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Plant breeding
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Summary &mdash; To improve the production of Bradyrhizobium japonicum in liquid culture media, different carbon and
nitrogen substrates at different concentrations were tested. In order to study simultaneously these qualitative and quan-
titative factors, a suitable experimental design was necessary. We develop here the principle leading to such fractional
factorial designs. The specific design used allowed us to decrease the theoretical number of treatments from 1 024 to
128 and to get estimates of factorial main effects and 2-factor interactions. Five of the 7 tested factors, pH, carbon and
organic nitrogen sources, yeast extract concentration and organic nitrogen concentration, were found to have a signifi-
cant effect on optical density. They also were found to interact with each other. The design allowed us to select 2
media that produced more than 1010 bacteria/ml.

Bradyrhizobium japonicum / carbon and nitrogen substrate / pH / factorial fractional design / microbial pro-
duction

Résumé &mdash; Principe d’un plan factoriel fractionné intégrant des facteurs qualitatifs et quantitatifs. Application
à la production d’un milieu de culture et d’inoculation pour Bradyrhizobium japonicum. Afin d’améliorer la pro-
duction de Bradyrhizobium japonicum en milieu de culture liquide, nous avons comparé les performances de plusieurs
substrats carbonés et azotés à différentes concentrations. La prise en compte simultanée de ces facteurs qualitatifs et
quantitatifs a nécessité l’utilisation de plans factoriels adaptés, dont nous développons ici le principe de construction.
Le plan factoriel fractionnaire retenu a permis de réduire le nombre de traitements étudiés de 1 024 à 128, tout en
autorisant l’estimation des effets principaux et des interactions entre 2 facteurs. L’analyse a montré que, sur les 7 fac-
teurs testés, 5 d’entre eux : le pH, la source de carbone, la source d’azote organique, la dose d’extrait de levure et la
dose d’azote organique, ont un effet principal significatif sur la densité optique du milieu et présentent également des
interactions significatives. Le plan d’expérience a permis de sélectionner 2 milieux de culture produisant plus de 1010
germes/ml.

Bradyrhizobium japonicum / substrat carboné et azoté / pH / plan factoriel fractionnaire / production
microbienne
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INTRODUCTION

Soybean yield in France requires the inoculation
of a symbiotic bacterium, Bradyrhizobium japon-
icum, which fixes atmospheric nitrogen.
Inoculation is usually performed with sterile peat
containing a culture of B japonicum, and mixed
with soybean seeds on sowing. This technique is
expensive however (peat grinding, packaging,
and sterilization) and judged as dull by farmers.
Bacterial survival can also be severely reduced
by desiccation in the hours following inoculation.
A high bacterial density is thus required during

growth and storage. Therefore it is necessary to
use a culture medium that allows for a high bac-
terial density. To achieve this, the carbon and
nitrogen substrates metabolized by B japonicum
should be carefully tested and a large number of
culture media experimented. Several studies
(Duménil et al, 1975; Phan-Tan-Luu et al, 1979;
Fannin et al, 1981) concerned fractional factorial
designs taking into account several factors simul-
taneously with possible interactions between
them. These designs involved only quantitative
factors and some were applied to the optimiza-
tion of fermentation (Deshayes, 1980; De Méo et
al, 1985).
We introduce here the principle of fractional

designs for qualitative and quantitative factors at
2 and 4 levels. The design built along these prin-
ciples allowed us to decrease the theoretical
number of treatments from 1 024 to 128 in a

1/8th fractional design. It is also shown how an

efficient 1/16th fractional design, with 64 units
only, could have been obtained had the number
of available experimental units been more
restricted.

MATERIAL AND METHODS

Strain and culture medium

The strain of B japonicum G49 (Indian Agricultural
Research Institute (IARI) SB16, New-Delhi) used is the
current strain for inoculation of soybean in France. The
basal medium (Bergersen, 1961), modified from
Sherwood (1972) and Balatti and Mazza (1978) con-
tained (per I): NaCl, 0.1 g; MgSO4·7H2O, 0.492 g;
CaCl2·2H2O, 0.147 g; FeCl3 at 28%, 30 &mu;l.

Nitrogen, carbon substrates and addition of a
growth factor (yeast extract) were the factors studied in
the experimental design. The pH was adjusted to 6 or
7 with KH2PO4 and K2HPO4 at 10 mM. The media

containing carbon, nitrogen sources and yeast extract

were autoclaved at 120°C except glucose which was
sterilized by filtration.

Growth conditions

Because numerous runs were made, bacteria were

grown in tubes (18 by 180 mm) previously matched for
optical density (OD) readings. Tubes were placed on a
rotary shaker (200 rpm) and incubated at 28°C for 6 d.
In these conditions, bacterial production in flasks was
6 x 109 bacteria/ml (standard deviation: 2 x 109) and of
the same order of magnitude as microbial production
in tubes (5 x 109 bacteria/ml; standard deviation: 3 x
109).

Analysis

The optical density was read at 600 nm after growth.
On some cultures, viable B japonicum were counted
by plate dilution on Bergersen medium (Bergersen,
1961) using the Spiral system.

Choice of factors and their levels

The choice of factors and their levels was determined

by preliminary trials (Cliquet, 1990) and from biblio-
graphic data. Four carbon sources were selected: glu-
cose, gluconate, mannitol and glycerol (Burton, 1967;
Elkan and Kwik, 1968; Keele et al, 1969, 1970). It is
believed that bacterial growth is not limited by the car-
bon dose, so studying it at 2 levels seemed to be suffi-
cient. On the other hand, yeast extract, an important
growth factor, might show toxicity at high concentra-
tions (Date, 1972; Sherwood, 1972).

Yeast extract concentration therefore had to be at
least a 3-level factor to detect the curvature implied by
its toxic effect. Construction of fractional designs is
however easier for mixtures of 2-level and 4-level fac-
tors than for 2-level and 3-level factors (Kobilinsky and
Monod, 1991). Four doses were therefore chosen, 1,
2, 3 and 4 g/I for yeast extract, and 0.1, 0.2, 0.3 and
0.4 g/l for organic nitrogen dose, as either Na gluta-
mate or casein hydrolysate (Elkan and Kwik, 1968;
Chakrabarti et al, 1981).

As simultaneous mineral and organic nitrogen might
also benefit growth (Elkan and Kwik, 1968), NH4Cl
was sometimes added. Finally, initial pH was adjusted
to 6 or 7, the usual range for this type of culture
(Jordan, 1982).

There were thus 7 factors in this factorial design,
the levels of which are given in table I. The number of
combinations of levels of the 7 factors was 4 x 4 x 4 x

2 x 2 x 2 x 2, that is 1 024 combinations also called the
treatments. Only a fraction of these, made up of 128
treatments, was tested. The method we used to
choose the fraction will be explained, using a plain 2-
factor example.



PRINCIPLE OF THE EXPERIMENTAL DESIGN

Quantitative factor case:
the polynomial effects

Consider the case in which 2 quantitative factors
are to be studied:

Factor Number of levels Coded levels

The quantity Y measuring the microbial growth
is assumed to follow the model:

In this context, Y is often called the experimental
response or just the response. It differs from

f(A,B), the theoretical response (Phan-Tan-Luu et
al, 1983), because of the error &epsiv;.

Quantities called polynomial factorial effects,
or more simply polynomial effects, which charac-
terize the influence of the various factors and

their interactions on the response, are deduced

from the theoretical response.

More precisely, these effects are defined from
the values of the theoretical response f on the

grid of 4 x 2 points associated with the different
combinations of levels of the factors A and B.

Thus, the mean factorial effect stands for the
mean of this set of 8 values. It is denoted by e(1).

Consider a given factor, say A. For each of its
levels, we can compute the corresponding mean
of the values of f, ie in this case the mean over

the 2 levels of B. If A is used to denote the level

(as well as the factor), the associated mean is

denoted by f(A,·):

The slope of the best fitting straight line between
these means and the factor A is called the linear

factorial effect of factor A and denoted e(linA)
(John, 1971). The coefficient of A2 in the best fit-

ting parabola (fig 1) is called the quadratic factori-
al effect and denoted e(quadA) (John, 1971).
Finally, if the curve representing the theoretical
mean response f(A, ·) as a function of A exhibits
an inflection point, one has to consider the cubic
effect e(cubA), defined as the coefficient of A3 in

the cubic that best fits the 4 points considered on
that curve (fig 1).



Since factor B has only 2 levels, the only poly-
nomial effect of B which can be considered is the

linear effect e(linB). To study the combined influ-
ence of the 2 factors A and B, interaction terms
denoted by e(linA·linB), e(quadA·linB) and
e(cubA.linB) are introduced. With each interac-
tion term is associated a polynomial degree
which is defined as the sum of the degrees in
each effect. The degree is 2 for e(linA·linB), 3 for
e(quadA·linB), and 4 for e(cubA·linB).
To define, for instance, e(linA·linB), one looks

first at the variation of the theoretical response in
function of A for each level of B and deduces, as
previously, a linear effect of A for this level of B,
denoted by e(linA(B)) (fig 2). The variation of this
effect as a function of B then yields e(linA.linB),
which is here the slope of the straight line
through the points associated with B = -1 and
B = +1 in figure 3. The effects obtained in this
way are generally normalized by multiplication by
an appropriate constant in order to make them
comparable with each other.

There is a very simple way of obtaining these
normalized effects from the values of the theoret-

ical response f on the 8 points of the grid. One
introduces the orthogonal polynomials in A and B
denoted by mean, linA, quadA, cubA and linB
whose expressions as functions of A and B are
given in the Appendix. These orthogonal polyno-

mials, which have long since been used to simpli-
fy the computations in polynomial regressions,
are defined and tabulated in Fisher and Yates

(1957) and Pearson and Hartley (1976). Although
their interest for calculation has now disap-
peared, their use is still highly recommended in
the general context of polynomial regression to
obtain meaningful parameters which are the least
correlated possible (Durier and Kobilinsky, 1989;
Kobilinsky, 1989).
The values of the orthogonal polynomials and

their products linA·linB, ..., cubA·linB calculated

on the 8 grid points are given in table II. These

are the coefficients to apply to the 8 responses
f(-3, -1), ..., f(3, 1) to obtain the corresponding
effects (up to normalization coefficients given in

the last row). For instance:

The normalization coefficients are chosen in

order to obtain the same variance for all the

columns in table II.



The polynomial effects are defined from the
theoretical responses on the 8 initial grid points
only. To interpolate between these points, f is

generally assumed to have a polynomial form, for
instance, a polynomial of degree 2 like:

This function can be written as a function of
the orthogonal polynomials:

The absence of B2 and quadB indicates that B
has no quadratic effect, an assumption which is
coherent with the choice of only 2 levels for B.
The coefficients &alpha;0, &alpha;1, &alpha;2, &beta;1, &gamma;1 appearing in
the latter form are then precisely the effects e(1),
e(linA), e(quadA), e(linB), and e(linA·linB). The
other effects e(cubA), e(quadA·linB),
e(cubA·linB), associated with terms that are
excluded from the model, are assumed to be
zero.

Since the number of parameters in the model
for f is less than the number of points in the grid,
the polynomial effects can be estimated from a
fraction of the 8 points instead of the whole set.
This fraction must have at least as many points
as the number of parameters in the model, if all

effects are to be estimable. It must also be care-

fully chosen to make the estimation of effects as
accurate as possible. The plain technique

described thereafter leads to very efficient frac-

tions for situations involving a mixture of 2- or 4-
level qualitative and quantitative factors.

Decomposition in pseudofactors
of a 4-level factor. Definition of
(pseudo)factorial effects

Fractional factorial design for 2-level factors are
well known (Finney, 1945). They can be easily
adapted to mixtures of 2-level and 4-level factors,
by decomposing each 4-level factor into two 2-
level pseudofactors. Moreover if a 4-level factor
is quantitative, an appropriate decomposition
leads to simple relations between the factorial
effects associated with the pseudofactors and the
polynomial effects, which make sense in that
case. These relationships can be used to select a
fraction well suited to the polynomial form
assumed for the theoretical response.

In the example, the 4-level factor A is decom-
posed into two 2-level pseudofactors A1 and A2.
The correspondence between the quantitative
levels of A and the levels of the pseudofactors A1
and A2 is given in table III. In this table we have

also reported the levels of the product pseudo-
factor A1A2, which are the products of the levels
of A1 and A2, and the corresponding values of
the orthogonal polynomials of degree 1, 2 and 3
in A: linA, quadA and cubA.
The pseudofactors A1, A2 and A1A2 have no

special meaning and are only used as tools to



build the design. The theoretical response f(A,B)
can be expressed as a function g(A1,A2,B), of the
levels of the pseudofactors A1 A2 and the factor

B. The factorial effects (also called pseudofactori-
al effects) of A1, A2, B and their interactions can
be obtained from table IV in the same way as the

previously introduced polynomial effects.
For instance, the factorial effect of A1, denoted

by e(A1) is defined as the half difference between
the means of g for A1 = 1 g(1,·,·), and for A1 =

- 1, g(-1,·,·):

Similarly, the effect of interaction between A1 and

A2, denoted by e(A1A2) is defined by:

Relationship between polynomial factors
and pseudofactors and induced relationships
between effects

It is easily checked in table III that the following
relationships between the polynomial factors linA,
quadA, cubA on one side the pseudofactors
A1,A2 and A1A2 on the other exist:



They induce the following similar relations
between effects, for instance

and they are easily extended to pseudofactorial
effects built as products, for instance

Qualitative four-level factors

Each qualitative factor A is also decomposed into
2 pseudofactors A1 and A2 but in that case the

correspondence between levels is not relevant
and can be arbitrarily chosen. For instance if a1,
a2, a3 and a4 are the 4 levels of A, a possible
choice is:

This choice induces a decomposition of the
main effect of A into 3 effects e(A1), e(A2) and
e(A1A2) and similarly a decomposition of the
interaction between A and B into 3 effects

e(A1B), e(A2B) and e(A1A2B).

Construction and properties
of a fractional design

The columns A1, A2 and B of table IV gives the 8
treatments of a complete factorial design.
Suppose we can only afford to experiment 4 of
them. A simple way to select them is to chose
those satisfying the equation A1A2B = 1, which is
called a defining relation (Box et al, 1978).

The fractional design thus defined, which is a

half fraction, includes the treatments 2, 3, 5 and 8
of table IV which are singled out in table V.
Some elementary results on matrices are used

in the following development. They are recalled
in the Appendix for the use of the reader.

The general mean effect, denoted by e(1),
the main effects of factors A1, A2 and B and

their interaction effects are defined from the the-

oretical responses on the complete factorial
design by equalities similar to (E2) and (E1). If

X’ is the transpose of matrix X appearing in

table IV, these definitions can be presented in

matrix form as follows:

Let e and g be the vectors appearing on the
left and the right of this matricial expression
respectively, that is the vector of pseudofactorial
effects and the vector of theoretical responses.
We can write more concisely:

It is easy to check that XX’ = 8I where I is the

identity matrix. Premultiplication by of the 2
terms of the above equality then yields the
equality:

which expresses the theoretical responses as

functions of the pseudofactorial effects and can
be written in the developed form as



The only responses estimable from the 4 points
of the fractional design are:

The 4 corresponding equations can be written in
the following manner:

From the estimations of the 4 responses, it is

impossible to get separate estimates of the 2 fac-
torial effects in 1 of the sums on the right, like

e(1) + e(A1A2B), or e(B) + e(A1A2). If one of them
was increased and the other decreased by the
same amount and the observations are not
affected. The 2 effects thus associated are said

to be confounded or aliased.

The confounding of effects is due to the equal-
ity of the corresponding columns in table V:

These equalities can be directly obtained by
multiplying the defining relationship 1 = A1A2B of
the fraction successively by B, A1, A2, since B2 =

1 for each of its levels, 1 or -1, and similarly
A12=A22=1.

The confounding of effects renders the inter-
pretation of the statistical analysis very difficult,
unless 1 of the 2 confounded effects is negligible.
Thus if e(B) + e(A1A2) is found significantly
greater than 0, it is impossible to determine with-
out further information which of the 2 effects is

greater than 0. However when A is quantitative,
e(A1A2) = e(quadA). Since quadratic effects can
often be assumed to be far smaller than linear

ones, the sum e(B) + e(A1A2) &ap; e(B) can often be
assimilated to the linear effect of B.

The unambiguous interpretation of all 4 sums
of aliased effects in this simple example requires
the strong assumption that the 3 degrees of free-
dom of the interaction between A and B, ie

e(A1A2B), e(A1B), and &ap; e(A2B), are negligible as
well as the quadratic effect of A.

The same method of fractionation leads to

more interesting fractions when the number of
factors is larger. It is then possible to confound
important effects with interactions of 3 factors or
more, or with effects of degree greater than or
equal to 3. It is then quite realistic to assume
that these last effects are negligible and this
entails that all important effects can be well esti-
mated.

Complementary half-fraction. Fraction 1/4

It is possible in the example to select the other
half of the design defined by A1A2B = -1. The
confounded effects are the same but it is their dif-
ference which is estimated instead of their sum.
For instance B = -A1A2, and so it is the differ-
ence e(B) - e(A1A2), which can be estimated
instead of the sum e(B) + e(A1A2).

If a further fraction of the half-fraction defined

by A1A2B = 1 is required, a possible choice is to
select the 2 treatments, out of the 4 of the half-

fraction, which satisfy:

This gives the 1/4 fraction of the complete fac-
torial design defined by the 2 defining relations
A1A2B = 1 and A1A2 = 1. Making the product of
these 2 defining relation gives:

Thus on this 1/4 fraction A1A2B = A1A2 = B =

1. Multiplying these equalities by A1 then gives
A2B= A2 = A1B = A1. These equalities imply,
exactly as in the half fraction, that the corre-
sponding effects are aliased. More precisely
from the two responses it is only possible to esti-
mate the 2 sums e(A1A2B) + e(A1A2) + e(B) +
e(1) and e(A2B) + e(A2) + e(A1B) + e(A1). This
example, in which the factor B remains constant,
has clearly no practical interest. But a similar
kind of fractionation going beyond the half frac-
tion is very helpful when the factors are more
numerous.



GENERALIZATION: THE 1/8 FRACTION
FOR IMPROVING THE CULTURE
OF B JAPONICUM

Construction

We now present the 1/8th fractional design,
which was obtained by the previously described
method for the 7 factors in table I.

Two pseudofactors A1 and A2 are associated

with the factor carbon source (denoted by A),
with the following arbitrarily chosen correspon-
dence between levels.

The organic nitrogen concentration (B) and
yeast extract concentration (C) are also decom-
posed into two-level pseudofactors B1 and B2 on

one side, C1, C2 on the other. These factors are

quantitative, and so the correspondence between
levels is chosen as indicated in table III for the
factor A of the previous example. The defining
relations are:

The reasons for this choice will appear more

clearly in the following sections.

Premultiplications by E, F, G respectively give:

To obtain the design, the 128 combinations of
levels of the 7 pseudofactors A1 B1 B2 C1 C2 D

are first written down and for each of them the

levels of E, F, G are deduced using the terms
underlined in the above equalities.

Multiplying the 3 defining relations between
these yields:

The effects associated with the 8 equal prod-
ucts in [E4] are confounded. They are said to be
confounded with the general mean e(1).
Consider now any product which does not
appear in [E4], for instance A1B1B2. Multiplying it

by the equalities in [E4] gives:

The corresponding effects e(C1C2E)...
e(A1A2B1B2C2EFG) are the effects confounded
with e(A1B1B2). The choice of the defining rela-
tionships [E4] relies on the respective importance
of the polynomial effects, which we now consider.

Classification of polynomial effects

The meaningful effects are the polynomial effects
such as e(A1·quadB), e(A1A2·linB) and
e(linB·linC·D), which are defined and computed
as explained in the simpler example in the previ-
ous section. Two criteria may be used to classify
these effects: the number of factors appearing in
the effects and their degrees. The degree is the
sum of the degrees in each factor; the degree
attributed to qualitative factors is always 1. These
2 criteria are given below for the 3 polynomial
effects just mentioned:



The importance of an effect depends on its

degree and on the number of factors in it. The
more important effects are those of degree 1:

e(A1), e(A2), e(A1A2), e(linB), e(linC), e(D),
e(linE), e(linF) and e(linG). The effects of high
degrees like e(A1·quadB·quadC) and

e(A1·D·linE·linF·linG), which are of degree 5, are
generally assumed to be negligible. For effects of
the same degree, the importance generally
decreases with the number of factors involved.
For instance e(cubB) is considered more impor-
tant than e(linB·linC·D).

Rationale for choosing the defining
relationships and properties of the design

The above classification can be used in conjunc-
tion with the relationships [E3] between pseudo-
and polynomial factors to choose appropriate
defining relations. There are 2 possible
approaches. The approach described in this sec-
tion (Bailey, 1982; Kobilinsky, 1985) was used to
obtain the defining relations of this 1/8th fraction.
It only relies on the presence or absence of each
term in the relationships linking pseudofactorial
and polynomial effects.

Pseudofactorial effects are categorized as
negligible or not according to whether their
expressions in function of the polynomial effects
involve negligible terms only. The defining rela-
tionships are chosen in order to estimate all non-
negligible pseudofactorial effects, by only con-
founding them with negligible ones. For instance,
assume that the negligible polynomial effects are
those of degree 3 or more. The estimability is
then required for the 4 pseudofactorial effects
e(B1C1), e(B1C2), e(B2C1) and e(B2C2) carrying
information on e(linA·linB). These effects can be
confounded with any negligible effect such as
e(DEF), e(B1C1C2) = (2e(linB·quadC) -
e(cubB·quadC))/&radic;5...

The importance of polynomial effects depends
on their degree. This suggests defining the
degree of a pseudofactorial effect as the mini-
mum degree of the polynomial effects as a func-
tion of which it can be expressed. For instance,

The degree of a pseudofactorial effect is in fact
the sum of the degrees of each factor in it. It can
be obtained here very quickly as the number of
letters different from A plus 1 if it includes the let-
ter A (once or twice).

The pseudofactorial effects can thus be classi-
fied as the polynomial effects as a function of their
degree and of the number of factors they contain.
If polynomial effects of degree greater than or
equal to n and involving more than m factors are
neglected, then so are the pseudofactorial effects
of degree greater or equal to n involving more
than m factors. It is therefore very simple to find
the negligible pseudofactorial effects and to check
the admissibility of a set of defining relationships.
For instance:

The effects confounded with e(B1C1) and
e(B1C2), e(B2C1) and e(B2C2), obtained by multi-
plying the equalities [E4] by the corresponding
effects, are interactions between three factors at
least. If these interactions are assumed to be

zero, these effects are estimable and so is

e(linB·linC).
e(quadB) = e(B1B2) is confounded with inter-

actions of 4 factors or more and with 1 interaction

A1C1C2E, involve only 3 factors (of degree 4)
that can be safely neglected.

More generally, it can be noticed that all the

pseudofactorial effects confounded with the gen-
eral mean, that is appearing in [E4], are of
degree greater or equal to 5 (the design is said to
be of polynomial resolution 5). This implies that:
(i) the factorial effects of degree 1 are con-

founded with effects of degree at least 4; and (ii)
the factorial effects of degree 2 are confounded
with effects of degree at least 3.

Moreover, the main effects of any degree are
confounded with interactions of at least 3 factors
and at least degree 4, and interactions of 2 factors
and degree 2 are confounded only with interactions
of 3 factors except e(A1·linE), confounded with a 2-
factor interaction e(quadB·quadC). However, the
latter is of degree 4 and can be assumed to be
negligible. Interactions of 2 factors and degree 3
are also confounded with interactions of at least 3

factors, apart from A1B1B2, C1C2E, A1C1C2 and

B1B2E which are confounded by pairs.
The final properties come from the fact that the

effects confounded with the mean are interac-
tions of 5 factors except A1B1B2C1C2 E in which



appear only 4 factors. The smallest number of
factors in the effects confounded with the general
mean is the resolution of the design. The resolu-
tion here is only 4. It would have been better of
course to use a resolution 5 design but this reso-
lution cannot be obtained by the fractionation
techniques considered in this section.

Another approach (Edmondson, 1991) goes 1

step further by considering the respective impor-
tance of the coefficients in the relations [E3] link-
ing pseudofactorial and polynomial effects. We
will show below how this second approach can
still produce an efficient 1/16th fraction with 64
units instead of 128.

REPETITIONS

In order to get the repeatability of results for fixed
culture media, a subfraction of 16 treatments was
repeated. This subfraction was obtained by
adding the following defining relationships:

These 16 points made up a resolution 3 frac-
tion of the complete factorial design in which B

and C were studied at 2 levels only (0.2-0.4 g/l
for B, 2-4 g/l for C). Viable cells were counted for
the 2 repetitions of these 16 repeated treatments
in order to study the relationship between the
optical density (OD) and the number of viable
bacteria.

STATISTICAL ANALYSIS

The polynomial model used for the analysis
included all main effects, all 2-factor interactions
of degree 2, some degree 3 estimable effects
and finally 1 term out of each pair {e(A1B1B2);
e(C1C2E)}, {e(A1C1C2); e(B1B2E)} of confounded
2-factor interactions. Note that these last terms

stand for the corresponding sums of confounded
effects.

OD = e(1) + e(A1) A1 + e(A2) A2 + e(A1A2) A1A2
+ e(linB) linB + e(quadB) quadB + e(cubB) cubB Main effects
+ e(linC) linC + e(quadC) quadC + e(cubC) cubC
+ e(D) D + e(linE) linE + e(linF) linF + e(linG) linG
+ e(A1·linB) A1·linB + ... + e(A1·linG) A1·linG Two-factor inter-
+ e(A2·linB) A2·linB + ... + e(A2·linG) A2·linG actions involving A
+ e(A1A2·linB) A1A2·linB + ... + e(A1A2·linG) A1A2·linG
+ e(linB·linC) linB·linC + e(linB·D) + ... + (linF·linG) linF·linG

linear·linear interactions

+ estimable or confounded degree 3 effects

The polynomial effects, the coefficients of this
model, were estimated by least-squares approx-
imation. From the standard deviations of their

estimates, confidence intervals at different lev-
els of confidence were deduced, using the t-

Student distribution. In this model we selected

all the terms that were significantly different
from 0, ie having a confidence interval not cov-
ering 0. We added the terms of degree smaller
or equal in each factor to them. For instance, if

e(A1·quadB) was significant, the terms linB,
quadB, A1 and A1·linB were introduced in addi-
tion to e(A1·quadB) . The confidence level cho-
sen was equal to 99% to avoid retaining a lot of
terms that were negligible with respect to the
most important effects in the model. The sub-

model thus obtained could be used, if it did not

include any of the confounded effects, to predict
the OD for any values of the factors within the

experimental domain and in particular for each
of the 1 024 treatments of the complete factorial
design.

1/16th FRACTION

If polynomial effects of degree strictly greater
than 2 are assumed zero, it is possible to frac-
tionate one step further using Edmondson’s
method (1991, 1993), thus getting a 1/16 fraction
with only 64 experimental units.

Possible defining relations for this 1/16 fraction
are:

These defining relations were obtained by an
automatic search program Planor (Kobilinsky,
1994). In its simpler form, the input for this pro-
gram is a pseudofactorial model and the terms
which are to be estimated in it. It is also possible
to introduce several pseudofactorial models and
the corresponding families of terms to be esti-
mated. For this search, we required:
i) all the main effects to be estimable in a model

including all main effects and 2-factor interactions;

ii) all 2-factor interactions, not including B2 or C2,
to be estimable in a model including the main
effects and these interaction terms.

The symbolic expression of these require-
ments, as they appear in the program, was:



Note that a product like q·q gives, after
replacement of q by its expression, development
and omission of redundant terms, a model includ-

ing all main effects and 2-factor interactions.

Requirement (i) thus means that the searched
design is a resolution 4 design, and requirement
(ii) is an empirical choice justified by the nature of
the relationships between pseudofactorial and
polynomial effects. This is better explained at the
end of this section.

It was possible, in that case, to obtain all the

sets of defining relations meeting the require-
ments. There were 1 152 such sets, which, after

investigation, were found to be derived from 6
basic ones by permuting the factors with sym-
metric roles, that is D,E,F and G first then B and
C and finally the 3 pseudo-factors A1, A2 and

A1A2.
Table VI gives these sets and, for each of

them, 3 global efficiency criteria. These global
criteria are defined by comparison between the
normalized information matrix X’X/N of the

design and X’0X0/N0 of the complete factorial
design (N = 64, No = 1 024). It is convenient to

choose the parametrization so that the latter is

the identity: X/0X0/N0 = I. Then, if &lambda;i, i = 1,..., 45
are the eigenvalues of X’X/N.

The column No of permutations in table VI gives
the number of other sets obtained by permuting
the factors with symmetric roles. The best set for
the trace and determinant criteria is the one pro-
posed at the beginning of this section. We now
study it more thoroughly by the same method as
above.

Multiplying the 4 defining relations by each
other gives the following 16 which correspond to
all the pseudofactorial effects confounded with
the general mean.

Multiplication of the above terms by another
one, say C2D, gives all the effects confounded
with C2D.



If factorial effects of degree strictly greater than
2 are neglected, the set of terms confounded with
e(C2D) reduces to {e(C2D); e(B1G)}. The only
estimable linear combination of these 2 effects is

their sum e(C2D) + e(B1G). The estimate ê(C2D)
of this sum is &lang;C2D, Y&rang;/64. Up to division by 64,
this is the linear combination of the responses
with the elements -1, 1 of the vector C2D = B1G
as coefficients. The variance of this estimate is

&sigma;2/64 where &sigma;2 is the residual variance.

It can similarly be shown that the other sets of
non-negligible confounded effects are {e(B2C1);
e(EF)}, {e(C2G); e(B1D)}, {e(B1C2); e(DG)},
{e(B2E); e(C1F)}, {e(B1G); e(C2D)}, {e(C1E);
e(B2F)}.

The estimates ê(B2C1), ê(C2G),... of the corre-
sponding sums e(B2C1) + e(EF), e(C2G) +
e(B1D), ... have the same variance &sigma;2/64 and are
uncorrelated. By construction, all main effects are
unconfounded, and so are the factorial effects of

degree 2 which do not appear in the above sets of
confounded effects, for instance, e(A1B1), e(DE).

The equalities similar to [E3] for B and C and
the assumed nullity of the effects of degree strict-
ly greater than 2 lead to equalities of the follow-
ing type:

The last equality above is a consequence of:

and of the nullity of the effects e(linB·cubC), ... of

degree strictly greater than 2.
Consider the estimation of a particular poly-

nomial effect, say e(linC·D). The pseudo-factorial
effects depending on it are e(C1D) and e(C2D).
The latter is confounded with e(B1G) which
depends on e(linB·G) and so the uncounfounded
pseudofactorial effect e(B2G) has to be taken into
account too. The estimation of e(linC·D) thus
involves the following system of equalities:

which in matricial form become

or more concisely

The 3 coordinates ê(C1D), ê (C2D) and ê(B2G)
of the estimate ê of the left vector e are uncor-

relacted and of same variance &sigma;2/64. It follows

(see any book on the linear model, for instance
Draper and Smith, 1981) that

In particular it is found that

which can be compared with the variance that
would have been obtained had both C1 D and C2D
been unconfounded. The estimate would then

have been derived from the following equalities

and its variance would have been &sigma;2/64. The

comparison of these 2 variances gives an effi-
ciency 21/25=0.84 to estimate e(linC·D). The effi-
ciency can be computed similarly for the other
polynomial effects. Table VII gives these efficien-
cies for the design considered above as well as
for the following 2 in table VI. The second design
could be preferred to the first if the BC interaction

was judged a priori more important than some
interactions between 2-level factors assigned to
E and G. Note that in design 3, the 2-factor inter-
action effects including A are characterized by
three efficiencies, called principal efficiencies,
associated with the 3 degrees of freedom of each
effect. The precise definition of these efficiencies
can be found in Kobilinsky (1990). The smallest
of the 3 efficiencies is the worst for any compari-
son between the 4 levels of these interactions.

The method used to obtain the efficiencies

makes it clear that factorial effects including the
pseudofactors B1 or C1 are more important than
those including B2 or C2 for the estimation of the



corresponding polynomial effects. This explains
why requirement (ii) leads to good designs: the
important 2-factor interactions, those which do
not include B2 or C2, cannot be confounded with
one another.

The 1/16th design can still efficiently estimate
all the polynomial effects of degree 1 or 2 under
the assumption that those of degree 3 or more
are negligible; this design is a resolution 4 frac-

tion. However, restricting the number of tested
treatments to 64 implies the loss of some inter-
esting properties compared with the 1/8th design:
variances of the polynomial effects are &sigma;2/64 at
the most in the 1/16th fraction, twice their vari-
ances in the 1/8th fraction; estimates of the differ-
ent effects of degree 1 or 2 are not uncorrelated;
and robustness, in the sense of main effects

unconfounded with 3-factor interactions, is lost.

RESULTS AND DISCUSSION

Reproducibility of the results

The reproducibility of the results was found to be
satisfactory, with a variation coefficient of the
optical density of 7.5%.

Effects of factors on the optical density
after 6 d culture

There was no significant effect on the OD at the
beginning of the culture. The effects found after 6
d culture could therefore be attributed to the influ-

ence of the different treatments on the develop-
ment of the bacteria. The significant effects (at
99%) are reported in table VIII.

All factors, except ammonium chloride dose
and carbon dose, had a significant effect on OD
and interacted significantly with 1 or 2 other fac-

tors. To interpret, the responses predicted by the
selected submodel (table VIII) were plotted
against the values of the 5 factors kept in the
model (pH, carbon source, organic nitrogen
dose, yeast extract dose and organic nitrogen
source).

In each graph of figure 4, for a given yeast
extract dose, the OD is plotted against the differ-
ent carbon sources. The points are connected by
lines of different patterns to represent the differ-
ent organic nitrogen doses. The pH and organic
nitrogen source are fixed. These 4 selected
graphs, associated with an initial pH of 6 and glu-
tamate as organic nitrogen source, are those
which lead to a maximal predicted OD.



Yeast extract dose

The linear effect of the yeast extract dose (C)
was found to be important and negative: the OD
decreases as the dose increases. This clearly
appears in figure 4.

According to Elkan and Kwik (1968), the yeast
extract at a relatively low concentration stimu-
lates the growth of most strains. However, an
excess of it may inhibit the growth of some
Rhizobium (Date, 1972), and may even induce a
cellular distortion (Skinner et al, 1977).
The level of response to the yeast extract

appeared to depend on the strain: thus strain
G49 studied here was found affected by doses of
3 and 4 g/I, while Sherwood’s culture medium
(1972) includes 5 g/l of yeast extract. We also
detected a significant interaction with carbon
source, examined in the next section.

Carbon source and yeast extract dose

With mannitol or glycerol, increasing the yeast
extract dose from 1 to 3 g/l does not influence
the response a great deal. However, the optical

density obviously decreases for these 2 sub-
strates at 4 g/l. With glucose, the predicted
response behaves differently; it first increases as

the yeast extract varies from 1 to 2 g/l, and then
remains the same even when the yeast extract
dose reaches 4 g/l.

With gluconate as carbon source, the OD is
always lower and also affected more by an
increase in the yeast extract dose. The low OD
in that case could be due to the important alka-
linization observed after 6 d culture in these

media.

According to the literature, glycerol can be
used by most strains (Elkan and Kwik, 1968);
assimilation of glucose and manitol depends on
the strain (Elkan and Kwik,1968; Chakrabarti et
al, 1981). Gluconate can also be recommended
for the culture of B japonicum (Martinez de Drets
and Arias, 1972). However, all these carbons

sources were studied with a fixed amount of vita-

min. The corresponding results did not take into
account the interactions. They could have been
very different had the carbon source been used
with another substrate or with different composi-
tions of the culture media.



Source and dose of organic nitrogen

The main effects and interactions of the source

(D) and dose (B) of organic nitrogen are relatively
small. Though casein hydrolysate is the most

used nitrogen source (Elkan and Kwik, 1968;
Chakrabarti et al, 1981), OD is slightly greater in
our results with glutamate.

The variation of OD due to the organic nitro-
gen dose is very small, much smaller than that

generated by the increase of the yeast extract
dose. This could be explained by the amount of
organic nitrogen brought by the yeast extract
(about 0.1 g nitrogen/g of yeast extract) which
seemed to cover the nitrogen needs of the strain.
This could also explain why mineral nitrogen from
the ammonium chloride (0-26 mg/l of nitrogen)
had no significant effect on the response.

It could be possible to stimulate bacterial
growth by increasing organic and mineral nitro-
gen concentrations while lowering the yeast
extract dose: Kwik (1973) recommends a medi-
um including 0.1 g/l (10 mg of nitrogen/l) of yeast
extract, with ammonium chloride (130 mg of
nitrogen/l) and possibly glutamic acid (130 mg of
nitrogen/l) as a source of organic nitrogen.

Effect of the pH

In the graphs in figure 4, we have only reported
the responses for an initial pH of 6. The important
negative effect of pH (-0.26) comes from a gen-
eral decrease of the OD at a pH of 7. The nega-
tive interaction CG in table VIII (-0.16) shows
that this effect is still strengthened by an increase
of the yeast extract concentration.



Checking the results

Two culture media associated with the maximal

turbidities at the 6th day were selected:

1) glycerol 10 g/l; sodium glutamate 0.1 g/l; yeast
extract 2 g/l;
2) Glucose 10 g/l; sodium glutamate 0.1 g/l;
yeast extract 2 g/l;

In both cases, the initial pH is taken equal to 6.
The bacterial productions after 6 d culture were
then 1.5 x 1010 cells/ml for medium 1 and 2 x

1010 cells/ml for medium 2, ie about 10 times the

production in a classical culture media (Burton,
1967).

On the choice of the growth measurement

The OD provided a very quick measurement
allowing comparison of a great number of media.
However the observed values of OD were greater
than those (from 0.3 to 1) which are usually
assumed to give a linear and reliable relation
between the number of bacteria and the OD.

The composition of media, which can induce
the secretion of several metabolites, or the pro-
duction of polysaccharides, depending on the
carbon substrate (Tully, 1985), could also explain
the important variability leading to differences in
the OD even when the numbers of bacteria are

very similar.

In spite of this drawback, the results obtained
in this study with the OD have been validated
through confirmatory experiments. During addi-
tional experiments not reported here, the pre-
ferred method of measurement was the count of

viable B japonicum in each medium tested
(Cliquet, 1990).

CONCLUSION

To cope with the variety of substrates meta-
bolized by B japonicum and quoted in the litera-
ture, a great number of media were compared in
a simple fractional design including different
kinds of substrates at different concentrations.

This approach was well suited to simultane-
ously produce a comprehension of the effects of
these factors and enough accuracy to study each
of them. An experiment including 144 treatments
handled simultaneously is however large and has
high contamination risks, the more so as the
growth of B japonicum is rather slow. So a more
tractable solution for this kind of study could be to

divide the experiment into several blocks, each
block including a smaller number of treatment to
compare at the same time. The block effect is

then taken into account in the analysis and does
not increase the residual variance. Another solu-

tion is to perform sequentially smaller self-inter-
pretable fractions like the one described above.
The results demonstrate once again the

immense advantage of the old Fisherian principle
(Fisher, 1935) over the one factor at a time
approach, which unfortunately is still used too

often nowadays. The interest and originality here
is the integration of quantitative as well as quali-
tative factors in a fractional design which allowed
the selection of a culture medium providing a
high production.
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APPENDIX: ORTHOGONAL POLYNOMIALS
AND ELEMENTS OF MATRIX CALCULUS

For a 4-level quantitative factor, A and a 2-level
quantitative factor, B with coded levels centered
around 0, the orthogonal polynomials are defined
(Kobilinsky, 1989) as:

where



A matrix is a table of numbers such as

M is a 2-rowed, 3-columned matrix.

The following system of equations

can also be put under the following matricial
form:

We have put a symbol x, though it is usually
omitted, to represent the matricial product

(whose element in row i, column j is by definition
the sum of products between corresponding ele-
ments in the ith row of the left matrix and the jth
column of the right).
The product of a matrix by a scalar (real num-

ber) is obtained by multiplying each element in it

by this scalar:

The transpose of M is denoted by M’. It is the

matrix whose columns are the rows of M. Thus

the transpose of M is M’.

The identity matrix is a square matrix (as many
rows as columns) whose diagonal elements are 1
and other elements 0. For instance the 3 x 3

identity matrix is:

For any matrix A having the same number of
rows and columns as the identity matrix I, A x I =

IxA=A.


