. This is especially helpful when the ANOVA estimates of
EB fall outside the parameter space.

Nothing is changed with respect to Eyv, which has the same diagonal structure
with p different elements in both situations. As far as EB is concerned, a sufficient
statistic under the complete data set is now the (p x p) matrix bjb’. 3

j

U ( ! f! f! ) U’. However, for a given U, the general expression of the conditional
j

expectation of L: fj f) given the data was already derived (see [19] and [A5], so that
j

the E step remains the same.
Because all the elements of A are now required, the changes to implement at the

M step are the following: compute the next value I:!+1] of EB (saturated model)
by

where A’l is obtained from [A5] with UM being the matrix of normed eigenvectors
of EW. Notice that here U is updated at each iteration from the equation E[t]Ult] =
U[t]![t].

Algorithms based on first derivatives (part B)

Between family components EB

Using the spectral decomposition in !13!, ie r = nU’!U + Ew, we obtain

where Uip Ui2>&dquo;&dquo; Uie, ... , Uir- are the ri normed eigenvectors of EB correspond-
ing to the eigenvalue 6i with multiplicity order ri. Remember that under the reduced
model, rl = 1 and r2 = p &mdash; 1 for 61 and 62 defined in [14a] and [14b], respectively.

Substituting 8F /861 by its expression [B1] in the equation <9(-2L)/<9<*’t = 0 leads
to:

Let L = vn:U ! 1/2 with L partitioned in the same way as U, ie Lie = vn-6iUi,,
the system [B2] is then equivalent to:



where (A)i£ie stands for the ifth diagonal element of the A matrix.
Now:

and

with

Then, from

and

Furthermore:

or

so that

and

Using [B7] and !B8!, the system [B3] reduces to

The EM procedure described in (18a!, [18b] and [19] can be alternatively written
as



The parallel between [B9] and [B10] is straightforward. Here B replaces
((s - 1)B + r!/s, since these 2 quantities have the same expectation F under the
saturated model.

Residual components Ew

<9F OEW (OEW ! OEW ..!v!. !Here, ar - a!2 , C a!2 J - 1 and 2 = 0 for any i ! i’. Then, thea!W - 0,W! a B!!.A.’
equation [8b] = 0 can be written as 

Equation !B11! defines a non-linear system that can be solved iteratively using, for
example, the functional iteration approach


