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Summary - This paper describes a further contribution to the problem of testing homo-
geneity of intra-class correlations among environments in the case of univariate linear
models, without making any assumption about the genetic correlation between environ-
ments. An iterative generalized expectation-maximization (EM) algorithm, as described
in Foulley and Quaas (1994), is presented for computing restricted maximum likelihood
(REML) estimates of the residual and between-family components of variance and co-
variance. Three different parameterizations (cartesian, polar and spherical coordinates)
are proposed to compute EM-REML estimators under the reduced (constant intra-class
correlation between environments) model. This procedure is illustrated with the analysis
of simulated data.

heteroskedasticity / parameterization / intra-class correlation / expectation-
maximization / restricted maximum likelihood

Résumé - Variation génétique de caractères mesurés dans plusieurs milieux. II. Infé-
rence relative à des corrélations intra-classe constantes entre milieux. Cet article décrit
une approche permettant d’estimer les composantes de variance-covariance entre milieux
dans le cas de corrélation intra-classe homogènes entre milieux, sans faire d’hypothèse sur
les corrélations génétiques entre milieux pris 2 à 2. Un algorithme itératif d’espérance-
maximisation (EM), comparable à celui décrit par Foulley et Quaas (1994), est proposé
pour calculer les estimations du maximum de vraisemblance restreinte (REML) des com-
posantes résiduelles et familiales de variance covariance. Trois paramétrisations différentes
(coordonnées cartésiennes, polaires et sphériques) sont proposées pour calculer les esti-
mateurs EM-REML sous le modèle réduit (les corrélations intra-classe sont supposées
toutes égales à une même constante). Cette procédure est illustrée par l’analyse de données
simulées.

hétéroscédasticité / paramétrisation / corrélation intra-classe / espérance-
maximisation / maximum de vraisemblance restreinte



INTRODUCTION

Statistical procedures based on the theory of the generalized likelihood ratio,
previously proposed by Foulley et al (1994), Shaw (1991) and Visscher (1992),
have been applied to test the homogeneity of genetic and phenotypic parameters
against Falconer’s (1952) saturated model. In particular, Robert et al (1995)
have described a procedure for estimating components of variance and covariance
between environments and for testing the homogeneity of the following parameters:
(a) a constant genetic correlation between environments; and (b) constant genetic
and intra-class correlations between environments.

The objective of this article is to present a procedure for dealing with homo-
geneous intra-class correlations among environments without making any as-

sumption about the genetic correlations between environments. The method is
based on restricted maximum likelihood estimators (REML) and on a general-
ized expectation-maximization (EM) algorithms as proposed initially by Foulley
and Quaas (1994) for heteroskedastic univariate linear models. Three parameteri-
zations of variance-covariance components are suggested for solving this problem.
A simulated example is presented to illustrate this procedure.

THEORY

A model often used to deal with genotypic variation in different environments is
the 2-way crossed genotype (random) x environment (fixed) linear model with
interaction. In particular, this model has been proposed as an alternative to a
multiple-trait approach when variance and covariance components are homogeneous
and genetic correlations between environments are positive (Foulley and Henderson,
1989). It has also been employed by Visscher (1992) to study the power of likelihood
ratio tests for heterogeneity of intra-class correlations between environments when
genetic correlations among them are assumed equal to unity. The aim of this paper
is to go one step further in addressing the same problem with the same model but
with a heterogeneous structure of variance-covariance components.

The full model

Let us assume that records are generated from a cross-classified layout. The model
is defined as follows:

where It is the mean, hi is the fixed effect of the ith environment: a Si sj is the
random family j contribution such that s! ! NID(0,1) and Qsv is the family
variance for records in the ith environment; 0’!;!!, is the random family x
environment interaction effect such that hsg, - NID(0, 1) and 0’2h.,. is the interaction
variance for records in the ith environment; e2!,! is the residual effect assumed
NID(0, a;i)’ Remember that this model has been extensively used in factor analysis
of psychological data (Lawley and Maxwell, 1963).



Model [1] can be written more generally using matrix notation as:

where Yi is a (n2 x 1) vector of observations in environment i; 13 is a (p x 1) vector of
fixed effects with incidence matrix Xi; ui = (s) ) and u2 = {h,s ! } are 2 independent
random normal components of the model with incidence matrices for standardized
effects Zit and Z2i respectively; cr! ! and Qu2,. are the corresponding components
of variance, pertaining to stratum i and ei is the vector of residuals for stratum i
assumed N( 0 , afl, In, ) .
The reduced model

The null hypothesis (Ho) consists of assuming homogeneous intra-class correlations
between environments (ie, d i, ti = (a;i +a!8i) / (!9!+!hsi+!e!) = t). The variance-
covariance structure of the residual is assumed to be diagonal and heteroskedastic.
Under model [I], this hypothesis is tantamount to assuming a constant ratio of
variances between environments: V i, afl / (as. + a!8i) = 82, where 8 is a constant.

Under this hypothesis, 3 different parameterizations will be considered to solve
this problem.

Cartesian coordinates

where 6 is a positive real number.

Polar coordinates

where pi and 6 are positive real numbers.

Spherical coordinates

where !2 is a positive real number. Under this parameterization 6’ = tan’ a.

An EM-REML algorithm

A generalized expectation-maximization (EM) algorithm to compute REML esti-
mators is applied (Foulley and Quaas, 1994). As in Robert et al (1995) and for
heteroskedastic mixed models, the function to be maximized is:



where y is the set of estimable parameters for each of the 3 models (under each
parameterization considered). Eil [.] represents the conditional expectation taken
with respect to the distribution of fixed and random effects given the data vector and

y = y[t]. Eil (.! can be expressed as a function of bilinear forms and a trace of parts of
the inverse coefficient matrix of the mixed-model equations (as described in Foulley
and Quaas, 1994). So, for each parameterization, we derive function [3] with respect
to each parameter of y and we solve the resulting system 8Q(Yly[t]) / 9y = 0. After
some algebra and using the method of ’cyclic ascent’ (Zangwill, 1969), we obtain
the 3 following algorithms.

For model [2] and using cartesian coordinates, the algorithm at iteration [t, I +1]
can be summarized as follows. Let 82ft,l], 0,[t,l] and Q!t2!!. be the values at iteration
[t, 1]. The next iterates are obtained as:

0 ![tlc+i1 is the only positive root of the following cubic equation:

with

0 0’ [t,1+1] is the only positive root of the following cubic equation:



with

For model [2] and polar coordinates, the algorithm at iteration !t, I + 1] can be
summarized as follows. Let 82[t,1], pft,ll and 0&dquo; ! be the values at iteration [t, I]. The
next iterates are obtained as:

v

. p!t,l+11 is the only positive root of the following quadratic equation:

with:

. 0i’!!U is the solution of the equation 7-!! = tan(!’!!/2)
where Zft,t+11 is the only positive root of the quartic equation:

with:



For model [2] and spherical coordinates, the algorithm at iteration [t, l + 1] can
be summarized as follows. Let 1/1lt,l], pi’o and al!,4 the values at iteration [t, l!. The
next iterates are obtained as:
9 1/1lt,l+1] is the only positive root of the following quadratic equation:

with:

with:

. a!t,!+1! is the solution of the equation ,!!t’t+1! = tan!(a!-’+!/2)
where xi’!!U is the only positive root of the cubic equation:

with:



The convergence of the EM-REML procedure is measured as the norm of the
vector of changes in variance-covariance components between iterations. In our
simulation and for the 3 parameterizations, convergence is assumed when the norm
is less than 10-6. In practice, the number of inner iterations is reduced to only
one in the method of ’cyclic ascent’. The algebraic solution of quadratic, cubic or
quartic equations, using the discriminant method, demonstrates that each time only
one root is possible in the parameter space. In the simulated example, the polar
parameterization converged the fastest.

Testing procedure

Let L(y; y) be the log-restricted likelihood, F be the complete parameter space
and ro a subset of it pertaining to the null hypothesis Ho. Ho is rejected at the
level a if the statistic ((y) = 2MaxrL(y; y) - 2MaxroL(y; y) exceeds (o where (0
corresponds to Pr[X2 r , > (o] = a (X2 is the chi-square distribution with r degrees
of freedom given by difference between the number of parameters estimated under
the full and the reduced models). Formulae to evaluate -2MaxL(y; y) can easily
be made explicit:

where B is the coefficient matrix of the mixed-model equations.

NUMERICAL EXAMPLE

This procedure is illustrated from a hypothetical data set corresponding to a
balanced, crossed design with 3 environments, 20 families per environment and
50 replicates per family (p = 3, s = 20 and n = 50). The 20 families were
randomized within each environment. Basic ANOVA statistics for the between-
family and within-family sums of squares and cross-products are given in table I.
Table II presents the estimation of genetic and residual parameters under the full
and reduced (hypothesis of a constant intra-class correlation between environments)
models respectively, and the likelihood ratio test of the reduced model against the
full model. The P values in table II indicate that there are no significant differences
between intra-class correlations.



* 

1,2,3 3 = the 3 environments. 8

Sums of cross-products between families: n !(y2 j. - !/t..)(yt’?. ! Yi’..)
8 n 

j=1
8 n

Sums of squares within families: L L(Yijk - Yijf 2

j=1 k=1

DISCUSSION AND CONCLUSION

In this paper, estimation and testing of homogeneity of intra-class correlations
among environments have been studied with heteroskedastic univariate linear
models. Another possible approach to account for ’genotype x environment’ effects
would be to consider the multiple-trait linear approach, defined by Falconer (1952).
As described hereafter, these 2 approaches may or may not be equivalent. In this
discussion, the conditions required to have equivalence between the multiple-trait
and the univariate linear models will be established.

In Falconer’s approach, expressions of the trait in different environments (i, i’)
are those of 2 genetically correlated traits, with a coefficient of correlation d(i, i’),
Pii’ = !s!!, / aBaB.,. The model is defined as follows:

where lJ2!k is the performance of the kth individual (k = 1, 2, ... , n) of the jth family
(j = 1,2,..., s) evaluated in the ith environment (i = 1, 2, ... , p); bij is the random
effect of the jth family in the ith environment, assumed normally distributed such
that Var(bij) = a1i, Cov(bij, bi!!) = aBiil for i 7! i’ and Cov(bi!, bi.!!) = 0 for j # j’
and any i and i’; ljk is a residual effect pertaining to the kth individual in the
subclass ij, assumed normally and independently distributed with mean zero and
variance o,2 wi

Under the hypothesis of homogeneity of intra-class correlations between environ-
ments, the 2 approaches (multiple-trait and univariate) do not generate the same



a Likelihood ratio test; b degrees of freedom = 2; * same EM-REML estimates under the
multiple trait approach.

number of parameters. Model [1] has [2p + 1] genetic and residual parameters and
model [4] has [(p(p + 1)/2) + 1] parameters.

For p = 3, whatever the hypotheses considered, even though these 2 models have
the same number of estimable parameters, the parameter spaces are not exactly
the same. Two conditions must be added to satisfy the equivalence between the
multiple-trait and the univariate linear models. The univariate linear model does
not allow the estimation of a negative genetic correlation between environments,
since it is a ratio of variances. Thus, we have the following condition:

Furthermore, the relationships between the parameters of these 2 models are:



Then we have:

and

By definition, or2 Si and a!8i are positive parameters, so the following relation must
be satisfied: 

&dquo; &dquo;

It is worth noticing that the condition in [6] means that the partial genetic
correlation between any pair ( j, k) of environments for environments i fixed is also
positive.

The problem of testing homogeneity of intra-class correlations between environ-
ments was finally solved under 3 different assumptions about the genetic correla-
tions between environments: equal to one (Visscher, 1992); constant and positive
(Robert et al, 1995); and just positive (this work).

For more than 3 traits, model [1] is no longer equivalent to the multiple trait
approach of Falconer. As a matter of fact, it generates fewer parameters than !4!,
2p vs p(p + 1)!2 for [1] and [4] respectively.

This parsimony might be an interesting feature, because the difference in
numbers of parameters increases with the number of traits considered (eg, 10 vs
15 parameters for 5 traits). Comparison of approaches on real genetic evaluation
problems such as sire evaluation of dairy cattle in several countries would be of
great interest.
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