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Interest in quantitative genetics
of Dutt’s and Deak’s methods for numerical computation

of multivariate normal probability integrals

V. DUCROCQ J.J. COLLEAU

LN.R.A., Station de Génétique quantitative et appliquée
Centre National de Recherches Zootechniques, F 78350 Jouy-en-Josas

Summary

Numerical computation of multivariate normal probability integrals is often required in

quantitative genetic studies. In particular, this is the case for the evaluation of the genetic
superiorities after independent culling levels selection on several correlated traits, for certain
methods used to analyse discrete traits and for some studies on selection involving a limited
number of candidates.

Dutt’s and Deak’s methods can satisfy most of the geneticist’s needs. They are presented in
this paper and their precision is analysed in detail. It appears that Dutt’s method is remarkably
precise for dimensions 1 to 5, except when truncation points or correlation coefficients between
traits are very high in absolute value. Deak’s method, less precise, is better suited for higher
dimensions (6 to 20) and more generally for all the situations where Dutt’s method is no longer
adequate.

Key words : Multiple integral, multivaiiate normal distribution, independent culling level selec-
tion, multivariate probability integrals.

Résumé

Intérêt en génétique quantitative des méthodes de Dutt et de Deak
pour le calcul numérique des intégrales de la loi multinormale

Le calcul numérique d’intégrales de lois multinormales est souvent rendu nécessaire dans les
études de génétique quantitative : c’est en particulier le cas pour l’évaluation des effets génétiques
d’une sélection à niveaux indépendants sur plusieurs caractères corrélés, pour certaines méthodes
d’analyse de caractères discontinus ou pour certaines études de sélection portant sur des effectifs
limités.

Les méthodes de Dutt et de Deak peuvent satisfaire une grande partie des besoins des

généticiens. Celles-ci sont présentées dans cet article et leur précision est analysée de façon
détaillée. Il apparaît que la méthode de Dutt est remarquablement précise pour les dimensions 1 à
5, sauf lorsque les seuils de troncature ou les corrélations entre variables sont très élevés en valeur
absolue. La méthode de Deak, moins précise, convient mieux pour les dimensions supérieures (de
6 à 20) et d’une manière générale pour toutes les situations où la méthode de Dutt est inadéquate.

Mots clés : Intégrale multiple, distribution multinormale, sélection à niveaux indépendants.



I. Introduction

Usually the continuous traits on which selection is performed are supposed to

follow, at least in the base population, a normal distribution. Indeed, the number of
genes involved is assumed to be high and the effect of the genetic variations at a given
locus is considered to be small (polygenic model). Furthermore, the joint action of
environmental effects which are not easily recorded also follows a normal distribution
since it supposedly results from many distinct causes, each one with small individual
effect.

Discrete traits (fertility traits, calving ease, subjective notes, etc.) cannot be

directly described by a normal distribution. However, one possible way to numerically
process them is to assume, as did DEMPSTER & LERNER (1950), that they are the visible
discontinuous expression of an underlying unobservable continuous variable.

Within this general framework, knowledge of the value of normal probability
integrals if often required and consequently the scope of corresponding numerical
methods is large. Three examples can be mentioned.

1 - Selection procedures deal generally with several traits and selection is often

performed not on an overall index combining all traits but through successive stages on
one (or more) trait (s) (mainly because information is obtained sequentially and
because the cost of selection programs has to be minimized or even because the

required economic weights are difficult to define properly).
This situation occurs, for example, in dairy cattle breeding schemes (DUCROCQ,

1984). After selection on n traits, the evaluation of the average genetic superiority of
the selected animals for a given trait (not necessarily one of those on which selection
was performed) requires the computation of n integrals of dimension n &mdash; 1 (JAIN &

AMBLE, 1962). It should also be observed that, in practice, the selection procedures are
not realized through prespecified thresholds for each trait but through fixed selected
proportions of animals at each stage. The derivation of the truncation thresholds given
the selected proportions can be done using Newton-Raphson type algorithms involving
derivatives which are, once again, (multiple) integrals.

2 - The processing of discrete variables using continuous underlying variables is

frequently performed assuming that the corresponding distributions are of logistic or
multivariate logistic type (JOIINSON & KOTZ, 1972 ; BISHOP et al. , 1978). This is due to
the similarities they exhibit with the normal or multivariate normal distributions and to
the ease of computing their cumulative distributions given the thresholds (logits) or vice
versa. The return to strict normality may be desirable in a polygenic context (GIANOLA
& FOULLEY, 1983 ; FOULLEY & GIANOLA, 1984) leading to the computation of normal or
multivariate normal probability integrals. In practice, with n discrete variables, each one

n

with ri subclasses (i = 1 to n), the optimum 2 (ri - 1) thresholds have to be derived
i = 1

(for example using the maximum likelihood method) from the computation of
n &dquo; B

I III (r; - 1)l different probabilities (which are integrals of dimension n) and their deriva-B.=i 1 /tives. /.
3 - Selection often involves a limited number of candidates, especially in males

(for example in dairy cattle). This, along with the fact that the selected males do not
have the same probability to contribute to the procreation of the next generation



(ROBERTSON, 1961) makes it useful to have a knowledge of the corresponding increase
in inbreeding. This last phenomenon is generally not taken into account. BURROWS

(1984) shows that this problem can be approached using simple and double integrals of
normal distributions, provided normality is restored at each generation. In particular,
the double integral describes the probability that 2 animals randomly drawn in the same
family simultaneously meet the selection criterion.

Despite the importance of the situations where computations of multivariate normal
integrals are required in quantitative genetics, it is surprising to notice that geneticists
either consider that the problems cannot be correctly solved beyond the dimensions 2
or 3 (SAXTON, 1982 ; SMITH & QuAAS, 1982) or use approximations such as, for

example, the assumption of preservation of normality for all the variables after

truncation selection on several of them (CUNNINGHAM, 1975 ; NIEBEL & FEWSON, 1976 ;
COTTERILL & JAMES, 1981 ; MUKAI et al., 1985) or even limit the scope of their studies
to traits assumed to be uncorrelated.

The only situations where the integrals would be relatively easier to compute seem
to be the orthant case, where all the truncation points are zero (KENDALL, 1941 ;
PLACKETT, 1954 ; GUPTA, 1963 ; JOHNSON & KOTZ, 1972) or cases where the correlation
matrix has a special structure (DUNNETT & SOBEL, 1955 ; IHM, 1959 ; CURNOW, 1962 ;
GUPTA, 1963 ; BECHHOFER & TAMHANE, 1974 ; Six, 1981 ; EL Lozy, 1982). It is obvious

that the general needs of geneticists are often quite far from these particular cases.

A review of the literature, which is by no means exhaustive, reveals the availability
of 4 general methods that take into account the normality of the distribution :
- KENDALL (1941) [Computation of sums of convergent tetrachoric series].
- MILTON (1972) [Dimension reduction and repeated SIMPSON quadratures].
- DUTr (1973, 1975) and DUTT & Soms (1976) [Computation of a finite sum of

Fourier transforms, each one evaluated by GAuss-HERMITE quadrature].
- DEAK (1976, 1980, 1986) [Computation by Monte-Carlo simulation using special

implementations to reduce the sampling variance].

The purpose of this paper is to emphasize the potential of these last 2 methods

because they do not seem to be very well known (seldom quoted, at least), even Dutt’s
method which is more than 10 years old... A further objective is to analyze the

precision of these methods more systematically than was done by their authors, our
purpose being their use in quantitative genetics through powerful and reliable algo-
rithms.

II. Methods

We want to evaluate :

where f. (x&dquo; ... x.) is the joint density ot the n-variate normal distribution. s&dquo; ... s! are

the truncation points of the n standardized variables. r&dquo; ... rc are the correlations

among the c = n (n - 1) / 2 pairs of variables.



A. Kendall’s method

The probability L to be computed is the sum of a convergent series involving
tetrachoric functions. We have :

where i is a variable index (i = 1, ... n)

j is a pair index (j = 1, ... c with c = n (n - 1)/2)

kj is an expansion index (positive integer from 0 to + 00) varying independently for
each pair index

a, = 2 kj for all pairs which do not include index i

Tn refers to the tetrachoric function of x of order a :

and Ha (x) is the Hermite polynomial of order a, defined by :

Without including the computation of factorials, this method roughly requires the
computation of n’kM/4 elementary terms, where k, is the maximum order used in

practice in the expansion (the value of k, to be used in obtaining a given precision
increases with the absolute value of the correlation coefficients). This method was used
for example by BURROWS (1984) for 2 dimensions. In fact, this method is unfeasible for
n > 2, due to very tedious computations and slow or even non-existent convergence
(HARRIS & SoMS, 1980) for intermediate or high values of the correlations ril

B. Milton’s method

A minimum of theory is required in this method since it consists in empirically
computing the multiple integral starting from its innermost one. At this stage, the
unidimensional normal cumulative distribution is involved and can be computed using
one of the numerous polynomial approximations available (PATEL & READ, 1982). The
algorithm actually used is described in MILTON & HOTCHKISS (1969). For the following
integrals, Simpson’s general method is used : the function to be integrated is evaluated
at regular intervals and the computed values are summed using very simple weighting
factors (ATKINSON, 1978 ; BAKHVALOV, 1976 ; MINEUR, 1966). The accuracy of Simpson’s
method obviously depends on the interval length. Similarly, to achieve a given preci-
sion, the interval length to use can be derived. Shorter intervals are required as lower
orders of integration are considered, in order to maintain the overall error at a given
value. This leads to large computation times when an absolute error less than 10-4 is
desired and when n is more than 3 (MiLTOrr, 1972). DUTT (1973), when comparing the
computation times of his method to Milton’s, found his to be much faster at a given
precision.



C. Dutt’s method

This method involves many mathematical concepts. In this section, only the guiding
principles are presented, with the main analytical details reported in Appendix 1.

The joint density function of the n normal variables can be expressed using its
characteristic function (it is its Fourier transform), which allows the decomposition of
the integral into a linear combination of other integrals of equal or lesser dimension
than n (GURLAND, 1948). These integrals have integration limits (&mdash; 00, + 00) indepen-
dent of the initial truncation points and therefore can be evaluated using precise
numerical integration methods.

The integration range is then shortened to (0, + 00) using, instead of the function
to be integrated, its central difference about 0. This change permits a reduction, for a
given precision, in the number of points at which the function has to be evaluated for
the quadrature.

The numerical computation itself is carried out according to Gauss’ general method
(ATxcrrsorr, 1978 ; BAKHVALOV, 1976 ; MnrrEUx, 1966) : the function to be integrated is
evaluated at well defined points (roots of orthogonal polynomials) and the resulting
values are summed using weights which are themselves the result of computable
integrals... This procedure is less simple than Simpson’s but is much more powerful :
the function to be integrated is approximated by a polynomial of degree 2 (over a given
interval) in Simpson’s case, and of degree 2n’ &mdash; 1 in Gauss’ case, where n’ is the
number of roots considered. For these orthogonal polynomials, the quadrature gives an
exact result. Here, the functions to be integrated are of the type {exp (&mdash; x2/2) . f (x)}
and the more convenient polynomial to use for the quadrature is the above mentioned
Hermite polynomial. Moreover, since the integration range is (0, + 00) and the
functions f (x) are not defined at x = 0, only the n’ positive roots and corresponding
weights of the Hermite polynomial of degree 2n’ are considered.

D. Deak’s method (details in appendix 2)

Using the Cholesky decomposition of the correlation matrix, it is possible to

generate sets of n correlated standardized normal variables from n independent normal
variables. The position of these variables with respect to the n truncation points defines
an indicator variable for each realization. If we have N trials with N* successes, the

probability considered is estimated by N*/N.

Deak’s algorithm results from developing this method in such a way as to reduce
its sampling variance which is very large otherwise.

o The n independent normal variables are initially normalized, each normalized
vector corresponding to a whole family of colinear vectors. Only some of these vectors,
however, fulfill the conditions set up by the truncation points. DEAK demonstrated that

knowledge of the normalized vector alone and of an algorithm to compute the
cumulative distribution function ofax2 variable is sufficient to determine a priori the
probability of realization over all the corresponding original vectors. This recognition
permits a considerable increase in precision for a given number of trials.

o In addition, the original vectors are generated in groups of n and transformed to
an orthonormalized base of dimension n from which 2n (n &mdash; 1) statistically dependent



normalized vectors are drawn. On the whole, it is as if 2 (n - 1) families of colinear
vectors were associated to each original vector actually drawn, without the need to

generate the former.

III. Results and discussion

A. Dutt’s method

1. Precision

a) General problems

The error resulting from applying the Gauss quadrature has a theoretically compu-
table upper bound. In the unidimensional case and with n’ positive roots of the

Hermite polynomial of degree 2n’, the theoretical expressions involve the maximum of
the derivative of order 2n’ of the function to be integrated f (x). This leads to very
tedious computations that could, to the limit, be envisioned. However, in the higher
dimensional cases, the computation of the derivative is very complex, even for small n’,
and the determination of its maximum is unfeasible.

Dunr (1973) emphasized the precision of his method by comparing the numerical
results obtained for the orthant case in 4 dimensions to exact results computable for
this particular case. He noted that the precision increased with the number of roots
used and with the value of the correlation matrix determinant, the precision being
already in the range of 10-1 for a determinant equal to zero. Hence the situation
seemed very favorable. However, DEAK (1980), while pointing out that Dutt’s method
is the most precise one presently available for numerical computation of lower dimen-
sional (! 5) integrals, stressed its sensitivity to the value of the determinant. Further-
more, many personal observations have shown that the precision problem seems to
have been underestimated by DUTT and that a careless use of this method may lead to

obvious errors in certain cases. This justifies a more systematic study of this precision
in order to better define the conditions of its reliable use. In particular, it seems

essential to look at situations where truncation points are no longer zero and where
correlations between traits are not necessarily positive. However, reference results as

were available for the orthant case do not exist. Therefore, we will consider only more
specific integrals for which quasi exact results can be derived (what is meant by « quasi
exact » will be clarified later).

Finally, it must be noted that a less rigorous semi-empirical method to check

precision could have been used, as proposed by RALSTON & WILF (1967), BAKHVALOV
(1976), COHEN et al. (1977). It consists of comparing the results from computations of
integrals using different values of n’. Theoretically, an increase in n’ should lead to a
better precision of the evaluation (approximation by a polynomial of higher degree) as
long as cumulated rounding errors do not counterbalance it. This method has not been
adopted because the convergence rate for increasing values of n’ is not really known
and computations themselves become too tedious for combinations of large values of n
and n’.

b) Unidimensional case

The reference results are those tabulated by WHITE (1970) for which the value of
the truncation point corresponding to a given probability is specified at 20 decimal





points. In table 1, the absolute errors when Dutt’s method is applied are presented for
10 different truncation points and for 7 values of the number of positive roots (n’) of
the Hermite polynomial (in this table, only the first two decimal points of the

corresponding truncation point are shown, but White’s 20 decimal points are actually
used for the computations).

The probabilities for a value of n’ from 2 to 10 were computed using the roots and
weighting factors supplied by AsRnMOmTZ & STEGUN (1972) for the Hermite polyno-
mials (taking into account, however, that the base function they used was exp (&mdash; x2)
and not exp (&mdash; x2/2)). For n’ = 12, roots and weights were derived using personal
algorithms which yield exactly the same results as ABRAMOWITZ & STEGUN for the
dimensions they tabulated.

A very clear interaction between truncation points and number of roots can be
seen as far as precision is concerned. Dutt’s method can be used very accurately in
terms of absolute and relative errors by taking 10 positive roots and up to a truncation
point of about ± 4.5. Our attempt to increase the precision over a wider range gave
unsatisfactory results since the improvement for high threshold values was balanced by
a slight decline elsewhere (the limit of precision using 8-byte floating point representa-
tion is probably reached). In fact, many specialized algorithms for the unidimensional
case are available (PATEL & READ, 1982). Among those, the polynomial approximation
referred to as 26.2.17 by AsxnMOmTZ & STEGUN (1972) and derived by HASTINGS
(1955) is often used because of its simplicity and precision. It is observed that its

precision is greater than Dutt’s for truncation points larger than 4.5 and therefore was
used in such cases.

c) Dimensions 2 to 6

a) Reference algorithm
In the particular case where all correlations are equal and positive, it can be shown

that the integration order is always reduced to 2 (DUNNETT & SOBEL, 1955 ; OWEN,
1962 ; GUPTA, 1963) :

where F is the cumulative distribution of the unidimensional normal distribution and r
is the correlation coefficient between each pair of variables.

Such computations present a more favourable situation than the general case, since
they introduce only once both the above mentioned algorithm for the unidimensional
case and the Gauss quadrature. This is what we called quasi exact results.

(3) Influence of the truncation points
Computation results for absolute precision are shown in table 2 for dimensions 2 to

6, truncation points of - 4 to + 4 and step length of 1. These truncation points are
identical for each variable. The correlation value between variables depends on n and is
equal to 1/(1 + vn) ; the determinant of the correlation matrix, a supposed factor of
variation in precision, thus becomes less sensitive to the value of n (OWEN, 1962).

As indicated by DUTT, the probability estimates for the orthant case, i.e. for all
truncation points equal to zero, are indeed very precise (error less than 10-5) for all the





dimensions considered, even with a low number of roots of the Hermite polynomial. In
fact, the absolute precision is almost maximum for this category of truncation points.
To either side of these central values, the precision decreases in a non-symmetrical
fashion. For very large positive truncation points (3 to 4), absolute precision is much

larger than for corresponding negative ones, whereas the contrary is true for relative

precision. The use of a large number of roots, when possible, extends the range of
reliable use of the algorithm. With 6 to 10 roots, the absolute precision can be
considered satisfactory (less than 10-5), for dimensions 2 to 4 and truncation points &mdash; 3
to + 3. However, for very low values of the probability, the relative error can become
as high as 10-’. For dimensions 5 and 6, the possible number of roots is lower (3 or 4)
due to computation complexity, and the range of reliable use is narrower (&mdash; 2 to + 2).

y) Influence of the correlation coefficients
We will only consider here correlation coefficients having on the average larger

absolute values than in the previous test. However, to permit computation of reference
results for more than 2 dimensions, we must restrict our study to particular situations.
For 4 dimensions, we will assume that the 4 variables are separated into 2 mutually
independent blocks of 2 variables.

Tables 3 and 4 respectively outline the results obtained for 2 and 4 dimensions
when absolute values of non-zero correlation coefficients are 0.5, 0.7 or 0.9. The

previous section’s conclusions for 2 dimensions are applicable here with the exception
of very large correlation coefficients (of about ± 0.9) for which a noticeable drop in
precision is seen. The results of table 4 confirm this fact : only one correlation
coefficient with a large absolute value is sufficient to considerably decrease precision.
The sign of this coefficient has only a small effect on the absolute precision but this is

obviously no longer the case when relative precision is considered since integrals
involving negatively correlated variables have a smaller value and are therefore more
poorly estimated in relative value.

It can be noted that the unfavorable effect of several large coefficients on absolute
precision is not cumulative. This suggests that it is not the value of the determinant
which limits precision but rather the largest absolute value of the correlation coefficient.
Indeed, for a same determinant the precision is generally greater in the equicorrelated
case (last row in table 4) than when some of the correlations are very high (first row of
table 4). In fact, in the general case, this limiting factor could be the smallest

eigenvalue of the correlation matrix, but it was not possible to prove it without
additional reference results.

2. Computation times

Dutt’s method involves the computation of « elementary » expressions which are
the product of an exponential and a trigonometric function. The number of these

expressions increases very quickly with n’, the number of positive roots of the Hermite
polynomial used, since it is equal to :





As an example, some recorded computation times are presented in table 5. These
times are only indicative since we used an advanced - and moreover interpreted -

language (APL) but with the possibility when the memory size allows it (here 2

Megabytes maximum) to partly compensate this handicap by using vectorial methods
when several independent integrals are to be evaluated at the same time. In addition,
we cannot pretend to have written optimal programs.



It should be observed that the computation times required for a reliable use of the
method (i.e. the number n’ of roots being at least 4 or 6) become large when n is

equal to 5. For n = 6 to 7, computation times are extremely large, even when a small
number of roots is used.

B. Deak’s method

1. General characteristics

The method described is unbiased and does not present any particular problem
with respect to the values of the truncation points. Moreover, it is insensitive to the
nature of the relationships between variables owing to usage of the Cholesky decompo-
sition. However, the method does not tolerate any error leading to negative eigenvalues
in the construction of the correlation matrix. This security does not exist with Dutt’s
method where negative values or values larger than 1 for probabilities may be obtained
in such cases.

It also becomes possible to deal with large values of n ; effectively DEAK computed
probabilities with n up to 50. According to the author, this is the main justification of
the method.

2. Numerical investigations

a) Unbiasedness
DEAK (1976) showed that the method he proposed is unbiased : he observed a

(slow) convergence of the computed probabilities toward the true value of the corres-
ponding integral, in cases for which this value could be computed a priori. The results
presented in table 6, for 4 dimensions and with 2 different correlation matrices - the
one used in table 2 and one of those used in table 3 - empirically support this
assertion (we limited ourselves to these examples because computations were quite
tedious).





b) Precision

The major difficulty is encountered in evaluating a priori the sampling variance, to
characterize the domain where this method can be applied, and to compare it with
Dutt’s method. The theoretical expression of this variance is not given by the author.

However, to get an approximation a posteriori of the precision of the computed
probability, it is always possible to use the observed variance of the N independent
evaluations which are averaged to obtain the final result (see appendix 2).

To identify the factors influencing o! (p), computations were limited to dimensions
n = 4 to 10, for which computation times are reasonable. To the 7 situations studied by
DEAK (1980), we added 90 new examples (20 for n = 4 or 5, 10 for n = 6 to 10). Each
situation corresponds to a random drawing of truncation points in the interval [&mdash; 4,
+ 4]. Positive definite correlation matrices were randomly generated using the method
of BENDEL & MICKEY (1978). For each integral, N = 1 000 independent evaluations
were performed to improve our estimate of the sampling variance.

By analogy with the binomial distribution, let v = [p (1 &mdash; p) / f (n)] be the form of
the sampling variance of an elementary evaluation of the integral, and assume the

approximation p (1 &mdash; p) = (1 - p) holds. By regression, we found that a polynomial
approximation of f (n) is given by n (n + 100). After doubling the value of v, an upper
bound of the « true » sampling variance was always obtained. Then, the sampling
variance when the N independent estimates are averaged is :

Notice that a-2 (p) is smaller for large n since the number of orthonormal vectors
which are used is much larger, as explained in appendix 2.

Assuming that p roughly follows a normal distribution and that the maximum

absolute error is 3 u (p), the upper bound for this absolute error e is :

This prediction is verified by the results presented in table 6 - which were not
used to derive this upper bound. In practice, if N = 100 is taken as suggested by Deak,
e < 10-1 is obtained for all probabilities p and sometimes e < 10-1, in particular when
p is close to 1.

A notable increase in precision cannot be achieved without increasing considerably
the number of trials, as shown in table 6. This indicates that Deak’s method, on the
average, is not very precise. However, it allows one to get an approximate answer to
problems which could not be solved using Dutt’s method (n > 5 or 6) with reasonable
computation times. It is also a useful complement to Dutt’s method when the correla-
tion matrix is very ill-conditioned (example : second situation of table 6).

c) Computation times

Box-Muller’s method (PATEL & READ, 1982) which is used to generate the varia-
bles, necessitates about 0.5 msec on the average for each variable. The uniform random



variable generator required by this method is the multiplicative congruential generator
integrated to the APL language. This generator is identical to the IBM RANDU

generator. As shown by FISHMAN & MOORE (1982), its properties of independence and
uniformity are not excellent. However, to limit computation times, we used it because
it was already coded in machine language. The algorithm for the computation of the
cumulative X2 distribution is the one referred to as 26.4.5 by ABRAMOWrrz & STEGUN

(1972), which is suitable for even dimensions and requires the computation of a finite
number of terms. The extension to even dimensions when considering an odd number
of variables is achieved by adding a dummy variable. Using this method, the computa-
tion is very quick (0.5 msec for n = 5 or 6 ; 0.7 msec for n = 9 or 10 ; 1.5 msec for
n = 19 or 20). Incidentally, the constitution of groups of orthonormalized vectors was
performed using the Gram-Schmidt method.

Under these conditions, the computation times are 9 sec for n = 5, 40 sec for
n = 10 and 5 mn for n = 20. If a maximal absolute error of about 10-2 to 10-3 is

acceptable, Deak’s method becomes more useful than Dutt’s as soon as n > 5.

C. Examples of application

1. Computation of probabilities involved in multistage selection schemes :

a) n ! 5
The method of choice is Dutt’s, except in extreme cases (very high correlations

and/or very high absolute values of truncation points). In case of mistrust, we propose
to perform the same computation using Deak’s method and to compare the differences
between the 2 results with the standard error of Deak’s estimate. If the difference is
too large, Deak’s result is prefered. A simple example will illustrate this rule.

Consider a population of cows with 5 recorded lactations (h2 = 0.25, r = 0.5,
genetic correlation between lactations = 1). We would like to determine which fraction
of these cows had all their successive average milk yields above a given threshold, after
3, 4 or 5 lactations. Successive average milk yields are very highly correlated variables :
the correlation between the average of the first i lactations and the average of the first

j lactations (i < j) is given by :

Where i = 1 and j = 2, rii is already equal to 0.867. With i = 4 and j = 5, we have
rij = 0.98. If the threshold is equal to 2 on the standard normal scale, the frequencies
we are looking for are equal to 9.0 x 10-B 7.6 x 10-1 and 6.7 x 10-1 at the end of the

third, fourth and fifth lactations. The difference between the 2 methods is very small.
When the truncation point is equal to 3, the corresponding frequencies computed using
Dutt’s method are 3.4 x 10-4 2.7 x 10-4 and 6.3 x 10-4 when this last value should be
smaller than the second one ! The first computation performed using Deak’s method
gave the following values : 3.5 x 10-4 , 2.7 x 10-4 and 2.5 x 10-4 (oo = 8.4 x 10-1).
This last result is significantly different from 6.3 x 10-4 and is also a more logical one.

b) n > 5

This is the main domain of application of Deak’s method. The availability of such
a method is useful, for example, in the study of the genetic structure of a population
subject to selection. As an example, the computation of the probability that 2 animals



selected through independent culling levels on n traits are progeny of the same sire
involves integrals of dimension 2n.

2. Optimum truncation points for independent culling level selection involving 3 traits

a) Solution using Dutt’s method :
Let us consider an independent culling level selection on 3 correlated traits XI, X,,

X3 where only the overall selected fraction a is a priori fixed and is the result of 3
successive selections on X, (a,), XI (ot2) and X, (a,). We want to derive the combina-
tion of selected fractions «j, a2, a3 given a = a, . a2 . a3, such that the expected value

3

of H = ! m; . X; for the selected animals is maximized. The m,’s are the economic
I = 1

weights of the 3 traits.

In other words, we want to compute the truncation points k&dquo; k,, k3 such that :

maximizing :

where :

f, is the density function of a trivariate normal distribution.

rij is the correlation coefficient between X; and Xj

z; is the ordinate of the normal density function at ki

f2., is the density function of a bivariate normal distribution with correlation

coefficient equal to the one between Xj and Xj. (j, j’ ! i) given N..

SMITH & QUAAS (1982) showed that this problem can be solved by equating to zero
the partial derivatives of :

with respect to k,, k,, k3 and ’1B (’1B is a Lagrange multiplier). After eliminating X,
this leads to a system of 3 equations in k,, k,, k3 which is solved iteratively using
Newton’s method. Normal probability integrals of dimension 1, 2 and 3 are involved at
each iteration. Table 7 presents the optimum k;’s and (xi’s for 3 traits such that



r,2 = rl3 = &mdash; 0.40, rz3 = 0.25 with m, = 1, M2 = 1.1 and m3 = 1.2. The stopping criteria
are (A; + A2+ A;)° < 10-4, where Ai is the i’&dquo; left hand side of the system of

equations, and L (kl, k2, k3) - IX < 2.10-5. The corresponding genetic gain for H is
compared to what would have been obtained with index selection of same intensity.

Classical results described by many authors considering independent culling level
selection on 2 correlated traits or several uncorrelated traits are also found here : direct
index selection is always more efficient than independent culling level selection but this
superiority decreases when the overall selection intensity increases (HAZEL & LusH,
1942 ; YOUNG, 1961 ; FINNEY, 1962).

Also, for small selection intensity or when weighting factors are very different, the
optimal selection may lead to no selection on one of the traits (YOUNG, 1961 ;
NAMKOONG, 1970 ; SMITH & QUAAS, 1952 ; TIBAU i FONT & OLLIVIER, 1984).

b) Solution using Deak’s method

Since this method is based on random number generation, the results obtained
cannot be reproduced, at least in a practical way. This characteristic and the relatively
low precision of Deak’s method complicate its use in complex iterative algorithms
where convergence is desired. This clearly appears when we try to solve the previous
problem using Deak’s method to compute the integrals of dimension 2 and 3 - though
this does not correspond to its « usual » domain of application.

For small values of the elementary probability integrals (p < 0.03), the random
fluctuations of the evaluation of these integrals are of the same order of magnitude as
their value p and the optimization problem cannot be solved. For large values of p,



Deak’s method gives results which slightly vary around the « true values (:t 0.01 for
the truncation points and ± 0.005 for the probabilities), usually after the same number
of iterations as Dutt’s method. In some intermediate cases (p between 0.03 and 0.05
and p > 0.8), convergence is sometimes not obtained and it is then necessary to restart
the computations. All these facts show that specific problems would arise when using
Deak’s method within iterative procedures for higher values of n, those corresponding
to its actual domain of application (however, it should be kept in mind that this

method allows one to consider other problems which would remain without any
solution otherwise).

IV. Conclusion

To summarize, an optimal use of Dutt’s and Deak’s methods can be recommended
according to the following general pattern :

Dutt’s algorithm can be used for the dimensions 2 to 4, except when one of the
truncation points is out of the interval (- 3, + 3) or when the smallest eigenvalue of
the correlation matrix is inferior to 0.20. For all these dimensions, the absolute error is
at most 10-2 when 4 roots are used and 10-’ when 6 roots are used. In fact, the

absolute error decreases very quickly when the truncation points become closer to the
origin. Indeed, the corresponding values are 10-5 and 10-6 in the interval (&mdash; 2, + 2).
Therefore, the method is remarkably precise on the average.

For 5 dimensions, the preservation of the same precision becomes difficult for large
values of the truncation points (2 to 3) since the number of roots which can be used
consistently with reasonable computation times is more limited (4 in our programs).
Thus it may be more advisable to consider the use of Deak’s method in such cases.

When Dutt’s method is no longer adequate (large truncation points, ill-conditioned
correlation matrices or dimension larger than 5), one can resort to Deak’s method. The
absolute precision is then about 10-2. However, the stochastic nature of the computa-
tion must be taken into account, especially when the corresponding probabilities are
involved in iterative algorithms requiring convergence.

Generally speaking, these 2 methods allow one to approach the study of relatively
complex genetic problems with good conditions of precision. The short example
presented in part III-C-2 is significant in this sense. It becomes possible to easily use
algorithms like the one proposed by SMITH & QUAAS (1982), which was considered only
theoretically by these authors for more than 2 traits because routines for the evaluation
of the multidimensional integrals were required to numerically solve the problem.
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Appendix 1

Detailed presentation of Dutt’s method

We want to compute Prob (

where f. (x) is the joint density of the n normal variables. If these variables are

standardized :

where R is the correlation matrix.

1. Integration variable change using the characteristic function

By definition, the characteristic function cpo (tl, ... t.) with auxillary variables

tp ... t. is equal to the expected value of exp (i (t,x, + ... + tnxn»

Conversely, a general theorem, the « inversion theorem gives the expression of
f. (x) as a function of cp! (t) (KENDALL & STUART, 1945 ; Mnxnin et al. , 1979) :

In the particular case of the normal distribution, the characteristic function in equal
to :

where J1. is the vector of the expected values and $ the variance-covariance matrix.
With standardized variables, we have :



after changing the order of integration. The last integral can also be written :
00 00 n n i

This expression shows the interest of such a transformation. The integration
variable x is substituted by a new variable t for which the integration limits are no

longer related to the initial truncation points, thus facilitating the use of known
numerical methods. Moreover, if we apply a general decomposition theorem derived by
GURLAND (1948) to L., we obtain :

2. Reduction of the integration range to (o, + (0)

This transformation is performed noting that, for any function g :



where A (g(t)) is the central difference of g (t) about t = 0. For example, for a simple
integral :
- - . - - -

By definition, the central difference of order m is equal to :

and then :

Furthermore, exp (&mdash; i-t*’-s*.) is equal to :

and then, it can be observed that :

So, the evaluation of I. requires the computation of :

3. Numerical computation of the integrals 1m using Gauss-Hermite quadrature

According to the previous equalities, we have to compute :

where D. is the sum of the first 2’&dquo;-’ terms of the central difference of order m of the
real part of :

In the expression of D., one can recognize the base function exp (&mdash; tl/2) for
which a powerful integration method exists : the Gauss-Hermite quadrature. According
to this method :



where the h!’s are the n’ roots of the Hermite polynomial of degree n’. The wk’s are
integrals computed in such a way that strict equality holds when g (t) is any polynomial
of equal or lesser degree than 2n’ &mdash; 1 (ATKINSON, 1978 ; BooTH, 1957 ; MINEUR, 1966 ;
BAKHVALOV, 1976). In our case, an odd n’ must be avoided : 0 is then one of the roots
with g (0) = + 00 and only the positive roots are considered since the integration range
is (0, + 00). Then hk is the kll positive root of the Hermite polynomial of degree 2n’
and wk is its associated weighting factor. The hk’s and w,’s (divided by Ý2) are

tabulated in ABRAmowrrz & STEGUN (1972).
After n successive quadratures, 1m becomes :

n&dquo; Dm functions have to be evaluated, each one being the sum of 2’&dquo;-’ products of an
exponential and a trigonometric function.



Appendix 2

Detailed presentation of Deak’s method

Here we want to estimate Prob (x, < s&dquo; ... x! < sj where the xi’s are standardi-
zed normal variables.

a) General principle

The vector x of correlated standardized normal variables can be expressed as a

function of a vector y of independent standardized normal variables :

x = T’y y

The matrix T is then a lower triangular matrix obtained by Cholesky decomposition
of the correlation matrix R :

T.T’ = R
n

Under these conditions, j 2 = 1 y! follows a X! distribution. With the additional transfor-
mation :

it ensues that, if y* can be obtained in some way, y, is equal to K-y* with K following a
! distribution. Then :

where Ny is the total number of vectors y* considered.

If j, (respectively j-) is the set of indices corresponding to positive (respectively
negative) elements of z, the conditional probability p ! y‘ is equal to the probability of
realization of the following inequality :

This probability is zero if m, > m2 or if m2 < 0. Otherwise, it is equal to

Fn (rn’2) - F. (mD where F. is the cumulative X2 distribution. Therefore, a numerical

algorithm with the greatest precision possible is required for the computation of these
cumulative distributions.

b) Method of reduction of the sampling variance
(for a given number of random vectors generated)

1) Associating the vector &mdash; y* to each vector y*, we can write :



and no new vector generation is needed. Then, the sum of the 2 conditional probabili-
ties ply’ + p ! (- y*), whose expected value is 2p, is equal to the probability of
realization of the inequality :

2) The vectors y are randomly generated in groups of n.

Each group is then transformed into an orthonormal base B from which
4. [n (n &mdash; 1)/2] = 2n (n &mdash; 1) dependent normalized vectors can be drawn.

These vectors are of the following type :

According to what was presented in the previous section, only half of these vectors
need to be considered, the second half being derived from the first one by sign change.
These n (n &mdash; 1) vectors are then of the type :

If N groups of vectors y are generated, we have :

Using the notation used in a), we have therefore N, = 2N.n. (n &mdash; 1).

The sampling variance corresponding to this estimate was not theoretically evalua-
ted by DEAK. However, empirical variances for the numerical applications studied were
given (DEAK, 1980).


