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Summary - Estimation of between family (or genotype) components of (co)variance
among environments, testing of homogeneity of genetic correlations between environ-
ments, and testing of homogeneity of both genetic and intra-class correlations between
environments are investigated. The testing procedures are based on the ratio of maxi-
mized log-restricted likelihoods for the reduced (under each hypothesis of homogeneity)
and saturated models, respectively. An expectation-maximization (EM) iterative algo-
rithm is proposed for calculating restricted maximum likelihood (REML) estimates of the
residual and between-family components of (co)variance. The EM formulae are applied
to the multiple trait linear model for the saturated model and to the univariate linear
model for the reduced models. The EM algorithm guarantees that (co)variance estimates
remain within the parameter space. The procedures presented in this paper are illustrated
with the analysis of 5 vegetative and reproductive traits recorded in an experiment on 20
full-sib families of black medic (Medicago lupulina L) tested in 3 environments.

heteroskedasticity / genetic correlation / intra-class correlation / expectation-
maximization / restricted maximum likelihood

Résumé - Variation génétique de caractères mesurés dans plusieurs milieux. I. Esti-
mation et test d’homogénéité des corrélations génétiques et intra-classe entre milieux.
Cet article étudie les problèmes d’estimation des composantes familiales de (co)variance
entre milieux et les problèmes de test d’homogénéité, soit des corrélations génétiques en-
tre milieux seules, soit des corrélations génétiques et des corrélations intra-classe entre
milieux. Les procédures de test reposent sur le rapport de vraisemblances restreintes maxi-
misées sous les modèles réduits (les différentes hypothèses d’homogénéité) et le modèle
saturé. Un algorithme itératif d’espérance-maximisation (EM) est proposé pour calculer les
estimations du maximum de vraisemblance restreinte (REML) des composantes résiduelles
et familiales de variance-covariance. Les formules EM s’appliquent au modèle multica-



ractère pour le modèle saturé et à des modèles linéaires univariés pour les modèles réduits.
Les formules EM garantissent l’appartenance des composantes de (co)variance estimées
à l’espace des paramètres. Les procédures présentées dans cet article sont illustrées par
l’analyse de 5 caractères végétatifs et reproductifs mesurés lors d’une expérience portant
sur 20 familles de pleins frères testées dans 3 milieux différents chez la minette (Medicago
lupulina L).
hétéroscédasticité / corrélation génétique / corrélation intra-classe / espérance-
maximisation / maximum de vraisemblance restreinte

INTRODUCTION

Hypothesis testing of genetic parameters is of great concern when analyzing
genotype x environment interaction experiments. For instance, Visscher (1992)
investigated the statistical power of balanced sire x environment designs for

detecting heterogeneity of phenotypic variance and intra-class correlation between
environments. He assumed that the between-family correlation (henceforth referred
to as ’genetic correlation’) between environments was equal to 1 and consequently
heterogeneity of variance components was only due to scaling. This assumption was
relaxed by Foulley et al (1994), who considered estimation and testing procedures
for homogeneous components of (co)variance between environments. In some cases,
it may also be interesting to test less restrictive hypotheses, eg, constant genetic
correlations between environments, and constant genetic and intra-class correlations
between environments. The objective of this paper is to address this issue and to
show how heteroskedastic linear mixed models can be useful for this objective.

THEORY AND METHODS

The saturated model

Let us assume that records are generated from a cross-classified layout. We will
consider as in Falconer (1952) that expressions of the trait in different environments
are those of genetically correlated traits, thus resulting in the following ’genotype
x environment’ multiple trait linear model:

where yZ!x is the performance of the kth individual (k = 1, 2, ... , n) of the jth family
( j = 1, 2, ... , s) evaluated in the ith environment (i = 1, 2, ... , p); bi! is the random
effect of the jth family in the ith environment, assumed normally distributed such
that Var(b2!) _ !8., Cov(6!,6,’j) = 0’!,,, for i -¡. i’ and Cov(b2!, bi!!!) = 0 for
j ! j’ and any i and i’; and ejk is a residual effect pertaining to the kth individual
in the subclass ij, assumed normally and independently distributed with mean 0
and variance o,2 . Using vector notation, ie Yjk = {y2!x}, !! = IlLil, bj = {6:j}
and e!x = (egk) for i = 1, 2, ... , p, the model [1] can alternatively be written as:
yjk = w + bj + e!x, where bj - N(0, EB) and ejk - N(0, Eyv) with EB = {a’8!!, I



representing the (p x p) matrix of between-family components of variance and
covariance between environments and Ew = diag{ (J!i} } for the (p x p) diagonal
matrix of residual components of variance. 

&dquo;

Equivalent heteroskedastic univariate models for Ho 0

Ho: constant genetic correlation between environments

The null hypothesis (Ho) considered here consists of assuming homogeneous genetic
correlation coefficients pjj, = (0’! / (J Bi (J Bi’) between environments (/9n’ = P,
Vi,i’ and i 54 i’) without making any assumption about the residual variances
E, = diagf o, ei 2 1. Until now, we were unable to solve the problem of estimating
the corresponding parameters by maximum likelihood (ML) procedures under the
multiple trait approach in [1] even for balanced cross-classified designs (Foulley et
al, 1994). An alternative is to tackle this issue via the concept of equivalent models
(Henderson, 1984). Actually, an equivalent model to [1] under Ho and restricted
to p > 0 can be written using the following 2-way univariate mixed model with
interaction:

where p, is the mean, hi is the fixed effect of the ith environment; Us!S! is the

random family j contribution such that s; rv NID(0,1) and a£ is the family variance
for records in the ith environment; À(J Si hsjj is the random family x environment
interaction effect such that hsij rv NID(0,1) and À2(J;i is the interaction variance for
records in the ith environment; and eijk is the residual effect assumed NID(O, Qe. ).
Models [1] under Ho (and for p > 0) and [2] generate the same number of estimable
parameters and the equalities necessary to obtain the same variance covariance
structures are:

These are met given the following 3 one-to-one relationships:

Ho: constant genetic and intra-class correlations between environments

In this part, the null hypothesis (Ho) consists of assuming homogeneous genetic
and intra-class correlations between environments (ie, p;!, = a Hii, !!B!!B!, = P and

t = o, 2 i l(g2 + afvi) = t Vi, if and I # i’). The variance covariance structure of the



residual is always assumed to be diagonal and heteroskedastic (E, = diagfol ei 1).
As in the case of the above hypothesis of constant genetic correlation between
environments only, an equivalent model to [1] under Ho and restricted to p > 0 can
be written as:

where p and hi are the mean and the fixed effects of the ith environment

respectively; ’7’o’e,.s! is the random family j effect such that 8* - NID(0,1) and
IT2a2 is the family variance in the ith environment; WQe!hs ! is the random family
x environment interaction effect such that hsgj - NID(0,1) and W2Ue. is the
interaction variance in the ith environment and e2!k is the residual effect assumed
NID(0, U’i). In the same way, the relationships between models (1] under Ho (and
for p > 0) and [4] are:

Notice that under the univariate model [4], the null hypothesis is tantamount
to assuming constant (Ir = Qs. /a2 ; c.!2 = ol 2.,i / a;,) ratios of variances between
environments. 

&dquo;

Testing procedure

The theory of the likelihood ratio test (LRT) can be applied as previously proposed
by Foulley et al (1990, 1992), Shaw (1991) and Visscher (1992) among others. Let
Ho: y E 1 be the null hypothesis and Hi: y E F - lo its alternative, where y is the
vector of genetic and residual parameters, r refers to the complete parameter space
and Fo a subset of it pertaining to Ho. The likelihood under the null hypothesis
(one of the 2 described above) is obtained by constraining the ratio(s) to be
constant and finding the maximum under this constraint. The magnitude of the
difference between the value of the likelihood obtained under the null hypothesis
and the maximum of the likelihood obtained under the saturated model indicates
the strength of evidence against the null hypothesis. Under Ho, the statistic:

(where L(y; y) is the log-likelihood) is expected to be distributed as a chi-square
with r degrees of freedom given by the difference between the number of parameters
specifying the saturated model and the number of parameters estimated under the
null hypothesis. Ho is rejected at the level a if 6 > 6o where Pr[X r 2 > 6o] = a.

Since the parameters involved here are variance components, the LRT that has
desirable asymptotic properties is applied using restricted maximum likelihood



(REML) rather than ML estimators (Patterson and Thompson, 1971; Harville,
1974). Formulae to evaluate -2MaxL(y; y) under this saturated model were given
by Foulley et al (1994).

An EM-REML algorithm for models [2] and [4]

Models [2] and [4] can be written more generally using matrix notation.

For model (2!:
For model (4!:

where yi is a (n2 x 1) vector of observations in environment i; )3 is a (p x 1)
vector of fixed effects with incidence matrix Xi; ui = fs*l and U2 = Ihs!.1 are
2 independent random normal components of the model (in this case, family and
interaction effects respectively) with incidence matrices for standardized effects Zli
and Z2i respectively; au, and (Jei being the u-component and residual components
of variances respectively, pertaining to stratum i, and ei is the vector of residuals
for stratum i assumed N(O, o, ei 2 I.i).

The ’expectation-maximization’ (EM) approach is a very efficient concept in ML
estimation (Dempster et at, 1977) and this algorithm is frequently advocated for
estimating variance components in linear models (Quaas, 1992). The generalized
EM procedure to compute REML estimators of dispersion parameters, as described
by Foulley and Quaas (1994) for one-way heteroskedastic mixed models, can be
applied here. Letting u* = (ui!,u2‘)’, 2 = fo,2i 1, U2 = fol 1, yi = (0,2&dquo; 0,2&dquo; A)/app Ie ere. e Ing u = 1 2 u = u e = ei Yl = u e A

and T2 = (-r, w, o,, 21 )’ being the 2 sets of estimable parameters for the models [7]
and [8] respectively (later on denoted as y = yl or y = y2), the E step consists of
computing the function Q(Yly[t]) = 17&dquo; [lnp(yll3, u*,y) where the expectation
between brackets is taken with respect to the distribution of j3, u* given y and
y = Yltl, y[t] being the current estimate of y at iteration !t!. The M step consists
of selecting the next value y[t+1] of y by maximizing Q(yly[t]) with respect to y.
This EM-REML algorithm can also be derived using Bayesian arguments (Foulley
et at, 1987; Foulley and Gianola, 1989). For models [7] and [8], the function to be
maximized:

n ,

For model (7!, the differentiation of expression [9] with respect to A, orui and Qe.
yields:



For model !8!, differentiating the function [9] with respect to T, w and cr2 , we get:

The corresponding system åQ(yly[t]) / 8y = 0 cannot simply be written as
a linear system, as in the case with a saturated model, because the interaction
variance in model [7] is proportional to the family variance in environment i, and
the interaction and family variances in model [8] are proportional to the residual
variance in environment i. A convenient way of solving it is to use the method of

’cyclic ascent’ (Zangwill, 1969). For instance, let us consider model (7!. The different

steps to implement in this procedure starting with A[’], aifl and o,,i 2 It] are as follows:

(1) solve [lOa] = 0 with respect to !; (2) substitute the solution À[t,l) to A back into

Elt] (e!ei) of [lOb] = 0; (3) solve that equation; (4) substitute A[’,’] and 0, u[i&dquo;’) 2 to A
and o, 2 back into Elt] (e!ei) of !lOc! = 0; (5) solve for a, 2 ; and (6) return to (10a!,
[lOb] and [lOc] for a second inner cycle yielding À[t,2], (J!!t,2] and (J;Jt,2] and continue

to A[’,’] I oui and orei (convergence at iteration c). Finally, take ![t+1] _ Al!,!l ,
2[t+l] 2[t,c] c] d 2[t+l] 2[t,c] c] I 

.. 

b d d!!(t+1] _ gui and !e(t+1] _ o!’!. In practice, it may be advantageous to reduce
the number of inner iterations even down to only one.

For model !7!, the algorithm can be summarized as:



Similarly for model (8!, we obtain the following algorithm:

with e!t,t+11 - yi - Xi 0 - 0, ei [tll+l] LT!t,t+11 Zmui + W[t’1+1] Z2iU2*1
E!t] (.) can be expressed as the sum of a quadratic form and the trace of parts

of the inverse coefficient matrix of the mixed model equations (as described in
Foulley and Quaas, 1994). Note also that simple forms of [12b] and [13c] involve
the standard deviation and not the variance component, as explained in Foulley
and Quaas (1994).

ILLUSTRATION

The procedures presented in this paper are illustrated with the analysis of an
experiment carried out on 20 full-sib families of black medic (Medicago lupulina L)
tested in 3 different environments (harvesting, control and competition treatments).
The experimental design was described in detail by H6bert (1991). There were
2 replicates per environment and the 20 genotypes were randomly allocated to each
replicate (Foulley et al, 1994). As an illustrative example, we consider 5 vegetative
and reproductive traits out of the 36 traits which have been recorded. Table I

presents the estimation of genetic and residual parameters under the saturated
model. Table II presents the result of the estimation of (co)variance components
under the reduced (hypothesis of homogeneity of genetic correlations between
environments) model and the likelihood ratio test of this reduced model against
the saturated model. Similarly, table III presents similar results but in which the
reduced model considered represents the hypothesis of homogeneity of genetic
and intra-class correlations between environments. Table III also presents the





likelihood ratio test of the reduced model (Ho: homogeneity of genetic and intra-
class correlations between environments) against the reduced model of table II
(Hi: homogeneity of genetic correlations between environments only).

Convergence of the EM-REML procedure was measured as the norm of the vector
of changes in genetic parameters between iterations. A norm less than 10-6 was

obtained after 150 iterations (the number of inner iterations was only one) and
the computing time was less than 10 CPU seconds per trait (on an IBM 3090-17T
computer).

The results in table II suggest that differences among genetic correlations are
not statistically significant (except perhaps for trait [4] with P-value of 0.07).
P-values for vegetative and reproductive yields traits represented here by traits [1],
[2] and [3] were very high, indicating a lack of heterogeneity in genetic correlations
between environments. It seems that the overall correlation under the reduced
model (table II) is much larger than a simple average of the 3 estimates under the
saturated model. These results are due to one pair of environments with a genetic
correlation of 0.99, which pushes the overall correlation also to 0.99. In table III
(tests 1 or 2), P-values also indicate that there are no significant differences between
ratios of variances between environments, indicating a homogeneity in genetic and
intra-class variation between environments.

It can be concluded that the harvesting and competition environments do not
generate a meaningful level of stress as compared to the control environment for the
expression of genetic and intra-class variation of all traits analyzed. These results
can be due to the small sample size (only 40 records per environment). Since genetic
correlations between environments were very high and close to one, it is interesting
to test for these traits the assumption of these correlations being equal to one. We
have thus tested the model under the hypothesis of constant genetic correlations and
equal to one (according to the procedure described in Foulley and Quaas (1994))
against the reduced model (hypothesis of homogeneity of genetic correlations).
P-values for all traits analyzed (except for trait [2] where the P-value was equal to
0.1) were very high and indicated that these correlations did not differ from one.

DISCUSSION AND CONCLUSION

This paper clearly illustrates the value of univariate heteroskedastic models (Foulley
et al, 1990, 1992; Gianola et al, 1992; San Cristobal et al, 1993) to tackle problems
of estimation and hypothesis testing of genetic parameters arising in genotype
x environment data structures. It was shown that under each null hypothesis,
constant genetic correlations between environments and constant genetic and intra-
class correlations between environments, multiple trait and univariate linear models
generated the same number of estimable parameters and that there were one-to-
one relationships between both models. However, it should be noticed that strictly
speaking the univariate linear model under Ho (either hypothesis) is defined only
under p > 0 because negative variances are by definition not possible. Caution must
thus be exercised in applying the univariate linear model as an equivalent multiple
trait linear model. This last model is obviously more flexible, as previously pointed
out by Mallard et al (1983).







The EM algorithm seems a natural choice for the estimation of variance com-
ponents in univariate linear models but methods other than EM (ECME, Liu and
Rubin, 1994; Newton Raphson; quasi-Newton method based on average informa-
tion, Johnson and Thompson, 1994; derivative-free, Meyer, 1989) can be used to
solve this problem. The EM-REML approach presented in this paper is quite flexi-
ble. It can accommodate any structure of fixed effects and nondiagonal patterns of
the variance-covariance matrices of ui and u2, Var(ui) = Al and Var(u2) = A2,
ie for the particular model in [2] (Foulley and Henderson, 1989) Var(s*) = Ao, 2
Var(hs*) = Ip p (9 A(J!8i with (J!8i = A2U2 , Si s* = {sj}, hs* = (hsgj) and A is the
additive genetic relationship matrix.

Evidently, the approaches presented in this paper apply to an unbalanced
structure of data and to additional nuisance fixed effects cross-classified with family
effects, using the formulae defined in [12abc] and [13abc]. These algorithms can
also be utilized for the homoskedastic case by just taking i equal to 1 in the

previous formulae. This means that several EM-REML algorithms are presently
available to calculate REML estimates of variance components under the standard
homoskedastic linear model: (i) the classical EM algorithm based on sufficient
statistics; (ii) the related EM of EM-type algorithms (Henderson, 1973; Harville,
1974; Callanan, 1985); and (iii) the generalized EM algorithms proposed by Foulley
and Quaas (1994) for models parameterized either with variance components or as
in this paper. But additional work is needed to compare the performance of these
different algorithms.

Finally, the null hypothesis of constant intra-class correlations without making
any assumption on genetic correlations between environments remains to be con-
sidered. This problem requires a special treatment as far as the parameterization
of the model is concerned and will be reported in a separate article.
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