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Abstract: Accurate simulation of flow and contaminant transport processes through unsaturated
soils requires adequate knowledge of the soil parameters. This study deals with the hydraulic
characterization of soils using laboratory experiments. A new strategy is developed by combining
global sensitivity analysis (GSA) and Bayesian data-worth analysis (DWA) to obtain efficient data
that ensure a good estimation of the soil properties. The strategy is applied for the estimation of soil
properties from a laboratory infiltration experiment. Results of this study show that GSA allows
identification of regions and periods of high sensitivity of each parameter and thereby, the observations
prone to contain information for a successful calibration. Further, the sensitivity depicts a nonlinear
behavior with regions of high influence and regions of weak influence inside the parameter space.
Bayesian DWA, performed a priori, allows to quantify the improvement of the posterior uncertainty
of the estimated parameters when adding a type of measurement. The results reveal that an accurate
estimation of the soil properties can be obtained if the target parameter values are located in the
regions of high influence in the parameter space.

Keywords: global sensitivity analysis; data-worth analysis; parameter estimation; unsaturated soil;
Bayesian inference; laboratory experiment

1. Introduction

Numerical models are essential tools for understanding the flow process through unsaturated
soils, estimating subsurface recharge and/or prevent soil or water contamination. Application of
numerical tools in field studies requires an adequate knowledge of the soil parameters. Some of the
hydraulic parameters cannot be directly measured and inversion methods are usually applied to
estimate these parameters. Generally, undisturbed soil samples are extracted in situ and taken to the
laboratory where dynamic flow experiments can be performed under controlled conditions. The soil
parameters are then estimated by fitting model outputs to the laboratory observations.

In the literature, several kinds of dynamic flow experiments, using different types of observations
have been conducted to estimate the soil parameters. Among these experiments, one can mention
one-step [1,2] and multistep [3–7] outflow experiments, infiltration experiments [8,9], extended
multistep-outflow experiments [10], evaporation experiments [11,12], combined multistep-outflow
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and evaporation experiments [13], unsaturated transport experiments [14–17], and hydrogeophysical
experiments [18,19].

Laboratory experiments are often time consuming, expensive, and tricky because of the risk of
non-identifiability of the accepted parameters which depends on the measured data. Global sensitivity
analysis (GSA) has been employed by Younes et al., [7] to help assess unsaturated soil hydraulic
parameters. The GSA evaluates how output uncertainties are related to input parameter uncertainties
with all the variation of inputs. In the last decades, GSA has been largely used for unsaturated flow in
porous media. For instance, in Pan et al. [20], GSA has been conducted to assess the relative contribution
of parameter uncertainties to the flow and transport uncertainties in a layered heterogeneous system.
Brunetti et al. [21] used GSA to investigate the influence of soil hydraulic parameters on the behavior
of a permeable pavement. Younes et al. [19] used GSA to investigate the influence of hydraulic and
geophysical parameters on the streaming potential signals. In van Griensven et al. [22], GSA has been
used to reduce the number of parameters and thus reduce over-parametrization of the numerical model.

GSA allows to quantify the impact changes of parameters have on the model output. By this way,
GSA enables the detection of the important parameters, their regions, and periods of influence [23].
This can facilitate the experimental procedure by identifying strategic measurements that could be
relevant for soil characterization. However, collecting new output observations even when the output is
highly sensitive to the parameters may not reduce parameter uncertainties if the information contained
in the new observations are already contained in the previous observations or in the case of parameter
interactions. Hence, it is important to estimate the benefit of collecting new output observations (which
may be costly) on the accuracy of the target parameters before collecting them.

This key point is addressed in this work by combining (GSA) with data worth analysis (DWA)
to select efficient data for the characterization of the model parameters. This new strategy is applied
for the estimation of hydraulic soil parameters from an infiltration laboratory experiment. The latter
is carried out by injecting water at the top of an undisturbed sandy soil column. Richards equation,
combined with the Mualem and van Genuchten (MvG) constitutive relationships [24,25], is employed to
model the flow process. The unknown parameters are Ks [L.T−1], the saturated hydraulic conductivity;
θr [L3.L−3], the residual water content; and α [L−1] and n [−], the MvG shape parameters. A first
estimation of the soil parameters is carried out using cumulative outflow measurements. The interest
of collecting tensiometric data and the best location of pressure sensors are then investigated by
(i) analysis of the pressure sensitivity to the hydraulic soil parameters at different locations using
GSA and (ii) performing a Bayesian DWA to quantify the benefit of the pressure head measurements
on reducing posterior parameter uncertainty intervals, and thereby, improving the quality of the
estimated parameters.

In this work, GSA is conducted using Polynomial Chaos Expansion [23,26] to explore the
variance-based sensitivity indices [27,28]. These indices measure how each parameter affects the model
output variance [29]. The Sobol’ indices are well suited for hydrologic models since they do not require
linearity or monotony of the model. DWA is performed using Bayesian parameter inference via Markov
Chain Monte Carlo (MCMC) method. Bayesian estimation methods are increasingly used since they
combine prior parameters information with observations to provide posterior parameter distributions
from which many statistics can be calculated [30]. The MCMC sampler randomly generates values of
parameters from the joint probability density functions, using the Metropolis-Hastings algorithm [31,32].
The MCMC method is preferred over the gradient-based local optimization algorithms, which may fail
to provide reliable confidence intervals [19,33–35].

2. Materials and Methods

2.1. Laboratory Experiment

A PVC tube of 55 cm length was used for the extraction of an undisturbed soil column of 42.8 cm
in the region of Bekalta in the East-Center of Tunisia. The soil was made up of approximately 93%
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sand, 5% silt and 2% clay particles. Figure 1 shows the experimental setup, where a column was filled
with the undisturbed soil. A small container, filled with gravel was fixed at the bottom in order to
maintain a fixed zero pressure as a lower boundary condition. Water was injected at the soil surface
with a constant rate of 0.115 cm/min using an accurate peristaltic pump. Cotton fiber wicks were set at
the soil surface to allow lateral distribution of water and hence ensure a one-dimensional vertical flow.
The injection of water occurred between t = 17 min and t = 75.5 min. The cumulative outflow was
monitored until t = 118 min. The initial pressure distribution was the correspondent to a hydrostatic
distribution. A Neumann boundary condition was used at the top, with a constant injection flow
qinj of 0.115 cm/min over the entire injection period (17 min < t < 75.5 min), else qinj = 0. A Dirichlet
boundary condition was maintained at the bottom with zero prescribed pressure.
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Figure 1. Experimental setup of the laboratory infiltration experiment for soil parameter assessment.

An accurate digital balance was used to monitor the cumulative outflow. The benefit of using
a pressure sensor as well as its position inside the soil column will be investigated for the following
depths: 18.5 cm, 23.5 cm, and 33 cm from the soil surface.

2.2. Numerical Model

The Richards Equation (RE) governed the flow through the unsaturated one-dimensional
undisturbed soil column:  ∂θ

∂t =
(
Cs(h) + Ss

θ
θS

)
∂h
∂t = −

∂qd
∂z

qd = −K(h)
(
∂h
∂z − 1

) (1)

where θ [L3.L−3], the current water content; t [T−1], the time; c(h) [L−1], the specific moisture capacity;
Ss [L−1], the specific storage; θs [L3.L−3], the saturated water content; q [L.T−1], the Darcy’s velocity; z [L],
the positive downward vertical coordinate and K(h) [L.T−1], the hydraulic conductivity. The models
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of Mualem [24] and van Genuchten [25] were used for water content – pressure head, and conductivity
– water content constitutive relationships as follows:

Se(h) =
θ(h)−θr
θs−θr

=

 1
(1+|αh|n)m h < 0

1 h ≥ 0

K(Se) = KsSe
1/2

[
1−

(
1− Se

1/m
)m]2

(2)

where m = 1− 1/n and Se (-) is the effective saturation.
The finite volume method was used to solve the problem given by Equations (1) and (2), with a

uniform discretization containing 214 cells of a uniform size of 0.2 cm. This fine discretization yielded a
mesh independent solution. The time solver DLSODIS [36] was used for an efficient time discretization.
This solver used the method of lines (MOL), which allowed variable-order time integration and variable
time step size while controlling the temporal error [37]. Note that, the MOL method works well with
the nonlinear Richards Equation (RE) [38] and provides a mass conservative solution for its h form [39]

2.3. Global Sensitivity Analysis

Global sensitivity analysis is generally employed to assess the role of a parameter in the
model output variance [40], which allows detecting influential parameters and irrelevant parameters.
A parameter is considered irrelevant if its variation does not affect the output of the model. Such a
parameter cannot be identified from the output measurements. Further, GSA enables the detection of
the most important parameters, their regions, and periods of influence. This can help in selecting the
position where sensors should be located, and the time when special attention should be paid when
monitoring the model outputs.

In this study, the variance-based sensitivity indices were employed for the GSA. These indices
reflect the contribution of each parameter to the variance of the model output [29]. The Sobol’
indices were evaluated using a surrogate model approach based on Polynomial Chaos Expansion
(PCE) [26,41–44].

Let us consider a random mathematical model f (ξ) depending on d independent random
parameters ξ = {ξ1, ξ2, . . . , ξd}. With PCE, the random model response f (ξ) is expanded up to a
polynomial degree p as follows:

f (ξ) ≈
∑
|α|≤p

CαΨα (3)

where α = α1 . . . αd ∈ Rd is a dth-dimensional index, Cα are the polynomial coefficients, and Ψα are the
multivariate orthonormal polynomials of degree |α| =

∑d
i=1 αi. Multivariate orthonormal polynomials

are a tensor-product of univariate polynomials [45]. The Legendre polynomials, with non-informative
uniform distributions, were used in this work for all parameters. These distributions express the lack
of prior information on the parameter values, which renders all plausible values equally likely.

From Equation (3), the variance V[ f (ξ)] writes,

V[ f (ξ)] =
∑
α

C2
α (4)

The Sobol’ first-order index Si measures the contribution of ξi alone to the variance of the model
response f (ξ)

Si =
V
[
E
[

f (ξ)
∣∣∣ξi

]]
V[ f (ξ)]

∈ [0, 1] (5)
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The total sensitivity index STi ≥ Si, measures the part of the model response f (ξ) due to all
the contributions of ξi (including the non-linear interaction between ξi and the parameters ξ j) with
ξ−i = ξ\ξi, E[(.|.)], the conditional expectation operator and V[(.|.)], the conditional variance.

STi =
E
[
V
[

f (ξ)
∣∣∣ξ−i

]]
V[ f (ξ)]

∈ [0, 1] (6)

The input/output relationship is called additive if STi = Si, ∀ i = 1, .., d and in this case,
∑d

i=1 Si = 1

The surrogate PCE model has P =
(d+p)!

d!p! coefficients. The evaluation of these coefficients requires at
least P simulations of the direct model.

2.4. Bayesian Parameter Inference

The value of θs was fixed at 0.42 cm3.cm−3. This value has been accurately obtained by weighing
a sample of the saturated soil. The specific storage was fixed at 5E10−9 cm−1. Therefore, the unknowns
vector reduced to ξ = (KS, θr,α, n). This vector was estimated using a Bayesian inversion to obtain
the joint posterior probability distribution functions (jpdfs). These functions were evaluated using the
DREAM(ZS) [46] MCMC sampler, which was largely used in sub-surface hydrology e.g., [9,15,16,46–48].
DREAM(ZS) generates random parameter set sequences which converge asymptotically to the target
solution [49]. Statistical measures, such as the mean or the variance, are calculated from the obtained
posterior distributions. All parameters were assumed to have uniform distributions over their
respective intervals shown in Table 1. As little is known about the model parameters, these large
intervals were based on the literature.

Table 1. Prior intervals of the hydraulic soil parameters.

Parameter Lower Bound Upper Bound

KS [cm/min] 0.10 2.0
θr [-] 0.05 0.15

α [cm−1] 0.005 0.15
n [-] 1.5 13.

The Metropolis–Hastings algorithm employed in MCMC uses a probability distribution to generate
a sequence of random samples. At the ith iteration, the algorithm generates a new candidate ξi, from a
distribution q

(
ξi

∣∣∣ξi−1
)

depending only on the accepted candidate. Then, ξi can be rejected or accepted
depending on the following Hasting ratio αH,

αH = min

1,
p
(
ξi

∣∣∣ymes

)
q
(
ξi

∣∣∣ξi−1
)

p
(
ξi−1

∣∣∣ymes

)
q
(
ξi−1

∣∣∣ξi
)  (7)

In this work, DREAM(ZS) was used with three parallel chains. We considered that convergence
aws reached if the chains were not correlated and the Gelman- Rubin [50] criterion was fulfilled
(Rstat ≤ 1.2). The last 25% parameter sets (after convergence of the chains) were used for the estimation
of the mean parameter values and the corresponding confidence intervals.

3. Results and Discussion

3.1. Inversion Using Cumulative Outflow Measurements

This section shows the results of hydraulic parameter estimation by fitting the cumulative
outflow measurements. These measurements were obtained using an accurate digital balance,
as described above.
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Figure 2 compares measured and simulated cumulative outflow using estimated parameter
values. In this figure, the cumulative outflow depicts a linear behavior during the injection period.
The calibrated curve fit the measurements of cumulative outflow very well. As shown in Figure 3,
the overall chains converged after 6000 model runs. The results of the inversion using MCMC are
shown in Table 2 which includes the mean parameter values and the 99% confidence intervals (CIs).
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Table 2. Mean parameter values, confidence intervals (Cis) and size of the CIs when only cumulative
outflow observations are used for parameter calibration.

Unit Mean Value 99% Confidence
Interval

Size of the 99%
Confidence

Interval

KS (cm/min) 1.37 [0.1–2.0] 1.9

θr - 0.104 [0.05–0.15] 0.1

α (cm−1) 0.019 [0.01–0.029] 0.028

n - 2.19 [0.6–3.8] 3.2

The results shown in Table 2 reveal that KS and θr could not be identified using only the cumulative
outflow observations as no reduction of their intervals of variation was observed (their posterior CIs
were similar to their prior intervals of variation given in Table 1). The van Genuchten shape parameters
α and n were better estimated since their posterior CIs were respectively six times and three times
smaller than their prior intervals of variation. Their CIs remained, however, quite large (Table 2).
Note that van Dam et al. [3] conducted a multistep outflow experiment and showed that the three
parameters (θr, α, n) can be well identified from the cumulative outflow observations. However,
Younes et al. [7], conducted a percolation drainage experiment and showed that cumulative outflow
measurements could be sufficient for the estimation of the soil parameters only for some kinds of
soils. Further, Younes et al. [7] found that in the case of a percolation-drainage experiment, the inverse
solution can be greatly improved when cumulative outflow data are supplemented with simultaneous
measure of pressure head. Hence, we investigate hereafter, the utility and benefit of using tensiometers
for monitoring the pressure head at different depths in the soil column in the case of infiltration
experiment. For this purpose, and before installing tensiometers, the impact of pressure data on
posterior parameter uncertainty intervals was investigated using GSA and DWA.

3.2. Global Sensitivty Analysis Results

GSA was performed using a PCE of order 4 for each location and observable time. The PCEs
contained 70 coefficients each and were calculated using the regression method [23]. Fitting the PCE
results to the RE pressure head responses was done for a random experimental design formed by 100
parameter sets. The pressure head responses were analyzed at 18.5 cm, 23.5 cm, and 33 cm from the
soil surface. It was assumed that the four soil parameters (KS, θr,α, n) were uniformly distributed
within the posterior 99% Confidence Intervals (CIs) obtained in Table 2.

The results of GSA showed that the pressure variance as well as the contribution of each parameter
to that variance had a similar behavior for the three investigated locations. Figure 4 depicts the
pressure head variance (blue curve) versus time at z1 = 18.5 cm (Figure 4a) and z3 = 33 cm (Figure 4b)
from the soil surface. In this figure, the shaded areas represent the amount of variance due to each
parameter alone. Interaction between parameters is represented by the blank region below the variance
curve and above the shaded area. As shown in this figure, the pressure variance was zero at the
beginning since the infiltration water front did not yet reach the pressure sensor. Then, it increased to
reach a stable value, and finally, it decreased when infiltration was stopped. Towards the end of the
experiment, the variance reduced to zero since the flow becames negligible after 100 min, regardless of
the parameter set.

In both graphs of Figure 4, the most influential parameters are KS and then n. The parameter α had
a smaller effect on the pressure head. Note that Younes et al. [7] found that for the percolation drainage
experiment, the sensitivity of the pressure head to α is higher than to n. This shows that the sensitivity
of an output to a parameter depends on the investigated soil and on the type of boundary conditions.
The results of Figure 4 show that the residual water content was not relevant as no effect was observed
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on the three investigated pressure heads. Similar results were obtained by Younes et al. [7] in the case
of percolation drainage experiment.
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The shaded areas represent the partial variance of each parameter. The blank region below the variance
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The comparison between the graphs 4a and 4b shows that a similar behavior was observed
for the two pressure locations. However, the variance of the pressure was around 10 times more
significant in the Figure 4a. Besides, the relative importance of α and n to the pressure variance was
more pronounced at z1 = 18.5 cm than at z3 = 33 cm. Furthermore, less interaction was observed
between the investigated parameters in the Figure 4a. All these points suggest that the pressure at z1

was more sensitive to the hydraulic parameters than at Z3. This makes sense since the pressure head
at z3 had a reduced sensitivity to the soil parameters because of its vicinity with the lower boundary
which had a zero pressure fixed during the whole experiment.

The obtained results show that:

(i) The pressure head prediction was driven by hydraulic parameters and thus, the accuracy of the
soil parameters may improve if the pressure data are also considered for calibration.

(ii) If one has to install a single tensiometric sensor for collecting pressure head measurements, it is
better to install it near the soil surface (near the top of the column).

(iii) The parameter θr cannot be estimated from the pressure head measurements regardless to the
position of the tensiometric sensor.

Recall that from the GSA results, a parameter is sensitive if the model output undergoes a
significant variation for different plausible parameter values. However, the relationship between a
parameter and the model output can be nonlinear. Thereby, the interval of variation of the parameter
may contain regions of high influence (different values of the parameter taken in these regions yield
strong variations of the model output) and regions of weak influence (different values of the parameter
taken in these regions yield small variations of the model output). The Sobol’ indices (Figure 4) indicate
the sensitivity of the parameters according to their whole intervals of variation, but do not give any
information about regions of influence inside these intervals. To investigate these regions, the PCE
used in GSA was employed to analyze the marginal effect of each parameter on the model output.
This effect was investigated by analyzing the variation of the model output with respect to the chosen
parameter whereas the other parameters are fixed at their mean values.

The marginal effects of the hydraulic parameters on the pressure head at 18.5 cm are shown in
the Figure 5 for the following times: t1 = 30 min which corresponds to the imbibition process, t2 =

60 min which corresponds to the steady-state infiltration and t3 = 80 min which corresponds to the
drying process.
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Figure 5 shows that KS had a significant effect on the pressure (significant negative slope) if its value
was less than 0.6 cm/min, whereas, a weak sensitivity was observed for higher values. This implies
that if pressure observations are used for the estimation of KS, a more accurate estimation is expected if
the target value is located inside the region of high influence (KS ≤ 0.6 cm/min). The marginal effect
of θr shows a nearly flat evolution (the pressure variation is less than 1 cm) at the three investigated
times, which indicates that θr cannot be estimated using pressure data regardless of its target value.
The marginal effect of α shows a significant impact on the whole parameter interval, which implies
that α could be accurately estimated whatever its target value. Finally, the marginal effect of the
parameter n shows a high influence region (significant negative slope) for n ≤ 3, else its effect on the
pressure value is weak. These results are similar to those obtained by Younes et al. [7] in the case of
percolation-drainage experiment. In addition, the results of Figure 5 show that the sensitivity of the
parameters KS and n were more significant during the imbibition process (t1), whereas, the parameter
α was much more sensitive during the drying process (t3).

3.3. Data Worth Analysis Results

The GSA allows to identify the regions and periods of influence for each parameter and hence,
the observations prone to contain information and, thereby, that could be useful for the calibration.
However, such analysis does not account for parameter interactions and redundancy of observations.
Indeed, a parameter can be highly influential but not identifiable because of interactions between
parameters. Furthermore, adding observations of a model output may not reduce the parameter
uncertainty if the information contained in the new observations are already contained in the previous
observations. Hence, it is important to estimate the benefit of collecting new output observations
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(which may be costly) on the accuracy of the target parameters before collecting them. In our case,
to investigate the benefit of installing a tensiometric sensor for collecting pressure data at 18.5 cm,
we proceeded as follows:

(i) The numerical model was used to generate synthetic pressure head data at 18.5 cm using the
mean parameter values obtained earlier from the calibration of the cumulative outflow data
(Table 2, column 3).

(ii) Then, the simulated pressure values were noised with Gaussian noises of 0.5 cm standard
deviation and used as fictive new observations.

(iii) The new fictive pressure observations were supplemented to the real cumulative outflow
observations and used for a new Bayesian calibration of the hydraulic parameters.

Table 3 shows the reference parameter values, which were used to generate fictive pressure data,
and the results of the estimation using real outflow measurements and fictive pressure data.

Table 3. Mean parameter values, CIs and size of the posterior CIs when cumulative outflow observations
and fictive pressure data are used for parameter assessment. The fictive pressure data are obtained
from noised simulations performed using reference parameter values.

Unit Reference Value Mean Value
99%

Confidence
Interval

Size of the
99% CI

KS (cm/min) 1.37 1.59 [0.9–2.3] 1.3

θr - 0.104 0.106 [0.05–0.15] 0.1

α (cm−1) 0.0187 0.02 [0.017–0.025] 0.007

n - 2.19 2.19 [1.56–2.64] 1.08

The results presented in this table show that using fictive pressure data in addition to real outflow
measurements significantly improved the accuracy of the hydraulic parameters. Comparing results of
Tables 2 and 3 shows that adding fictive pressure data enabled a reduction of the CIs of around 32%
for KS, 75% for α and 66% for n. As expected, the parameter θr remains not identified since it had a
negligible effect on the pressure head.

It is worth noting that the reference parameter value for the parameter n, used to generate fictive
pressure data, as 2.19. This value was located inside the high influence region of the parameter (n ≤ 3).
This was also the case for the parameter α since its high influence region corresponds to its whole
interval of variation (see Figure 4). However, the reference value for KS (1.37 cm/min) was located
inside its weak influence region (Figure 4). A new analysis was performed using the previous reference
values for all parameters except for KS, which was now fixed to 0.2 cm/min (this value was located
inside the high influence region as can be seen in Figure 4). This analysis was performed to investigate
how parameter uncertainty reduces if the target value of KS was located inside its high influence region.
Similar to the previous case, the simulated pressure values at 18.5 cm were noised with a standard
deviation of 0.5 cm and supplemented to the real cumulative outflow observations for the calibration
of the hydraulic parameters. The results are summarized in Table 4.

The results of Table 4 show that KS, α and n were more accurately estimated then previously.
Their CIs were reduced by a factor of 50 for KS, and a factor of 3 for α and n. Hence, DWA results show
that pressure data at 18.5 cm improve the accuracy of the estimated hydraulic parameters by reducing
their posterior CIs. This fully justifies the installation of a tensiomeric sensor to collect the pressure
head at 18.5 cm. Furthermore, the benefit of such measurements can be highly significant if the target
parameter values are located inside their high regions of influence shown in Figure 5.
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Table 4. Mean parameter values, CIs and size of the CIs when cumulative outflow observations and
fictive pressure data are used for parameter assessment. The fictive pressure data correspond to noised
simulations performed using reference parameter values.

Unit Reference Value Mean Value
99%

Confidence
Interval

Size of the
99% CI

KS (cm/min) 0.2 0.19 [0.18–0.2] 0.02

θr - 0.104 0.07 [0.05–0.15] 0.1

α (cm−1) 0.0187 0.0132 [0.012–0.014] 0.002

n - 2.19 2.64 [2.4–2.8] 0.4

3.4. Inversion Using Real Cumulative Outflow and Pressure Measurements

According to the previous results, the experiment was reperformed by installing a tensiometric
sensor at 18.5 cm from the top of the soil. Both cumulative outflow and pressure head were monitored
during the experiment. The results of MCMC, based on real observations, are given in Table 5.
As shown in this table, the estimated mean value of KS was 0.23 cm/min, which was located inside
the region of high influence (KS ≤ 0.6 cm/min) plotted in Figure 4. The estimated mean value of n
(2.26) was also located in its high region of influence (n ≤ 3). This explains the highly accurate results
obtained for all hydraulic parameters, except for θr. Comparing the results to those of Table 2, which
were obtained using only cumulative outflow measurements, shows that when both real cumulative
outflow and pressure head measurements are used (Table 5), the CI of KS was reduced by a factor of 80.
For α and n, the factor of reduction is respectively 9 and 6.

Table 5. Mean parameter values, CIs and size of the CIs when both real cumulative outflow and
pressure observations are used for parameter assessment.

Unit Mean Value 99% Confidence
Interval Size of the 99% CI

KS (cm/min) 0.231 [0.22–0.24] 0.022

θr - 0.07 [0.05–0.15] 0.1

α (cm−1) 0.012 [0.01–0.013] 0.003

n - 2.26 [2–2.5] 0.5

The MCMC sampler, in this case, converged in less than 10000 runs, and the posterior distributions
for the parameters are plotted in Figure 6. As expected, the parameter θr could not be identified since
its posterior distribution was almost uniform (similar to its prior one). The parameters Ks, α and n
were well estimated and had posterior bell-shaped distributions, which were significantly different
from their prior uniform ones. This significant difference between prior and posterior distributions
reflects the high sensitivity of the parameters. Moderate correlations are observed between n and Ks

(r = −0.92), α and θr (r = 0.78), and n and α (r = 0.68).
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4. Conclusions

This study explored the possibility of determining the unsaturated hydraulic soil parameters
using a laboratory infiltration experiment and GSA coupled with DWA. Bayesian parameter estimation
was performed using MCMC. A first characterization of the soil parameters was conducted using the
cumulative outflow measurements. These accurate and cheap observations did not allow identification
of KS and θr and yielded large confidence intervals for α and n. This prompted us to investigate the
benefits of installing tensiometric sensors for monitoring pressure head in the porous medium using
GSA and DWA.

GSA of the pressure at three locations (z1 = 18.5 cm, z2 = 23.5 cm and z3 = 33 cm) showed that
the most sensitive parameters are Ks and then, the parameter n. The parameter θr does not affect the
pressure at any of the three investigated positions. The results of GSA showed that it is better to collect
the tensiometric data at z1 = 18.5 cm since the pressure variance is around 10 times more significant
than at z3 = 33 cm. Further, the analysis of the marginal effects showed that KS and n have a strong
effect on the pressure head if KS ≤ 0.6 cm/min, and n ≤ 3, else their effect on the pressure head is weak.
KS and n are more sensitive during the imbibition process, whereas, α is much more sensitive during
the drying process.

The advantage of pressure measurements on the accuracy of the estimated parameters was
investigated using fictive noised data stemming from simulations performed using parameter values
obtained from the cumulative outflow calibration. Adding fictive pressure data enables a reduction of
the CIs of around 32% for KS, 75% for α and 66% for n. The parameter θr remains not identified since it
has a negligible effect on the pressure. A second analysis showed that the accuracy of KS and n can
be improved if fictive pressure data were generated using parameter values located inside their high
influence regions.

Finally, parameter estimation is carried out using real observations of pressure head and cumulative
outflow. The estimated mean values of the parameters are located inside their regions of high influence.
Compared to the results obtained using only cumulative outflow measurements, when both real
cumulative outflow and pressure measurements are used, the CI of KS is reduced by a factor of 80.
For α and n, the factor of reduction is respectively 9 and 6.

In summary, this study demonstrates the important role of GSA in the detection of, not only
influential parameters, but also their regions and periods of high influence. This can help select
the position where sensors should be located and the time when special attention should be paid
for monitoring the model output. DWA can be used a priori to estimate the profit of adding a
type of measurement on reducing parameter uncertainty intervals. This profit was shown to be
highly significant if the target parameter values are located inside the high regions of influence of
the parameters.
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