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Selecting Estimated
Models Using
Chi-Square Statistics

Quang VUONG, Weiren WANG *

ABSTRACT. - This paper proposes some tests for choosing
between two estimated models using some Pearson type
statistics. We allow for arbitrary _/n-asymptotically normal esti-
mators to be used in forming these 'statistics. This provides some
flexibility in practice. Then Large Sample theory and bootstrap
methods are used to construct our tests.

Choix entre modéles estimés a partir de stati-
stiques d’ajustement

RESUME. - Cet article propose des tests de choix entre modéles
estimés a partir de statistiques de Pearson d'ajustement. Ces
statistiques peuvent étre construites a partir d’estimateurs

n-asymptotiquement normaux, ce qui permet une grande flexi-
bilité dans I'utilisation de nos tests. La théorie asymptotique et les
méthodes de bootstrap sont alors utilisées pour construire nos

tests.
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1 Introduction

PEARrsoN [1990] type chi-square statistics have been generally used to test
goodness-of-fit, i. e., to test whether a specified parametric model is consist-
ent with observed data. CocHrAN [1952], WaTsoN [1959], and MoorE
(1978, 1986] have provided comprehensive surveys on Pearson chi-square
type statistics, ie., quadratic forms in the cell frequencies. Recently,
ANDREWS [19884a, 19885b] has extended the Pearson chi-square testing
method to non-dynamic parametric econometric models, i.e., to models
with covariates. Because Pearson chi-square statistics provide natural
measures for the discrepancy between the observed data and a specific
parametric model, they have also been used for discriminating among
competing models. Such a situation is frequent in Social Sciences where
many competing models are proposed to fit a given sample. A well known
difficulty is that each chi-square statistic tends to become large without an
increase in its degrees of freedom as the sample size increases. As a
consequence goodness-of-fit tests based on Pearson type chi-square statistics
will generally reject the correct specification of every competing model.

To circumvent such a difficulty, a popular method for model selection,
which is similar to the use of the AkaIKe [1973] Information Criterion
(AIC), consists in considering that the lower the chi-square statistic, the
better is the model. Hence the parametric model with smaller value of
chi-square statistic is generally chosen. Such a use of chi-square statistics
has been suggested by various researchers. See Massy, MONTGOMERY and
Morrison [1970], HEckman [1981], and NakamMurA and NAKAMURA [1985]
among others.

The preceding selection rule, however, is not entirely satisfactory. Since
chi-square statistics depend on the sample and are therefore random, their
actual values are subject to statistical variations. Hence a model with a
smaller chi-square statistic is not necessarily better than one with a larger
chi-square statistic in terms of goodness-of-fit. To take into account statisti-
cal variations, we shall propose some convenient asymptotically standard
normal tests for model selection based on Pearson type chi-square statis-
tics. Following VUONG [1989] our tests are testing the null hypothesis that
the competing models are as close to the data generating process (DGP)
against the alternative hypotheses that one model is closer to the DGP
where closeness of a model is measured according to the discrepancy implicit
in the Pearson type chi-square statistics. Thus the outcomes of our tests
provide information on the strength of the statistical evidence for the choice
of a model based on its goodness-of-fit.

Following Moore [1977, 1978] and ANDREws [1988b], we consider a
general class of estimators that is very broad and contains most estimators
currently used in practice when forming Pearson type statistics. This covers
the case studied in VuonG and WaNG [1993] where only the corresponding
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minimum chi-square estimator is used. In practice, the use of “‘unmatched”
estimators, i.e., estimators that do not minimize the chosen Pearson type
statistic, is quite common and can be found in various works. See LINHART
and ZuccHini [1986], HEckMAN [1981], and NAKAMURA and NAKAMURA
[1985]. Such a generalization is useful for many reasons.

First, there frequently exist estimators that are easier to compute than the
corresponding minimum chi-square estimator. Second, when the original
individual data are available, one uses frequently more efficient estimators,
such as the ungrouped maximum likelihood estimator (MLE), i.e. the MLE
based on individual data, when forming the chi-square type statistic. This
is in fact the procedure recommended in many textbooks. See for instance,
BisHop, FIENBERG and HoLLAND [1975]. Third, given an estimation method,
a particular weighting matrix is often chosen to obtain a chi-square limiting
null distribution for the chi-square statistic. This leads frequently to
unmatched estimators. For example, the Rao-Rosson [1974] statistic has
the usual chi-square limiting null distribution when the ungrouped MLE is
used. However, the ungrouped MLE does not minimize the quadratic
form defining the Rao-Robson statistic. See CHERNOFF and LEHMANN
[1954], Moore and SpruiLL [1975], Moore [1977, 1978] and ANDREWS
[1988 a].

The paper is organized as follows. Section 2 introduces the basic
notations and defines a class of asymptotically normal (AN)
estimators. Section 3 investigates the model selection problem based on
Pearson type statistics. A large sample test is proposed. In section 4,
ErFron [1982] bootstrap method is used to propose alternative and simpler
testing procedures for model selection. Section 5 presents some simulation
results. Section 6 concludes the paper and mentions some exten-
sions. Proofs and tables are included in Appendixes 1 and 2.

2 Definitions and Assumptions

In this section, we briefly present the basic assumptions on the model and
parameter estimators, and we define our general chi-square type statistics.

AssumpTiON Al: The observed data X,, i=1, 2, ... are independent and
identically  distributed (iid) with some common true distribu-
tion H. Assumption Al is more suitable for cross-section than time series
data. Following Rivers and Vuong [1991], some of our results can be
extended to heterogenous and weakly dependent processes.

The sample space X is partitioned into M mutually disjoint fixed cells
E,E,, ..., Ey. The partition sometimes follows from the qualitative
nature of the data. Let A=(h,, h,, ..., hy) be the vector of true cell
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probabilities. Let a specified model be Fo={F(.|6); 6e©® < R*} and
denote the vector of its predicted cell probabilities by

PO)=[p.(8), p,(®), ..., py(®)  where Pi(9)=f dF (x|6).
Ei

Because F(. | 0) is a joint distribution for X, we rule out implicitly econome-
tric models since the latter leave unspecified the distribution of the exogen-
ous variables. This assumption is made for simplicity. We will return to
it in section 6.

We impose the following assumption on 4 and p(0):
-AsSSUMPTION A2: h;>0, p,(6)>0, and p;(0) is twice continuously differenti-
able for every i=1,2, ..., M

Throughout it is assumed that F, satisfies some standard additional
regularity conditions to ensure the asymptotic results presented subse-
quently. See for instance Moore and SPRUILL [1975] and MooreE [1984].

Let n be the sample size. Corresponding to the partition
Ei, Ey, ..., Ey, we can compute the vector of observed cell probabilities

., I .
=, o s ) where fi=-% 1g, (X)) for i=1,2, ..., M,

LES

and lg (X)) is the indicator function taking values 1 if X, falls in cell E;
or 0 otherwise. Following Moore [1978], it is convenient to consider the
M-dimensional vector

— /3 fi—pi(9) )l
V, @)= /n(.. 220 )
© J"( N0

which measures the discrepancy between the observed and the expected cell
probabilities given 0.

We can now define the class of general chi-square type statistics consi-
dered in this paper. These statistics are essentially quadratic forms in
V,.(0,). Formally, we have:

DEFINITION 1: A general chi-square type statistic is of the form
Q.(6,)=V,(6,)M(f, 8,)V,(8,)
where M (f;, 6) and 6, satisfy assumptions A3 and A4 that follow.

AssumpPTION A3: Each element of the weighting matrix M (f, 0) is twice
continuously differentiable in (f, 6)eRMx @, and Mk, 0) is a positive
definite matrix for every 6.

AssumpTION A4: For some 6, in ©, the estimator 0, satisfies

i=1

\/E(On—90)=ﬁRgl Y WX, 8,)+0,(1) as n— oo

146



where ¥ (X, 0,) is a measurable function from X x® to R* that satisfies
Eg¥ (X, 6,)=0, and

Vo=Ey ¥ (X, 6p) W (X, 8o)’ and Ro= —Ex (0¥ (X, 6,)/06')

are finite and nonsingular. E,(.) denotes expectation computed under the
true data generating process H.

Assumption A4 implies that 6, is a consistent estimator of some value 0,
and that \/71 (6,—0,) is asymptotically normally distributed with zero mean
and covariance matrix Rg !V, (Ry!). Given some suitable regularity con-
ditions, most common estimators 8, fulfill this assumption. For instance,
minimum chi-square estimators, the maximum likelihood (ML) estimator
on grouped or ungrouped data, any GMM estimator, and other extremum
estimators satisfy assumption A4. See AMEMIYA [1985].

Note that the parameter value 6, depends on the underlying true distribu-
tion H which generates the observations, as well as the estimation method
employed. For example, when one uses the minimum chi-square estimator
that minimizes Q, (8), then 0, is the value minimizing Q (8)=plim, Q, (6)/n,
where the p lim is calculated under the true data-generating process H. This
is the case of a “matched” estimation. On the other hand, if 6, is the
MLE of 6 based on the ungrouped sample data, then 8, is the value at
which the Kullback-Leibler information criterion (KLIC) Ey[—log f(x|6)]
is minimized, where f'is the density function corresponding to F(. [6). See
WhHITE [1982]. This is the case of an “unmatched” estimation.

Note also that Q,(8,) is quite general. It includes some well-known chi-
square statistics such as the original Pearson statistic with M,=1,, (the
identity matrix), the Modified Pearson statistic with

M, =diag(. .., p;(®)/f;, ...),
the Gauss statistic with M,=diag(..., p;(0), ...) and the Rao-Robson
statistic with M, being the generalized inverse of the covariance matrix of

V,(8,) when 8, is the ungrouped MLE. In practice, M, is chosen by the
researcher according to his or her preference or objective.

3 Selecting Estimated Models

As we mentioned earlier, chi-squares statistics are frequently used
to discriminate among alternative models. It is easy to see that,
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under the present regularity conditions, Q,(8)/n converges to
Q®)=V(0)M(h, 6)V(0) in probability as n goes to infinity, where
VO =[...,(h—p; (9))/\/17,»(9), ...]. Thus Q(8) can be viewed as meas-
uring the departure of a particular member F(. |8) e Fy from the observed
sample. It is also worth noting that Q(8)>0 and Q(8)=0 if and only if

h=p(0).

Of special interests to us is the situation in which a researcher has two
competing parametric models Fy and G,={G (. |y); yeI < R4}, select the
better of the two models based on their general chi-square type statistics
Q.(6,) and Q,(y,) where 6, and v, are general estimators satisfying
assumption A4 and the same cells are used in both statistics.

DermviTioN 2 (Equivalent, Better and Worse): Consider two competing
parametric models Fy and G, and some chi-square type statistics Q, (6,)
and Q,(y,) where 6, and vy, are general estimators satisfying A4. Let
Q(.) be the probability limit of Q,(.)/n. The hypotheses

H5:Q(6,)=Q (v,
ﬁf :Q(0)<Q(v0)
ﬁg :Q(09)>Q(vo)
mean that the estimated models F(.|6,) and G(.|y,) are equivalent,

that F(.|8,) is better than G(. |v,), and that F(.|8,) is worse than
G (.| 7o), respectively.

Definition 2 calls for some remarks. First, it does not require that the
same chi-square type discrepancy be used in forming Q,(6,) and
Q. (v»). Choosing, however, different discrepancies for evaluating compet-
ing models is hardly justified. Second and more importantly, it allows
estimators other than the matching minimum chi-square estimators to be
used. As pointed out in the introduction, the use of “unmatched” esti-
mators is quite common in practice.

Third, even when the same chi-square discrepancy Q(.) is used, it is
important to note that the preceding hypotheses do not bear only on the
problem of model selection which is that of choosing between the models F,
and G, and not between the estimated models F(. |0,) and G(. |y,). For,
when one uses unmatched estimators, then the probability limits 8, and v,
of the estimators 6, and vy, are not in general equal to the pseudo true
values 0, =argminQ(6) and y,=argminQ(y). As a consequence Q(8,)
(say) cannot be interpreted as the discrepancy between the model Fy and
the DGP H. In other words, the preceding hypotheses concern the actual
data-denerating process in relation to the competing models and the estima-
tion methods employed.

Fourth, it may be interesting to evaluate the relative effects due to
specification errors and the choice of estimation methods. One possibility
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is to consider the matching minimum chi-square estimator 8, and the
corresponding value of the Pearson statistic Q,(8,). Since Q, ®,)<Q,(,)
by definition of 8,, then we can decompose Q,(8,) as the sum of two
nonnegative terms which are [Q, (8,)— Q, (8,)] and Q,(8,). Because Q,(8,)
combines both effects while Q, (B,) takes into account specification errors
only, then [Q,(8,)—Q,(8,)] may be viewed as evaluating effects due to the
choice of estimation methods. VuUoNG and WanG [1993] consider model
selection based on Q, (8,), while we consider here model selection based on

Q. (8,).

Fifth, consideration of the general hypotheses 1§, H s> and ﬁg may be
useful by itself. For, one may be interested only in comparing the perform-
ance of the estimated models F (. |6,) and G(. |v,), irrespective of how the
models were actually estimated. In this case, Az, ﬁf, and I:Ig are the
relevant hypotheses.

In any case, since 8, and vy, are consistent estimators of 0, and y, by
assumption A4, we can use [Q,(8,)—Q,(y,)])/n to consistently estimate the
indicator Q(8,)—Q(y,) which will be zero under the null hypothesis Hg.
Using a standard Taylor expansion, we can obtain the asymptotic distribu-
tion of [Q,(8,)— Q, (Y,)]/. /n, which is normal with zero mean and variance
©? under HS. The detailed derivation and the expression for ®? can be
found in the Appendix 1. Hence we define the statistic

oM, = 1 Q@) Q)
Jr ®

where @2 is a consistent estimator of ®? (e. g., its sample analog). (GCM
stands for Generally Choosing Models.) We have

THEOREM 1: (Asymptotic Distribution of GCM,, Statistic): Given Al-A4,
suppose that ®®#0, then
(i) under the null hypothesis Hg, GCM,, » N (0, 1) in distribution,
(i) under the alternative H,, GCM, » — o0 in probability,
(iii) under the alternative Flg, GCM,, - + oo in probability.

Theorem 1 is quite general and gives us a wide variety of asymptotic
standard normal tests for model selection based on general chi-square type
statistics. Part (ii) and (iii) also implies that the test is consistent. In the
next section, we detail the testing procedures based on Theorem 1 by using
bootstrap methods.

The preceding tests are based on the standardized difference in unadjusted
generalized chi-square statistics. In some cases, especially when the sample
size is small, one may want to adjust the numerator of the statistic GCM,,
by some additive terms of the form ¢, (k, g). For instance, this is the case
when one wants to take into account the parsimonious nature of the
competing models. Provided the correction terms are o ( 1), as most cor-
rection terms are, then Theorem 1 holds for the adjusted statistic.
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4 Bootstrap Methods

Implementation of the model selection procedure proposed in section 3
requires the following computations:

(1) Estimation of the parameters 0, and v,,

(i) Computatlon of the two chi-squares statistics Q, (6,) and Q, (y,) and
the difference S,=[Q, (8,)—Q, (v,)/ \/n

(i) Computation of the variance ®? of §, and finally, computation of
GCM, =§, /o.

The estimators 6, and y, can be obtained by minimizing some objective
function, such as Q,(.), or by maximizing the likelihood function. Point
(ii) is straightforward once 6, and vy, are known. Point (iii) is somewhat
complicated. In particular, the formula for the variance ®? involves the
calculation of the first and second order partial derivatives of the expected
cell probabilities with respect to the parameters & and y. Moreover, such
a calculation has to be repeated across models and estimation methods.
This may not be convenient in applied work. Fortunately, with the help
of advanced computers, this can be avoided via some simulations. This is
the purpose of this section. Specifically, we shall consider a method for
evaluating w® based on EFron [1982] bootstrap method. In addition, we
shall propose two alternative testing procedures for model selection based
directly on the bootstrap distribution of the statistic §,.

In the preceding section, we have seen that S, is approximately normally
distributed with mean zero and variance ®>. This suggests that w? can be
estimated by the sample variance of S, in a (large) number of independent
and identical samples of size n. This is the basic idea underlying the
bootstrap method which we apply here to the estimation
of ?. Specifically, we carry out the following steps:

1. Let F be the empirical probability distribution of the original data
Xis Xy o v vy Xpy L. €.,

F:mass1/natx,, i=1,2,...,n
Then draw an i.i.d. “bootstrap sample” x¥, x%, ..., x* from F, i.e., draw
x}* randomly with replacement from the observed values x,, x,, . . ., x,.

2. Using this bootstrap sample { x} }, estimate the competing models to
obtain 6} and y*. Then calculate the statistic

=[Q, )~ Q, () /.
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3. Independently repeat steps 1 and 2 a large number of times B, say
B=1000. Obtain “bootstrap replications” S}!, S*?, ..., §*?, and com-
pute the sample variance of {S¥*, b=1, ..., B}:

B
- 1 A
(Di= E Z (S¥r—8%)?,
b=1

B
where S*= ! Y. S# is the average of “bootstrap replications”.
b=1
The above method (call it Method 1) is quite general. It requires, how-
ever, that the individual data be available. If only the frequencies in every
cell are available, the bootstrap method can still be used with a slight
modification of the resampling procedure. In this case it is natural to
assume that the estimators 6, and vy, require only grouped data. Then the
modified procedure (Method 1°) is:

1'. Given the observed cell probabilities (f;, i=1, ..., M) and the total
sample size n, we can construct artificial data a,, a,, ..., a,, such that there
are nf; sample points in cell i. For example, randomly pick up nf; different
points from cell i.

2'. Then draw “bootstrap sample” from this artificial data and calculate
the new “bootstrap probabilities” { /¥, i=1, ..., M }.

3. Same as step 2 using {f} i=1,...,M} instead of
{x}, i=1, ..., n}, which is possible since the estimation methods use only
grouped data.

4’. Indepently repeat steps 2’ and 3’ for B times and the rest is the same
as step 3.

Another way of doing steps 1’ and 2’ is drawing M-dimensional multino-
mial variates with sample size n and probabilities { f;, i=1, ..., M }.

Once the bootstrap variance @2 is obtained, the test statistic GCM,, is
calculated easily using the initial estimates 6, and vy,. Under suitable
regularity conditions and for a large number of replications (see EFrON
[1982]), @2 is a consistent estimator of ®?. Thus, from Theorem 1, a testing
procedure for model selection can be based on the comparison of the value
of GCM,, to critical values from a standard normal table. For example,
at 5% significance level, we compare GCM, with —1.96 and 1.96. If
GCM,, falls between —1.96 and 1.96, we conclude that both estimated
models fit the data equally well. If GCM, is less than —1.96 (or larger
than 1.96), then we reject the null hypothesis in favor of the alternative
hypothesis that the estimated model F(. |8,) (or G(. Iyn)) is closer to the
true distribution.

Although using the bootstrap method to obtain an estimate of ®?, the
basic justification of the preceding testing procedure comes from the
asymptotic properties obtained in Theorem 1. In contrast, the next two
procedures rely only on the bootstrap methodology, and in particular on
two bootstrap methods for assigning approximate confidence intervals to
Q(8p)—Q(y,) based on the bootstrap distribution of S¥. These two
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methods are discussed in detail in EFRON [1982], and require steps 1 and 2
defined above or steps 1’ and 2’ if only frequencies are observed. See also
ErroN [1984] for the comparison of nonnested linear models using a MSE
criterion.

The first testing method is based on the percentile method. Let

number of { b : S

<t} "
. =Prob, (§*<1)

CDF (1) =

be the empirical cumulative distribution function (CDF) of the bootstrap
distribution of {S¥’, b=1,...,B}. For a given significance level o
between 0.0 and 1.0, define

S¥(@/2)=CDF~1(2/2) and  $%(¢/2)=CDF~!(1— a/2).

The percentile method consists in taking IS¢ (2/2), S# (2/2)) as an approxi-
mate 1—a central confidence interval for Q(0,)—Q(y,). Thus a test of
the~null hypothesis H¢ of equivalence against the alternative hypothesis H s
or H, at the approximate « significance level is:

(i) accept the null H of equivalence if 0e[S}(a/2), S¥(a/2)],
(ii) reject HE in favor of ﬁf if S (a/2) <0,
(i) reject A in favor of ﬁy if S (a/2)>0.
Or equivalently,
(i) accept HY if CDF (0)e[0/2, 1—a/2],
(i) reject A in favor of H, if CDF (0)>1—oy2,
(iii) reject H§ in favor of H, if CDF (0)<a;2.

The percentile method does not use the value S, for the initial observed
sample. More importantly, since the bootstrap distribution is based on
replications of the observed sample that produces the value S, the percentile
method assumes implicitly that S, is the median of the bootstrap
distribution.  If this is not a proper assumption, one should incorporate a
bias adjustment. This leads to the bias-correction percentile method. We
will only present the procedure. Its rationale can be found in Chapter 10
of EFroN [1982].

Define
=0 '(CDFS,) and  z,=0"'(1-q/2)

where @ is the cumulative distribution function for a standard normal
variable. The decision rule for model selection based on the bias-correction
percentile method at the o significance level is:

(i) accept A§ if 0¢[CDF ! (@ (27— z,,)), COF 1 (0 (27 + 22l
(ii) reject Hf in favor of A, if CDF ! (® (27 + Zy2)) <0,
(iii) reject H§ in favor of I, if CDF~1(® (27— z,,,))>0.
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Let z,=® ' (CDF (0)). It is easy to see that the preceding decision rule
is equivalent to:

i) accept H¢ if |z,—27|<z,,,,

pt Ho 0 /2
(i) reject HS in favor of H, if Zo>2z+ Zg/25
(iii) reject Ag in favour of ﬁg if zo<2z— Zyj2-

We will refer to the percentile method without the bias-correction as
Method 2, and to the percentile method with the bias-correction as
Method 3.

5 An Example

To illustrate the model selection procedures discussed in the preceding
section, namely, Methods 1, 2 and 3, we consider an example. The limited
Monte Carlo study that we conduct will also give an idea on the relative
performance of these methods. We need to define the competing models,
the estimation method used for each competing model, and the chi-square
type statistic used to measure the departure of each proposed parametric
model from the true data generating process. These are now presented.

For our competing models, we consider the problem of choosing between
the family of log-normal distributions and the family of exponential
distributions. This problem has a long history in the statistical litera-
ture. See, e.g., Cox [1962] and ATkinsoN [1970] among others. The log-
normal distribution is parameterized by a=(a,, a,) and has density

_ (logx—a,)?

X; Oy, 0ly) = ——————€eX
S @y, 00) x(2m)'?a, ( 203

) for x>0

and zero otherwise. The exponential distribution with parameter f has
density

g(x; ﬁ)=%exp(—x/[3) for x>0

and zero otherwise.

The estimator used for each competing model is the ungrouped maximum
likelihood estimator (MLE). This choice is particularly convenient here
because the ungrouped ML estimator for each model has a closed form
and hence is easily computed. Specifically, for the log-normal model,

. e ~_ g .
o= - Z log x; and 0€§= - Z (logxl_al)z'
Ri=1 Ri=y

SELECTING ESTIMATED MODELS 153



For the exponential model, the ungrouped MLE is the sample average, i.e.,

B=

N |-

n
Y x
i-1

Lastly, we use the original Pearson chi-square statistic to evaluate the
discrepancy of a proposed model from the true data generating process.
We partition the real line into M intervals {(c;,_y, ¢}, i=0,1, ... M}
where ¢, =0 and ¢y= +oco. The choice of the cells is discussed below. The
chi-square statistics for the log-normal and exponential models are:

o (fi—pi(@)? & (fi—p:(B)?
= i Fil7)) d =
Q@=L e and  Q,®)=n% 0

where p; () and p;(B) are the probabilities of the interval (c,_,, c;) under
Sf(x, o) and g (x, B), respectively.

In our limited Monte Carlo study, we consider various sets of experiments
in which the data are generated from a mixture of an exponential distribu-
tion and a log-normal distribution. These two distributions are calibrated
so that they have the same population means and variances, namely one
and one. Hence the data generating process has the density

h(n)=mn Exponential (1) + (1 — ) Log-normal (—0.346 6, 0.832 6),

where 7 is set to some specific value for each set of experiments. In each
set of experiments, several random samples are drawn from this mixture of
distributions. The sample size varies from 100 to 1,000, and for each
sample size the number of replications is 1,000.

Throughout, the chosen partition has four cells defined by the
values ¢,=0, ¢;=0,1, ¢,=1.0, ¢;=3.0 and ¢,= +c0. Note that because
the log-normal distribution has two parameters, four is the minimum num-
ber of cells for which a perfect fit is not always achieved when fitting this
distribution by minimum chi-square methods. The power of our tests for
model selection is likely to improve by increasing the number of cells. Note
also that the shapes of the log-normal and exponential densities differ
greatly around the origin. This motivates the choice of ¢,=0.1. The
value c, is equal to the common population mean, while c,, which is two
standard deviations away from the mean, is used to control for large
deviations.

We choose five different values for © which are 0.0, 1.0, 0.5357, 0.25,
and 0.75. Although our proposed model selection procedure does not
require that the data generating process belong to either of the competing
models, we consider the two limiting cases ©=0.0 and n=1.0 for they
correspond to the correctly specified cases. The value n=0.5357 is determi-
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ned to be the value for which the estimated log-normal distribution and
the estimated exponential distribution are approximately at equal distance
from the mixture 4 (n) according to the Pearson discrepancy and the above
cells. Thus this set of experiments corresponds approximately to the null
hypothesis of our proposed model selection test GCM,,. Finally, to investi-
gate the cases where both competing models are misspecified but not at
equal distance from the data generating process, we consider the cases
where n= .25 and t=.75. The former case corresponds to a data generat-
ing process which is log-normal but slightly contaminated by an exponential
distribution. The second case is interpreted similarly with an exponential
distribution slightly contaminated by a log-normal distribution.

The results of our five sets of experiments are presented in Tables 1-5
(see Appendix 2). The first half of each table gives the average values of
the ungrouped ML estimators o and P, the Pearson goodness-of-fit statistics
Q, (@) and Q, (B), and the model selection statistic CGM,, with its bootstrap
estimated variance (Bi (see Method 1). The values in parentheses are stan-
dard errors. The second half of each table gives in percentage the number
of times our proposed model selection procedures based on the three
methods described in the previous section, favor the log-normal model, the
exponential model, or are indecisive. The tests are conducted at the 5%
nominal significance level. In the first two sets of experiments (r=0.0 and
n=1.0) where one model is correctly specified, we use the labels “correct”
and “incorrect” when a choice is made. Finally, in the case where
n=.5357, we give in addition the 2.5%, 5.0%, 95%, and 97.5% fractiles of
the observed distribution of the GCM,, statistic. This allows a comparison
with the asymptotic N (0, 1) approximation under our null hypothesis of
equivalence.

Tables 1 and 2 report the cases when one model is correctly specified. It
is well-known that the MLE is consistent for the true parameter value
under correct specification. For example, in Table 1, the log-normal model
is correctly specified, and the MLE of a=(a,, a,) approaches the true
values a,=(—0.3466, 0.8326) as the sample size increases from 100 to
1,000. However, the Pearson chi-square statistic Q, (o) for this model does
not have a standard chi-square limiting distribution even under correct
specification because the ungrouped MLE is used. In fact, the limiting
distribution is somewhere between a %2 (1) and a %2 (2). See CHERNOFF and
LeEHMANN [1954]. In Table 1, Q,(a) has a mean around 1.79 which lies
between 1 (mean of y2(1)) and 2 (mean of %2(2)). For the misspecified
model, which is the exponential model here, the MLE B converges to the
pseudo-true parameter B, which minimizes the KLIC. The corresponding
Pearson chi-square statistic Q,(B), as we expect, increases at the rate
of n. The bootstrap estimator of @ also converges as the sample size
becomes larger. The test statistic for model selection GCM,, approximately
increases at a rate _/n. In Table 2, where the exponential model is cor-
rectly specified, one can observe similar results.

The second half of Table 1 summarizes the results for our three model
selection procedures. Method 1 performs quite well and for small sample
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sizes (n=100 or 250), this method seems to dominate the other two methods
in selecting the correct model, which is the log-normal model in this
case. However, as the sample size increases to =500 or 1,000, the three
methods perform equally well. The three methods also select the correct
model almost 100% of the times, as expected.

The second half of Table 2 reports somewhat different results. Except
at sample size 1,000 where all three methods perform equally well, in smaller
samples Method 3 now seems to dominate the other two methods. All
three methods, however, do not work as well when the exponential model
is correctly specified (Table 2) as when the log-normal model is correctly
specified (Table 1). This can be explained by the fact that the log-normal
model has one more parameter than the exponential model, and hence is
more difficult to reject even when it is misspecified.

For Tables 3, 4 and 5, the data was generated neither from the log-
normal model nor from the exponential model, but from a mixture of these
two models. Hence, the log-normal model and the exponential model are
both incorrectly specified. The MLE’s of o« and B converge to their pseudo-
true values o, and B,. For instance, in Table 3, a=(a,, ®,) converges to
a=(—0.4723, 1.104) and B converges to p=0.9994. The bootstrap esti-
mator 53* approaches 0.5026. Both chi-square statistics Q, () and Q,(B)
increase approximately at the rate of n. The same comments apply to
Table 4 and Table 5.

In Table 3, the data generating process is chosen such that both the log-
normal model and the exponential model are approximately equally close
to it. The test statistic GCM, is expected to have a limiting standard
normal distribution N (0, 1). This is roughly confirmed in Table 3. For
example, for n=1,000, GCM, has a mean of 0.9842 and a standard error
of 0.9449. The fractiles reported in Table 3 show that the finite sample
distribution of GCM,, is slightly skewed to the right. The three procedures
for model selection perform very well. All three of them conclude that
both models fit equally well the data with a probability of around 95%,
which is 1 minus the nominal size of the test.

With a few exceptions, Tables 4 and 5 reproduce the qualitative results
of Tables 1 and 3, respectively, although in a weaker form. When the log-
normal model is closer to the true data generating process (Table 4),
Method 1 slightly dominates the other two methods. On the other hand,
when the exponential is closer to the true data generating process (Table 5),
Method 3 seems to dominate especially at small sample sizes. As noted
earlier, selecting the exponential model appears more difficult than selecting
the log-normal model.

From our limited Monte Carlo study, it is difficult to say which method
absolutely dominates the other methods. Moreover, all methods require
about the same amount of computation. Although no clear cut conclusion
can be made. our study has shown that the three methods work relatively
well.
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6 Conclusions and Extensions

In this paper, we have studied the problem of selecting estimated models
using chi-square type statistics. In particular, we have proposed some
convenient asymptotically standard normal tests based on chi-square type
statistics that use estimators in a quite general class. The tests are designed
to determine whether the estimated competing models are as close to the
true distribution against the alternative hypothesis that one estimated model
is closer, where closeness is measured according to the discrepancy implicit
in the chi-square type statistic used.

To facilitate the implementation of our proposed tests, we have used a
bootstrap estimate of the asymptotic variance of the numerator of our test
statistic. We have also considered two testing procedures that are directly
based on the bootstrap method. The three procedures are fairly simple,
and mainly require the computation of estimators and chi-square
statistics. Several Monte Carlo experiments were conducted and showed
that the three procedures perform relatively well. It was also found that
they were comparable, and that none of them absolutely dominates the
others.

Our work can be extended in several directions. One direction is to
consider econometric models explicitly. For econometric models, only the
conditional distribution of the endogenous variables y given the exogenous
variables z is specified to belong to a conditional parametric probability
model f(y|z; 6), while the marginal distribution of the exogenous variables
is left unspecified. Without knowing this marginal distribution, one cannot
associate a given parameter value 6 with a joint distribution for the observed
data (y, z;). Hence when the full sample space X=Y X Z is partitioned
into mutually disjoint cells, the predicted probability in each cell cannot be
calculated. This expected probability can, however, be consistently esti-
mated by substituting the empirical marginal distribution for the true margi-
nal distribution of z. Specifically, following ANDREws [1988a], we can
consider

n

pi(G)‘—‘1 Y J g, (v, 2)f(y|z;:0)dv (y) for i=1,2, ..., M,

nj=1

where v(y) is some o-finite measure on Y. Given these “expected” cell
frequencies, chi-square type statistics can be constructed given any estimator
in the general class considered in this paper. Then, as in section 3, the
resulting test statistic for model selection can be shown to be

n-asymptotically normal. Derivation of the asymptotic variance of the
statistic is; however, much more tedious. Fortunately, Methods 1, 2 and 3
discussed in section 4 still apply.
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A second extension is to use random cells instead of fixed cells. See,
e.g., ANDREWs [1988 5] for various interesting examples. Moreover, with
appropriate random cells, the asymptotic distribution of the goodness-of-fit
statistics may become independent of the true parameter 0, under correct
specification of the parametric model. See, e.g., Roy [1956] and WATsoN
[1959]. Recent work on goodness-of-fit statistics under correct specification
has, however, shown that the asymptotic distribution of such statistics will
not change when cell boundaries are random provided they converge in
probability to some fixed values. See CHiBisov [1971], MoorE and SPrUILL
[1975] and ANDREws [19884]. In view of this latter result, it is expected
that our test statistics will remain asymptotically normally distributed with
the same asymptotic variance m? under similar conditions.
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APPENDIX 1

Proof of Theorem 1 and derivation of @?: We first state without proofs
two easy lemmas that can be found in VuonGg and WANG [1993].

LeEMMA 2: Given A3-A4, the weighting matrix M,=M (f, 0,) satisfies
+
a \/n(f h) Z f(en]_eo_})

M,=M,+ L,,+op(1/\/ﬁ),

M
ji= 1
where My=M (h, 0,), dIM,/0h; and OM,,/09; are evaluated at (h, 0,).

LemMa 3: Under A1-A4,

1 _
ﬁQ" (9,,)=\/n b'Myb+d'L,

+25'MoD, U, =5 Mo D, B_/n(8,~00)+0,(1).

where b=<. .. hi_pOi, . ..), Po=p(8,) for some 0,0,

Poi
h;
D1=d1ag< . f y .- ),
Poi
! -+ pa; hi
D2=diag(. ., it P v .. .)=D1(D§+IM),
Poi Poi
. 1 6p0 ,
B=diag{ ..., ﬁ’ . e and 0p,/00’ is evaluated at 0,

= /n .f;‘—hi l=i : N—
U, n(ﬂ> L0l

e(xi)=[1]31 (X;)/\/Z; SRR lEM (Xi)/\/E]’,
ql-l:(\/h‘l’ \/h_z’ RS \/E)’

Both Lemma 2 and Lemma 3 are simply Taylor expansions of M, at (4, 8,)
and Q,(8,)/. /n at 8, respectively. Lemma 3 is also a more detailed expan-
sion of Theorem 5.3 of Moore [1984]. However, Moore inadvertently
ignored the term 'L, b, and the condition M, —» M_ in probability under H
seems too weak for his stated result.
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To obtain the asymptotic variance of [Q,(68,) —Q, (v.)l/ \/71, we define the
following 1 X M row vectors

Cip=bi,1t2b;M;,D, [, 2= ,—b;M; D, ;B)Rg,

, , oM , , oM
1f=<_..,b, ahiObf’ ) 2,=<...,bf aefobf, )

and the M x M matrix
W,=Eyle(X)—gulV(X;; 85)'=Eye(X) ¥ (X; 0,)".

The subscript f indicates that matrices are now attached to the model
Fy. Similar vectors and matrices are defined for the model G, with the
subscript f replaced by g. Using Lemma 2 and Lemma 3, we can easily
obtain

LemMA 4: Given Al1-Ad4,
(i) for model F,,

1

S

1

fﬁi

Q. (8,)=_/nQ(8p)+C; Z le (X))~ gul

1 n
+C,2f_— Z \l"f(Xi; 90)+0p(1)’
\/ni=1

(it) for model G,, a similar equality holds with 6 and f replaced by y
and g, respectively.

From this lemma it follows that

1

—[Q,(0,)—Q,(v)]= \/71 [Q(0)—Q(70)]
\/n

1 n e (Xl) - qH

+(C’1f_C,1 s Clzf_clz 9)7.2 \l/f(Xi; 0,)

T, (X vo)
From the multivariate central limit theorem and assumption A4, we can

now immediately obtain the asymptotic distribution of

[Q,6,)—Q, (v)V/ /

under the null hypothesis of equivalence A§. Define
C’fg =(C; ' Ci 9 & 5 G, g)’ ng =Ey \l’f (X 9,) ‘~|’g Xis vo)s

2. =lu—quan
z, W, W,
W,,= W'f V., Wi,
W; W,fg \M

Qu(0)=Q, (1) ®

1
Let 0*=C};, W, C,,, we then have — . > N(0, 1)

\/71 )
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APPENDIX 2

TABLE 1

Data Generating Process= Log-Normal ( — 0.3466, 0.8326).

100 250 500 1,000
P —.3361 (.0817) —.3461 (.0543) —.3471 (.0380)  —.3495 (.0236)
O e .8251 (.0559) .8303 (.0393) .8338 (.0251) .8341 (.0203)
B, 1.0093 (.1016) 9995 (.0655) 1.0019 (.0437) 9984 (.0309)
6)*..” .......... .3495 (.2018) .3349 (.1050) .3149 (.0774) .3076 (.050)
Q. (@. ........ 1.730 (1.880) 1.740 (1.430) 1.740 (1.660) 1.790 (1.750)
Q®. ........ 11.79 (3.000) 27.32 (4.510) 53.29 (6.750) 105.15 (9.060)
GCM,,......... —3.707 (1.864) —5.420(2.073) —7.871 (2.416) —11.028 (2.708)
Model selection Incorrect 0.0% 0.0% 0.0% 0.0%
based on GCM,, Indecisive 18.0% 3.0% 0.0% 0.0%
Correct 82.0% 97.0% 100.0% 100.0%
Non-bias-corrected Incorrect 0.00% 0.0% 0.0% 0.0%
percentile method Indecisive 31.0% 6.5% 0.5% 0.0%
Correct 69.0% 93.5% 99.5% 100.0%
Bias-corrected per- Incorrect 0.00% 0.0% 0.0% 0.0%
centile method Indecisive 42.5% 8.5% 0.0% 0.0%
Correct 57.5% 91.5% 100.0% 100.0%
TABLE 2
Data Generating Process= Exponential (1.0)
100 250 500 1,000
T —.5830 (.1381)  —.5769 (.0753) —.5790 (.0591) —.5750 (.0414)
O e v 1.267 (.1270) 1.270 (.0854) 1.285 (.0588) 1.278 (.0406)
B .9955 (.0976) .9966 (.0600) 1.0026 (.0440) 1.0010 (.0321)
o T 5614 (.1176) .5240 (.0686) .5140 (.0408) .5070 (.0275)
Q@. ........ 7.150 (4.910) 15.94 (7.960) 30.45 (11.24) 60.26 (16.15)
QM. ........ 2.040 (1.740) 2.190 (2.040) 2.150 (1.990) 2.240 (2.010)
GCM,. ........ 9171 (.8843) 1.6652 (.9863) 2.4648 (.9820) 3.622 (1.003)
Model selection Incorrect 0.0% 0.0% 0.0% 0.0%
based on GCM,, Indecisive 85.5% 58.5% 30.5% 5.0%
Correct 14.5% 41.5% 69.5% 95.0%
Non-bias-corrected Incorrect 0.00% 0.0% 0.0% 0.0%
percentile method Indecisive 89.0% 58.0% 31.5% 6.5%
Correct 11.0% 42.0% 68.5% 93.5%
Bias-corrected per- Incorrect 0.50% 0.0% 0.0% 0.0%
centile method Indecisive 68.0% 50.0% 24.5% 5.0%
Correct 31.5% 50.0% 75.5% 95.0%
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TABLE 3

Data Gen. Process=.5357*Exp (1.0) + .4643*log-normal ( —0.347, 0.833)

100 250 1,000
Oge e o — 4728 (.1107)  —.4743 (.0710)  —.4720 (.0486) —.4723 (.0328)
Qg v veeaee 1.097 (.1125) 1.102 (.0778) 1.106 (.0597) 1.104 (.0369)
B 9994 (.1027) .9954 (.0640) 1.0003 (.0446) 9994 (.0301)
Opeevvoeennen .5016 (.0760) .5040 (.0512) .4986 (.0469) .5026 (.0251)
Q@. ... 4.650 (3.650) 8.270 (5.460) 15.18 (7.370) 26.04 (9.780)
u®. ........ 3.770 (2.770) 7.380 (4.180) 12.55 (5.530) 24.36 (7.340)
GCM,. ........ .1109 (1.044) .0737 (1.039) .2100 (1.020) .0942 (.9449)
GEM,............ 2.5% fractile ~ —2.895 -2.114 -1.932 —1.811
5.0% fractile  —1.674 -1.770 —-1.643 —1.446
95.0% fractile  1.6595 1.4666 1.7269 1.5126
97.5% fractile ~ 2.0570 1.9239 2.0849 2.1395
Model selection Favor log-n 3.0% 2.5% 1.0% 1.0%
based on GCM,, Equivalent 94.0% 95.0% 94.0% 95.5%
Favor exp 3.0% 2.5% 5.00% 3.5%
Non-bias-corrected Favor log-n 3.00% 2.00% 3.50% 1.50%
percentile method Equivalent 96.0% 94.5% 93.0% 95.0%
Favor exp 1.00% 3.50% 3.50% 3.50%
Bias-corrected per- Favor log-n 2.50% 0.50% 1.50% 2.00%
centile method Equivalent 95.5% 95.0% 95.0% 94.5%
Favor exp 2.00% 4.50% 3.50% 3.50%

TaABLE 4

Data Gen. Process=0.25*Exp (1.0) + 0.75*log-normal ( —0.347, 0.833)

100 250 1,000
Bgee e —.4016 (.0937) —.4126 (.0586) —.4078 (.0434) —.4033 (.0294)
N 9649 (.1105) .9703 (.0602) 9725 (.0486) 9699 (.0345)
B A 1.002 (.0980) .9932 (.0638) .9986 (.0427) 1.0005 (.289)
Opev ceeeeeonns 4931 (.1403) 4698 (.0541) 4638 (.0372) 4620 (.0310)
Q@. ..ot 3.130 (2.590) 3.960 (2.740) 6.030 (4.130) 9.970 (5.270)
Q®. ........ 7.320 (3.320) 15.63 (5.140) 30.14 (6.420) 61.40 (9.990)
GCM,. ....... —1.126 (1.415)  —1.671 (1.162)  —2.393 (1.053)  —3.589 (1.171)
Model selection Favor log-n 22.0% 33.0% 65.0% 94.0%
based on GCM,, Equivalent 77.5% 67.0% 35.0% 6.0%
Favor exp 0.5% 0.0% 0.0% 0.0%
Non-bias-corrected Favor log-n 20.0% 40.5% 64.0% 89.0%
percentile method Equivalent 70.0% 59.5% 36.0% 11.0%
Favor exp 0.00% 0.00% 0.00% 0.00%
Bias-corrected per- Favor log-n 20.0% 28.0% 54.0% 87.5%
centile method Equivalent 80.0% 72.0% 46.0% 12.5%
Favor exp 0.00% 0.00% 0.00% 0.00%
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TABLE 5

Data Gen. Process=0.75*Exp (1.0) + 0,25* log-normal ( — 0.347, 0.833)

100 250 500 1,000
Gpeeee e —.5220 (1158) ~ —.5171 (0715)  —.5323 (.0585) —.5215 (.0375)
Upeev . 1.171 (.1188) 1.181 (.0823) 1.194 (.0607) 1.193 (.0399)
B 9917 (.1015) .9984 (.0618) .9894 (.0466) .9982 (.0309)
o 5227 (.1184) .5108 (.0548) 4969 (.0351) .5023 (.0235)
Q @, ........ 5.740 (4.240) 11.37 (6.690) 22.53 (8.770) 41.73 (12.60)
Q. ........ 2.620 (2.410) 3.920 (2.980) 4.910 (3.550) 8.510 (4.860)
GCM,. ........ .5482 (1.003) 9013 (.9879) 1.5761 (.9453)  2.0816 (.9309)
Model selection Favor log-n 0.20% 0.05% 0.00% 0.00%
based on GCM,, Equivalent 93.5% 88.0% 62.5% 43.0%
Favor exp 4.50% 11.5% 37.5% 57.0%
Non-bias-corrected Favor log-n 2.00% 0.50% 0.00% 0.00%
percentile method Equivalent 93.5% 81.0% 75.0% 39.5%
Favor exp 4.50% 18.5% 25.0% 60.5%
Bias-corrected per- Favor log-n 1.00% 0.00% 0.00% 0.00%
centile method Equivalent 89.0% 80.0% 66.0% 37.0%
Favor exp 10.0% 20.0% 34.0% 63.0%
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