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Summary - A criterion for measuring the degree of connectedness between factors arising
in linear models of genetic evaluation is derived on theoretical grounds. Under normality
and in the case of 2 fixed factors (0, 0), this criterion is defined as the Kullback-Leibler
distance between the joint distribution of the maximum likelihood (ML) estimators of
contrasts among 0 and 0 levels respectively and the product of their marginal distributions.
This measure is extended to random effects and mixed linear models. The procedure is
illustrated with an example of genetic evaluation based on an animal model with phantom
groups.

genetic evaluation / connectedness / Kullback-Leibler’s distance / mixed linear
model

Résumé - Un critère de mesure du degré de connexion en modèles linéaires

d’évaluation génétique. Cet article établit sur des bases théoriques un critère de mesure
du degré de connexion entre facteurs d’un modèle linéaire d’évaluation génétique. Sous
l’hypothèse de normale et dans le cas de 2 facteurs fcxés (8,§), ce critère est défini par
la distance de Kullback-Leibler entre, d’une part la densité conjointe des estimateurs du
maximum de vraisemblance (ML) de contrastes entre niveaux de B et 0 respectivement
et, d’autre part, le produit de leurs densités marginales. La mesure est généralisée au cas
de facteurs aléatoires et de modèles mixtes. Cette procédure est illustrée par un exemple
d’évaluation génétique par modèle animal comportant des effets de groupe fantôme.
évaluation génétique / connexion / distance de Kullback-Leibler / modèle linéaire
mixte



INTRODUCTION

The development of artificial insemination in livestock and the potential for using
sophisticated statistical BLUP methodology (Henderson, 1984, 1988) gave new
impetus for across-herd or station genetic evaluation and selection procedures, eg
reference sire systems in beef cattle (Foulley et al, 1983; Baker and Parratt, 1988) or
sheep (lVliraei Ashtiani and James, 1990) and animal model evaluation procedures
in swine (Bichard, 1987; Kennedy, 1987; Webb, 1987).

In this context, concern about genetic ties among herds or stations is becoming
increasingly important although, from a theoretical point of view, complete discon-
nectedness among random effects can never occur, as explained in detail by Foulley
et al (1990).

Petersen (1978) introduced a test for connectedness among sires based on the
property of the &dquo;sire x sire&dquo; information matrix after absorption of herd-year-season
equations. Fernando et al (1983) proposed an algorithm to search for connected
groups in a herd-year-season by sire layout which was based on the physical
approach of connection developed by Weeks and Williams (19G4). This view was also
taken up by Tosh and Wilton (1990) to define an index of degree of connectedness
for a factor in an N-way cross classification.

Foulley et al (1984, 1990) reviewed the definition and problems relevant to this
concept. They offered a method for determining the level of connectedness among
2 levels of a factor by relating the sampling variance of the corresponding contrast
under the full model to its value under a model reduced by the factors responsible
for unbalancedness.

The purpose of this paper is 2-fold: i) to extend this procedure defined for a
specific contrast to a global measure of connectedness among levels of a factor;
ii) to set up a theoretical framework to justify such a measure on mathematically
rigorous grounds.

METHODOLOGY

Our starting point is the following basic property: if observations in each level of
some factor (ie B) are equally distributed across levels of another factor (ie 0),
BLUE estimators of the contrasts Bi -Bi&dquo; <! &mdash;<!’ are orthogonal under an additive
fixed linear model with independent and homoscedastic errors.

This property is lost under an unbalanced distribution up to an ultimate
stage consisting of what is called disconnectedness or confounding between the
2 factors. This suggests the idea of measuring the degree of connectedness by some
distance between the current status of the layout and the first &dquo;orthonormal&dquo; one
following the terminology of Calinski (1977) and Gupta (1987). The Kullback-
Leibler distance I12(x) = J pl(x) In [PI (X)/P2 (x)]dx between 2 probability densities
Pi(!);P2(-!) turns out to be a natural candidate for measuring such a distance
(Kullback, 1968, 1983).

The model assumed is a linear model with additive fixed effects and NIID

(normally, identically and independently distributed) residuals e ! N(O, (]’2IN)



where y is an N x 1 data vector, 9, ! and A are vectors of fixed effects and Xo, Xj
and X are the corresponding incidence matrices.

Without loss of generality, we will assume a full rank parameterization in vectors
0 and < pertaining to factors 0 and 0 and resulting in contrasts such as Bi - 01 and

! &mdash; !1 so that:

where me and nio are the numbers of levels for the factors 9 and § respectively.
The vector X in [1] designates remaining effects of the model. In a 2-way cross-

classified design (eg mean ti, &dquo;treatment&dquo; and &dquo;block&dquo;), one has A = c1N with
c = p + 91 + 1>1 but this parameterization turns out to be more general and may
include one or several extra factors.

Degree of connectedness is assessed through the Kullback-Leibler distance
between the joint density f (9, !) of the 1!IL (maximum likelihood) estimators â
and ! of 0 and < defined in [2a] and [2b] respectively, and the product /(8)/(!)
of their marginal densities which would prevail if the design were orthonormal in B
and 0. Then,

I’ I’

where dx stands for the symbolic notation I1¡ dxi (Johnsson and Kotz, 1972).
The joint and the marginal distributions arising in [3] are as follows:

where C is the variance-covariance matrix of the ML estimators of 0 and < under
model [1] and such that:

, - - ,

This matrix and its block components can be obtained from the information
matrix I in 0 and < after absorption of the X equations.

A typical expression for Ioj. in [7] is loo.,B = X#MxXj where M = I,V -
Xa(XaXa)-X! is the usual orthogonal projector.

Relationships between elements in [6] and [7] are as follows: 
’



By putting formulae [8], [9a) and [9b] into the expressions in [5a] and [5b], usingthose in [3] and letting a = (6 <’1’, one gets

where (a - ex)’Q(ex - a) is a quadratic form in (a - a), the matrix Q of which being:

Now E(oe) = a since the 1!!IL estimator of a is unbiased. Moreover, tr (QC) = 0
since, from [8] and [9a] and [9b]:

and ditto for the other term in !.
Then, D reduces to:

Alternative expressions to [10] can be derived using the conditional distribution
of the 1!IL estimator of one vector (6 or !) given the value of the other due to the
following equality:

Similarly, by substituting to 0:



and, finally from the last term in (11!, one has:

Four remarks are worth mentioning at this stage:
1) As shown by formulae [10] !13!, [14] and !15!, one may talk equivalently about

connectedness between 0 and 0 as well as connectedness of (or among 9 levels)
due to the incidence of 0 (or connectedness of 0 due to the incidence of 0) in a
model including 0, 0 and A using the terminology of Foulley et al (1984, 1990).
This terminology is also in agreement with that taken up by statisticians (Shah
and Yadolah, 1977).

2) It is interesting to notice that the variance Coo.,5 of the conditional distribution
of 0 given $ is also the variance of the marginal distribution of 6 under the reduced
model (0, A). This leads to view the ratio of determinants in [13] in the same way
as Foulley et al (1990) ie using their notation:

where CR and CF are C matrices pertaining to 4 under the full (F) model in
[1] and the reduced model (R) without 0 respectively. Moreover, the -y coefficient
defined as:

generalizes the -yii, coefficient of connectedness introduced by Foulley et al (1990)
for the contrast 9j - 8i, ; it varies similarly from q = 0 (or D = +oo) in the case of
complete disconnection to 7 = 1 (or D = 0) in the case of perfect connection (ie
ortlzogonality).

3) Let us consider the characteristic equation:

The roots ki of [18] are the eigenvalues of CBB ’Coo.0 or CF1CR so that:

where kg is the geometric mean of the kis and ro = dim (Coo).
Hence In q = rokg which is the justification to standardize D and y to:



so as to take into account the numbers of elements in 0 to be estimated when

comparing degree of connectedness of factors differing in number of levels. This
standardization procedure is analogous to that proposed by S61kner and James
(1990) for comparing statistical efficiency of crossbreeding experiments involving
different numbers of parameters. In that respect q§ can be interpreted as a kind
of average measure of connectedness for (0i,!) among all pairs of levels of the
factor 9 due to the incidence of the nuisance factor 0 for a fixed effect model

(see the Appendix). Since y is equal to both JC-’Coo.01 and IC;JCq,q,.oj, one can
standardize with respect to ro or as well as to rb depending on the factor which we
are interested in.

4) An alternative form to [18] is:

the roots of which p2 = 1 - ki turn out to be the squared canonical sam-

pling correlations between â and !. Since the (non zero) roots of [21] are also

the (non zero) roots of ICøoC¡¡iCoø - p2Cøø/ = 0, they satisfy the equation

!C!.6 &mdash; (1 - p2)C!!I = 0. Thus q can be expressed as:

with pi = 0 (ie ki = 1 - p.2 = 1) for i = re + 1, re + 2, ... , ro if ro < r or for

i = r4> + 1, rØ + 2,..., re if r4> < reo
5) The presentation was restricted to 2 factors and 0. It can be extended to

more than 2 classifications. For instance, with 3 factors _B, ø, 1Ji, one can consider
the Kullback-Leibler distance between f (4,4, O) and f(0) f«, lY ). The resulting
D coefficient can be expressed as D = 2 ln (IIee,’>’1 / IIee’4>w,>,1) and interpreted as
the degree of connectedness of e due to fittiiig q5 and TI in the complete model
(a, <i !,À).

6) This approach developed for models with fixed effects can be extended to
mixed models as well. A first obvious extension consists of taking k in [1] (or part
of it) as a vector of random effects. The only change to implement in computing the
matrix in [7] is to carry out an absorption of A equations which takes into account
the appropriate structure of this vector. Actually this can be easily done using the
mixed model equations of Henderson (1984).

In more general mixed models, one has to keep in mind that from a statistical
point of view, connectedness is an issue only for factors considered as fixed

(Foulley et al, 1990). In other words, in a model without group effects, BLUP
of sire transmitting abilities or individual genetic merits always have solutions
whatever the distribution of records across herd-year-seasons and other fixed effects.
Nevertheless, the phenomenon of non orthogonality between the estimation of a
contrast of fixed effects and the error of prediction in some level of a random



effect still exists and may be addressed in the same way as outlined previously.
For instance to measure degree of connectedness between one random factor
u = {ui}; i = 1, 2, ... , mu (eg sire) and one fixed factor < (eg herd), it suffices

to consider in [3] its error of prediction from BLUP ie replace 4 in [2a] by
A = {!i = ui - uil. All the above formulae apply since the derivation of [10]
or [16] requires tr (QC) = 0 (see !9cJ) which results from general properties of the
Z and C matrices ((8J, [9a] and !9bJ) that do not refer to any particular structure
(fixed or random) of the vectors of parameters. Again, the only computational
adjustment to make is to view the corresponding I matrices as coefficient matrices
of Henderson’s mixed model equations (Henderson, 1984) after absorption of the
equations in h. In fact, this extension fully agrees with the role played by ICI in
the the theory of Bayes D-optimality (see eg DasGupta and Studden, 1991).

NUMERICAL EXAMPLE

A small hypothetical data set is employed to illustrate the procedure.

The layout (table I) consists of a pedigree of 8 individuals (A to H) with
performance records on 7 of them (B to H) varying according to sex (si; i = 1, 2),
year (aj; j = 1, 2, 3) and herd (h!; k = 1, 2). Unknown base parents (a to h)
were assigned to 3 levels of a group factor (9¡; L = 1, 2, 3). Data of this layout are
analyzed according to an individual (or &dquo;animal&dquo;) genetic model (Quaas and Pollak,
1980) accomodated to the so-called accumulated grouping procedure of Thompson
(1979), Quaas and Pollak (1982), Westell (1984) and Robinson (1986) (see Quaas,
1988 for a synthetic approach to this procedure). Using classical notations, this
model can be written as:

or, using distributions



where y is the data vector, i3 is the vector of fixed effects (sex, year, herd), u is the
random vector of breeding values, and X and Z are the corresponding incidence
matrices. The vector u of breeding values has expectation Qg and variance AO’2 a
where Q defined as in Quaas (1988) assigns proportions of genes from the 3 levels
of group (vector g) to the 8 identified individuals, A is the so-called numerator
relationship matrix among those individuals and a£ is the additive genetic variance.
Using Quaas’ notations, u can be alternatively written as:

with u* ! N(0, AQd) being the random vector of the within-group breeding values.
The (full rank) parameterization chosen here is:

The grouping strategy of base animals is an issue of great concern for animal
breeders due to the possible confounding or poor connectedness with other fixed
effects in the model (Quaas, 1988). Therefore, it is of interest to look at the degree
of connectedness between this group factor and other fixed effects, or equivalently
to degree of connectedness among group levels due to the incidence of other fixed
effects. In this example, 3 fixed factors (in addition to group) were considered which
are sex (S), year (A) and herd (H) and their incidence on connectedness of groups
can be assessed separately (S, A, H) or jointly (S + A, A + H, H + S, S + A + H).
From notations in (1), degree of connectedness of G due to A is based on:

The corresponding information matrix is obtained from the coefficient matrix
derived by Quaas (1988) for a mixed model having the structure described in !23aJ,
[23b] and (23c). Letting the vector of unknowns be (P’, g’, u’)’, this coefficient matrix
is given by:



In this example, the matrices involved in [26] are:

Elements in the first column of Q within brackets are deleted in the computations
due to the parameterization chosen in [24a] and [24b}. A-’ is half stored with non
zero elements being:

A* may also be calculated directly from Quaas’ rule (Quaas, 1988).
Connectedness between groups due to the incidence of the other fixed effects

was assessed under the full model using Quaas’ system in [26], and also for an
u* deleted model (y = Xp + ZQg + e), then using the ordinary least squares
equations. Numerical results are given in table II. In this example, the main sources
of disconnectedness are by decreasing order: herd, year and sex, the first factor being
by far the most important one since the -y* values associated with herd are 0.312,
0.247, 0.272 and 0.239 when this factor is considered alone, and with year, sex and
year plus sex respectively. Actually, this result is not surprising on account of the
grouping procedure based on parents in groups 2 and 3 coming out of different
herds. One may also notice that D values for combinations of factors exceed the
sum of D values for single factors. For instance, D is equal to 1.433 for S + A + H
vs ED = 1.316 for each factor taken separately. Results for the purely fixed model
(u* deleted) are in close agreement with those of the full model. This procedure of
ignoring u* effects for investigating linkage among groups was first advocated by
Smith et al (1988) due to its relative ease of computation in large field data sets.

The extension of the theory to the measure of degree of connectedness of random
factors is illustrated in this example by calculations of D and &dquo;’(* for breeding
values (table II). Sources of unbalancedness rank as previously, but the average
level of connectedness (-y* = 0.574) for breeding values in higher than for groups
(y* = 0.239) due to prior information (Foulley et al, 1990).

The theory also applies to specific contrasts among effects as originally proposed
by Foulley et al (1984, 1990). The degree of connectedness for pair comparisons
among breeding values then reduces, simply to the ratio of prediction error variance
of the pair comparison under a reduced model (R) with some effects deleted (in
table III, all fixed effects except mean and group) and under the full model (F), ie:



where 6ii, = ui - uj, .
Table III gives such results for specific pair comparisons among breeding values

either defined exactly (I):

or approximated (II) via their group component:

Figures shown reflect a great heterogeneity in the pattern of degree of connected-
ness. This diversity can usually be well explained by looking at the levels of factors



which differ or are shared by individuals compared. For instance, B and F are
closely connected (y* = 0.840 and 0.808 in I and II respectively) because they are
in the same herd and share close proportions of genes from the 3 groups of base
parents (0.5, 0 and 0.5 from groups 1, 2 and 3 respectively in B vs 0.375, 0.125
and 0.5 in F). On the contrary, D and G who are coming fiom different herds and
for whom, 3/4 of their genes are originating from different groups (groups 2 and 3
respectively) are poorly connected (-y* = 0.047 and 0.064 in I and II respectively).
Moreover, !y* values computed according to both procedures (exact or approximate
definition) are in good agreement in this example although it is difficult to draw
general conclusions from such a limited example.

DISCUSSION AND CONCLUSION

This paper provides a theoretical framework to the definition of an objective
criterion for measuring the degree of connectedness between factors involved in
Gaussian linear models of genetic evaluation. The procedure proposed herein is
based upon tlie assessment of non-orthogonality between estimators of contrasts
(or errors of prediction for random effects) via the Kullback-Leibler distance.
This measure offers great flexibility since it can be employed for a particular
comparison among levels of some factor or for a global evaluation of their degree
of connectedness. Applications of these criteria to degree of connectedness among
sires in a reference sire system based on planned artificial inseminations with link
bulls have already been made in France (Foulley et al, 1990; Hanocq et al, 1992;
Laloe et al, 1992).

The criterion derived is invariant to one-to-one linear transformations on the
vector of parameters 6 or !. Letting 0* = S6 with S being a full rank transformation
matrix, the characteristic equation in [18] becomes [SC!.! &mdash; kSCooS’1 = 0 which
reduces to the original equation by factorizing ISI ! 0. This property ensures
that D does not depend on the contrasts chosen among the 9j ’s provided the
parameterization in 9 (for fixed effects) consists of the maximum number of linearly
independent estimable functions.

Other criteria may be envisioned. Foulley et al (1990) suggested using as a
measure of disconnectedness the criterion:

where CR and CF are the same as in [16]. This criterion appears also in statis-
tical inference on variance-covariance matrices as the so-called Stein loss function
(Anderson, 19b4; Loh, 1991). Here, it can be interpreted as the Kullback-Leibler
distance between the marginal density f (9) of 8, and its conditional density, f (8!!),
given the value of the parameter !.

The feasibility of our procedure is determined by the ability to compute the
logarithm of the determinant of a coefficient matrix after possible absorption of
some factors as required by other statistical procedures based on the likelihood
function. In the current context of genetic evaluation with the animal model, an
application of this procedure to phantom groups might be feasible using, at least,
the model ignoring u* as a first approximation.



In that respect, it has also been suggested (Kennedy and Trus, 1991) to look at
the elements of the coefficient matrix X’ZQ whose relative values in row k provides
the expected proportions of genes out of the different levels of groups contributing
to the corresponding level of the kth fixed effect. In our example, these values are
as follows: 

- - --- - --- - ---

These figures show a more unbalanced distribution across herd and/or year than
across sex levels. Notice that this matrix gives the distribution of data according
to groups for each factor separately. No account is taken of the joint distribution
of data between those factors. In this model, this means that the factors sex and
group are not perfectly connected due to slighty unbalanced proportions observed.
As a matter of fact, 92 - 91 is correlated to §2 - ¡it and 93 - !l in the &dquo;sex + group&dquo;
model whereas they are uncorrelated in the full model (see table II).

The -y* criterion applied to breeding values measures how the C. matrix of
variances of prediction errors is reshaped due to the incidence of an unbalanced
distribution of data across the nuisance factors. This change in C implies a
related change in the variance covariance matrix of estimated breeding values
which influences the selection differential. Accuracy of selection is also expected
to be altered. In this respect, insufficient connectedness can be compared to some
extent to some non-optimum selection procedure which ignores, or does not weight
properly, some sources of information, eg, within family selection vs index selection.
More research is needed in this field to quantify the amount of genetic progress
which may be lost due to reduction in the degree of connectedness.

For fixed effects, connectedness is directly related to the unbiasedness require-
ment. This is especially true for group effects in the animal model for which much
concern has been raised (Smith et al, 1988; Quaas, 1988; Canon et al, 1992). The
criterion developed here may help to check whether differences between groups in
a particular model can be reasonably captured by the data structure. If not, one
will have to reconsider the grouping procedure, or one may be tempted to put prior
information on group effects ie to treat them as random as suggested by Foulley
et al (1990). In any case, one will have to compare different models and there are
now specific statistical procedures available to do that in animal breeding (Wada
and Kashiwagi, 1990).

APPENDIX

Another look at the standardization procedure

The starting point consists of decomposing the joint density f (9, !) according to
the elements in 6. Let us consider for the sake of simplicity the case of 2 elements



Now f(Ô2IÔ1, j) can be rewritten as:

Putting [A.1b] into [A.1b] and dividing both sides by f(@1 , W2)f (!) gives

or, in shorter notations,

where R(x, ylz) = f (x, ylz)/ f(x/z)f(ylz). 
- - -

Using [A.2], the Kullback-Leibler distance D(Ol, Ô2, +) defined in [3] can be

expressed as the sum of 2 terms:

After integrating out ê1 and !, the first term [A.3a] can be written as

which reduces to D(Ô1,!) since, according to (10!, this term is a constant.
The second term [A.3b] can be viewed as:

ie the expectation with respect to the distribution of 91 of the conditional expecta-
tion of lnR(!2,<)’!!i) taken with respect to the distribution of Ô2,! given Ô1. This
conditional expectation is by definition a D-measure noted D(B2, I) 81 ) ; because this
is again a constant (see (10!):

which does not depend upon 0i, [A.3b] reduces to that term.



Hence, after regrouping the expressions for [A.3a] and (A.3b!, one has:

Similarly, -y(6, !) = exp [-2D(Ø, +)] can be expressed as the following product:

and equivalently after permutation of <9i and W2, as:

Thus, letting F(8j , $) such that:

one has:

and -y* (0, ell) = (q(0, ell) 1/2 can be interpreted as, either the geometric mean of
the F(8.j , <) coefficients in [A.6], or as the geometric mean of all possible !y(6i, 41!j)
coefficients (including the unconditional ones). For three elements Bi’ 8j , 8k, in 0,
one would have: 

’

and similarly for 4 elements 0,, 8j , 8!;, B!

These formulae can be easily extended to any number of elements ro in 9_. For-
mula !A.7! applies and the coefficient of the power pertaining to the !(0,, <)!,...)
term given k variables !j in (F(8; , $)1 ’ is then 1/Cre_1 ie the inverse of the coef-
ficient for the ktli power in the binomial expansion of order re - 1.
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