Biologie d’*Heterodera avenae* Wollenweber en France.
III. Évolution des diapauses des races Fr 1 et Fr 4
au cours de plusieurs années consécutives;
influence de la température

Roger Rivoal*

I.N.R.A., Centre de Recherches de Rennes,
Laboratoire de Zoologie, Domaine de la Molle-au-Vicomte,
B.P. 29, 35550 Le Rheu.

Résumé

L'étude de l’éclosion chez les races Fr 1 et Fr 4 d’*H. avenae* a été réalisée pendant trois ou quatre années sur les mêmes cystes placés soit dans le sol soit à température constante de 5°, 10° et 15°. Elle a confirmé que le décalage observé dans les périodes d'activité de ces deux races résulte de différences dans les conditions thermiques d'induction et de levée de deux types de diapause. Celles-ci ont pour effet de contenter les sorties larvaires en plusieurs cycles annuels successifs. La diapause facultative de la race septentrionale Fr 4 est invariablement levée chez toutes les larves à 5° constant alors que dans le sol, le relevement thermique printanier induit une nouvelle diapause qui n’est supprimée qu’après les basses températures de l’hiver suivant. La diapause obligatoire de la race méridionale Fr 1 n’est levée à basse température, proche de 5°, que chez une fraction de l’effectif larvaire qui est plus importante si les cystes ont été préalablement soumis à des températures élevées ; le reste des larves n’est levée qu’apres plusieurs expositions à 20° pour pouvoir ultérieurement éclore à basse température. Le relevement des températures au printemps a également pour effet d’abréger les sorties larvaires et d’en accentuer le contingentement annuel. Ces diapauses traduisent une remarquable adaptation du parasite à des conditions écologiques différentes. Les résultats de ces expérimentations pluri-annuelles ont en outre permis d’établir divers protocoles qui assurent la programmation de sorties larvaires massives.

Summary

Biology of Heterodera avenae Wollenweber in France.

III. Evolution of diapause of Fr 1 and Fr 4 races in long-term experiments :
influence of temperature

A study of successive hatching cycles in Fr 1 and Fr 4 *Heterodera avenae* races was realized during three and four years, on the same cysts, in the soil or at constant temperature of 5°, 10° and 15°. Northern race Fr 4 showed a diapause which operates from July to December. At constant 5°, diapause was invariably broken in all larvae which leave the cysts in one cycle. Outside, hatching occurred rather in spring but ceased when soil temperature reached 15°. Hatching started again at the end of the following autumn after encysted larvae were submitted to lower temperatures. Suspension of hatching of this race during summer and autumn was observed during two and even three years and may be due to a rise in temperature which above 15° would inhibit the activity of encysted larvae. Larvae failed to hatch from October to December when favourable temperatures below 15° occur ; these larvae would be subjected to a new diapause which has been induced by the rising temperature in the previous spring and is suppressed by chilling during following winter. Southern race Fr 1 showed a diapause which acts from July to November. Nevertheless hatching occurs at a low temperature, near 5°, and is observed only in a proportion of encysted larvae which increases when nematodes had previously been exposed to high temperatures. At a constant temperature of 5°, hatching of encysted larvae may start again but only if they are submitted to one or several

* Avec la collaboration technique de Paulette Penard.

Revue Nématol. 6 (2) : 157-164 (1983)

157
two months periods at 20°C. In the soil, winter hatching of this race is arrested when temperatures exceed 10°C. Rising temperatures enhanced the limitation of the proportion of annual hatching. Diapause and fluctuation of temperature effects explained at least that four annual cycles are possible for this race. The races of _H. aeneae_ studied show two types of diapause which delay hatching of second stage larvae during several years. Diapause of southern Fr 1 is strictly necessary and durable and would express an adaptation to severe Mediterranean climatic conditions. Diapause of northern Fr 4 is facultative, due to fluctuation of temperature and is effective only on a small proportion of larval content of cysts. In oceanic climates, this race is rarely subjected to limiting conditions and has more possibilities to find adequate hosts during almost the whole year. Results of these long-term studies have defined characteristic hatching patterns which demonstrate high ecological adaptability for this nematode. They permit also, by adequate thermic treatments, to control the production of great numbers of hatched larvae useful for different biological experiments.

Deux populations géographiques distinctes d’_H. aeneae_ en France présentent des analogies avec les deux types décrits par Evans et Perry (1976). Il s’agit de la population méridionale de Villasavary de type Fr 1 dont l’éclosion, plutôt hivernale, est subordonnée à la levée d’une diapause estivale obligatoire qui se produit au cours de l’automne à la faveur de l’abaissement des températures ; la population septentrionale de Nuisement-sur-Coele de type Fr 4 présente une diapause estivo-automnale induite par les températures estivales dont la levée, possible entre 5°C et 15°C, est plus marquée après un séjour à basse température (Rivoal, 1979).

Notre but est de préciser les caractéristiques des deux types de diapause présentés par ces populations que l’on a récemment qualifiées d’écotypes (Rivoal, 1982), ainsi que l’influence des variations de température sur le déterminisme de leur induction et de leur levée. Nous rapportons divers résultats obtenus en poursuivant pendant trois ou quatre années les expérimentations qui ont précédemment permis de comparer les cycles et conditions thermiques d’éclosion des races Fr 1 et Fr 4 (Rivoal, 1978, 1979).

Matériel et méthode

Les kystes des races Fr 1 et Fr 4 sont tous issus d’élevages réalisés en conditions extérieures à Rennes, sur _Tritecum aestivum_ cv. Hardi (Rivoal, 1977).

Dans une première expérimentation, on cherchait à évaluer les possibilités de cycles successifs d’éclosion chez ces kystes qui, formés en juillet 1976, sont placés d’octobre 1976 à juin 1980, soit à température constante de 5°C, soit dans le sol, à 10 cm de profondeur. Neuf ou dix kystes sont utilisés pour chaque des deux races. Ils sont immergés isolément dans de petits tubes en matière plastique contenant 0,8 ml d’eau du robinet. Les dénombrements des larves écloses, éliminées après chaque comptage, sont effectués toutes les semaines.

Une seconde expérience est mise en place afin d’évaluer les capacités d’éclosion chez des kystes qui, confrontés à différentes conditions thermiques entre juillet 1975 et octobre 1976, ont fourni un pourcentage faible (0,1 à 5,3 %) de larves dans le cas de Fr 1, plus élevé mais très variable (8,2 à 79,1 %) dans celui de Fr 4 (Tab. 1). Elle consiste à transférer systématiquement à 5°C des kystes préalablement conservés à 10°C ou 15°C ; le séjour à 5°C étant, pour certains d’entre eux, ultérieurement interrompu par une période de 2 mois à 20°C qui simule les conditions thermiques estivales (Tab. 2). L’expérience est menée de novembre 1975 à juin 1980.

Les kystes utilisés proviennent de la subdivision des lots antérieurs à novembre 1976, en deux séries de cinq couples isolés comme précédemment dans des tubes remplis d’eau et identifiés par le numéro du traitement original suivi ou non d’un astérisque. Les larves écloses sont dénombrées et éliminées tous les mois.

Les résultats sont établis en pourcentage cumulé d’éclosion calculé après recensement des larves non écloses. Celles-ci sont expulsées du chorion de l’œuf par écrasement à l’aide de l’extrémité arrondie d’une tige en verre. Les larves sont supposées viables si
Évolution des diapauses chez Heterodera avenae

Tableau 1
Effectifs en larves viables (1) et pourcentages d'écllosion (2) chez les races Fr 1 et Fr 4 d'Heterodera avenae confrontées à différentes conditions thermiques de juillet 1975 à octobre 1976.

<table>
<thead>
<tr>
<th>Numéro du traitement</th>
<th>Conditions thermiques</th>
<th>Fr 1 (1)</th>
<th>Fr 4 (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 5° (1 mois)</td>
<td>+ 10°</td>
<td>8 336</td>
<td>0,9 4 650 67,5</td>
</tr>
<tr>
<td>20 5° (2 mois)</td>
<td>6 737 5,3 4 504 79,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 10° (2 mois)</td>
<td>9 122 1,2 3 506 8,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 10° (2 mois)</td>
<td>+ 15° 8 050 1,6 3 055 28,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 5° (1 mois)</td>
<td>5 314 0,1 4 238 15,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

elles apparaissent fortement contrastées et prennent une forme droite. Elles sont dites non viables lorsqu'elles prennent une forme en zig-zag et sont fortement vacuolées. Les analyses statistiques sont effectuées après transformation angulaire des pourcentages cumulés.

Résultats

Potentialités d'écllosion des populations Fr 1 et Fr 4 dans le sol et à température constante (Fig. 1 et 2)

Tableau 2
Conditions thermiques appliquées aux kystes des races Fr 1 et Fr 4 d'Heterodera avenae de novembre 1976 à juin 1980

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17 *</td>
<td>[Diagramme]</td>
<td>[Diagramme]</td>
<td>[Diagramme]</td>
<td>[Diagramme]</td>
<td>[Diagramme]</td>
<td>[Diagramme]</td>
<td>[Diagramme]</td>
<td>[Diagramme]</td>
<td>[Diagramme]</td>
</tr>
<tr>
<td>17</td>
<td>10°</td>
<td>5°</td>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>15°</td>
<td>5°</td>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10°</td>
<td>10°</td>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5°</td>
<td>20°</td>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>15°</td>
<td>5°</td>
<td>20°</td>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5°</td>
<td>20°</td>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15°</td>
<td>5°</td>
<td>20°</td>
<td>6°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15°</td>
<td>5°</td>
<td>6°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>5°</td>
<td>20°</td>
<td>5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revue Nématol. 6 (2) : 157-164 (1983)
la température en dessous de 10° et s'arrête quand 10° sont de nouveau atteints (Fig. 1). Quatre cycles annuels, conduisant à une sortie de 90 % des larves, se produisent systématiquement en période hivernale avec un départ vers le mois de novembre et un arrêt dans le courant d’avril.

L’élosion de Fr 1 à 5° s’effectue de manière relativement continue et provoque la sortie d’environ 80 % des larves. Une accélération de l’élosion est néanmoins observée entre avril et août 1978 ; elle pourrait correspondre au déclenchement d’un cycle endogène qui est totalement indépendant de ceux observés dans le sol.

Les sorties des larves Fr 4 ne débutent qu’en décembre 1976 ou en janvier 1977. À 5°, elles sont continues et vident les kystes en un seul cycle. Trois périodes annuelles d’élosion sont par contre observées dans le sol ; elles se situent essentiellement au moment de la remontée de la température, mais en fait, elles débutent en décembre et s’arrêtent au cours du mois de juin, quand 15° sont dépassés dans le sol.

La comparaison de l’amplitude des différents cycles d’élosion montre, à 5°, une plus forte propension à éclore pour Fr 4 que pour Fr 1. Par ailleurs, pour les deux races, les variations thermiques saisonnières dans le sol ont pour effet de contingentier les sorties larvaires avec la réalisation apparente de trois cycles pour Fr 4 et d’au moins quatre pour Fr 1.

L’analyse des distributions mensuelles des kystes avec au moins une larve éclosée fait constater la rapidité d’installation du phénomène d’élosion chez les deux races étudiées à 5° constant (Fig. 2). La totalité des kystes présente en effet une éclosion dès le quatrième mois qui suit l’enclenchement du phénomène. La répartition unimodale de Fr 4 confirme son cycle unique d’éclosion à 5° alors que

Fig. 1 : Cycles successifs d’élosion des deux races Fr 1 et Fr 4 d’Heterodera avenae dans le sol et à température constante : pourcentages cumulés de larves écloses.

Successive hatching cycles of Heterodera avenae, races Fr 1 and Fr 4 in the soil and at constant temperature : cumulative percentages of hatched larvae.
la répartition bimodale de Fr 1 fait réellement penser à la possibilité de déclenchement d’un cycle endogène ; à moins qu’une inhibition incontrôlée de l’éclosion ne se soit produite entre septembre 1977 et avril 1978.

La distribution des kystes dans le sol montre clairement le décalage qui existe entre les cycles d’éclosion de ces deux races ainsi que l’effet des variations thermiques sur le fructification des sorties larvaires. Les quatre cycles annuels de Fr 1 se mettent progressivement en place à partir d’octobre ou de novembre mais cessent brutalement au mois d’avril. L’éclosion plus étendue de Fr 4, qui se produisit entre novembre et juin, intéresse la totalité des kystes essentiellement durant les deux premiers cycles. Elle est moins marquée au cours des deux derniers cycles dont l’amplitude est d’ailleurs plus faible, en raison vraisemblablement de l’épuisement prématuré du contenu larvaire des kystes.

Conséquences du transfert à 5° de kystes préalablement maintenus à 10° ou 15°

Les effectifs en larves observés de Fr 1 et Fr 4 sont fortement déséquilibrés en raison des différences dans leur intensité respective d’éclosion, qui se sont produites durant l’étude préalable, de juillet 1975 à octobre 1976 (Fig. 3). Néanmoins le transfert à 5° de Fr 1 entraîne systématiquement le début des sorties larvaires environ deux mois après le changement de température (Fig. 3 A). Ce phénomène est observé chez tous les échantillons étudiés, qu’ils soient transférés en novembre 1975 pour les séries 12°, 17°, 18° et 20°, en octobre 1977 pour leurs homologues 12, 17, 18 et en novembre 1978 pour les séries 20 et 15.

Maintenus à 10° ou 15°, les kystes libèrent un nombre faible de larves ne dépassant jamais 25 %

Revue Nématol. 6 (2) : 157-164 (1983)
de l'effectif total. L'éclosion de Fr 1 à 5° dure environ 6 mois quelle que soit la série de kystes et aussi bien en septembre 1977 qu'en octobre 1978, elle est significativement plus importante chez les échantillons provenant de 15° (séries 12 et 18 avec ou sans astérisque) que chez ceux antérieurement placés à 10° (séries 17, 17* et 20*). L'éclosion est, en outre inexistante si l'on maintient les kystes à 5° pendant une durée de 13 ou 14 mois, de septembre 1977 à octobre 1978, pour la série 20* ou de août 1978 à septembre 1979 pour la série 17. L'éclosion de Fr 1 peut être à nouveau déclenchée en faisant séjourner les kystes

à 20° pendant deux mois puis en les transférant de nouveau à 5°. Les sorties larvaires tangibles sont ainsi observées dans les séries 18 et surtout 20* et ont conduit à une éclosion de 95% des larves chez les échantillons 20 et 15.

Le transfert à 5° des kystes de Fr 4 occasionne une accélération de l'éclosion qui provoque l'épuisement de leur contenu larvaire (Fig. 3 B); 10° et 15° sont cependant des températures favorables à l'éclosion de cette race et permettent également la sortie de la totalité des larves, notamment dans la série 20.

Revue Nématol. 6 (2): 157-164 (1983)
Discussion

La diapause de la race septentrionale Fr 4 est facultative et opère de juin à septembre (Rivoal, 1979). Elle est invariablement levée chez toutes les larves puisque l’éclosion à 5° constant conduit, en un seul cycle, à l’épuisement du contenu larvaire des kystes. Dans le sol, les sorties larvaires sont fractionnées par une interruption de l’éclosion qui se produit à la fin du printemps, quand 15° sont dépassés, et se poursuit jusqu’à l’hiver suivant.

Cette suspension des sorties larvaires peut s’expliquer par deux types de phénomènes. Elle résulterait d’une inhibition d’origine thermique de l’activité des larves dont l’aptitude à éclore est retardée à cause d’une hétérogénéité intrinsèque dans la levée de diapaus. Cependant, le reste des larves enkystées devrait recommencer à éclore, à partir du mois d’octobre, lorsque des températures favorables, inférieures à 15°, sont enregistrées à nouveau dans le sol. L’abondance, entre octobre et décembre, d’éclusons qui s’effectuent au contraire massivement, de février à mai, fait envisager l’existence d’une diapaus. Celle-ci, induite par l’élévation de la température à la fin du printemps, serait supprimée après une exposition obligatoire aux plus basses conditions thermiques hivernales.

La diapaus estivale de la race méridionale Fr 1 n’est levée naturellement que chez une fraction des larves. Celle-ci est d’ailleurs plus importante lorsque les excursions ont probablement subi des températures élevées. La diapaus se maintient de manière stricte et durable dans le sol des larves non écloses à moins que celles-ci ne subissent une ou plusieurs expositions à 20° suivies d’un transfert à 5°. Il y a donc nécessité d’une succession de températures élevées et basses pour lever la diapaus à caractère obligatoire de cette race méridionale (Rivoal, 1979). Dans le sol, les éclosions sont systématiquement hivernales ; elles sont stoppées lorsque la température remonte au-dessus de 10° avec, pour conséquences, la diminution des sorties et l’accen- tuation du contingentement annuel.

Ces écotypes d’*H. avenae* présentent réellement deux types de diapaus qui, dans les conditions naturelles, ont pour effet de fractionner les sorties larvaires en plusieurs cycles annuels. Le contingentement de l’éclosion de la race septentrionale Fr 4 dépend essentiellement des variations de température alors qu’il résulte pour la race méridionale Fr 1, de caractéristiques endogènes, amplifiées par la fluctuation des conditions thermiques. Le déterminisme de la levée de la diapaus de Fr 1 permet, en climat méditerranéen, une synchronisation de l’activité du parasite avec la présence des stades végétatifs adéquats de l’hôte. Il assure en outre une meilleure conservation de l’espèce dans un écosystème relativement adverse. Cet écotype présente de réelles analogies avec son homologue d’Australie du Sud : la période d’éclosion est hivernale pour ces deux populations qui, en outre, héritent d’un séjour à température élevée pour pouvoir ultérieurement éclore massivement à basse température (Banyer & Fisher, 1971 ; Fisher, 1981).

Il n’y a par contre pas de contingentement inné dans l’éclosion de l’écotype septentrional Fr 4 qui se produit d’ailleurs de manière massive entre 5° et 15°. La propension des larves à éclore est bien plus forte chez Fr 1 car la diapaus facultative n’est induite que chez un pourcentage relativement faible de larves. Il est vrai que, dans les zones à climat océanique où il sévit, ce parasite est confronté à des conditions de température et d’humidité rarement limitantes ; il a en outre la possibilité de rencontrer la plante-hôte presque tout au long de l’année. Cet écotype est assimilé aux populations d’Europe du Nord. Son comportement d’éclosion se rapproche également de celui de *Meloidogyne massi*, autre néma- tode des céréales d’Europe septentrionale, dont le cycle d’activité printanier est lié à la levée d’une diapaus par les températures hivernales (Ogunfowora & Evans, 1977).

Les études pluriannuelles menées sur les mêmes kystes ont permis d’approfondir la biologie d’*H. avenae*. Les caractéristiques d’éclosion définies se maintiennent même après transfert des individus dans une situation climatique intermédiaire ; elles relèvent vraisemblablement d’une remarquable capacité d’adaptation à des conditions écologiques différentes. Elles vérifient les hypothèses fournies par Evans et Perry (1976) pour expliquer le décalage dans les schémas d’éclosion des populations situées en climats de types méditerranéen et océanique. Elles nous ont en outre permis d’établir divers protocoles qui, faisaient intervenir des traitements thermiques adaptés, assurent une programmation de sorties larvaires massives, utiles aux expérimentations de biologie de sélection variétale en conditions contrôlées (Rivoal et al., 1978).

Remerciements

L’auteur remercie J. M. Fisher et C. Netscher, qui ont revu ce manuscrit et l’ont aidé à l’améliorer ainsi que Maurice Delrieu pour la réalisation des figures.
Références

Accepté pour publication le 2 juillet 1982.

