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Abstract

The present paper proposes the first definition of
a mixed equilibrium in an ordinal game. This
definition naturally extends possibilistic (single
agent) decision theory. Our first contribution is
to show that ordinal games always admit a possi-
bilistic mixed equilibrium, which can be seen as
a qualitative counterpart to mixed (probabilistic)
equilibrium. Then, we show that a possibilistic
mixed equilibrium can be computed in polynomial
time (wrt the size of the game), which contrasts
with mixed probabilistic equilibrium computation
in cardinal game theory. The definition we propose
is thus operational in two ways: (i) it tackles the
case when no pure Nash equilibrium exists in an
ordinal game; and (ii) it allows an efficient compu-
tation of a mixed equilibrium.

1 Introduction
Game theory used to be mainly a science for economic the-
orists, until recently when, with the expansion of internet,
many practical instances have emerged. Accordingly, in the
recent years there has been a growing interest in the AI com-
munity for algorithmic game theory [Nisan et al., 2007].
From a practical viewside of game theory, there are instances
where the assumption of cardinal payoffs for players can be
questioned. For example, in a recent paper, [Ouenniche et al.,
2016] describe a realistic example of Public-Private Partner-
ship project, which is dealt with using ordinal game theory.

Ordinal games [Cruz Jr. and Simaan, 2000; Xu, 2000] are
thus a natural framework to consider as soon as no cardinal
payoffs are available to players. The first analysis of equi-
libria in ordinal games dates back to [Barany et al., 1992],
with a classification of two-person ordinal games in terms of
their Pareto sets (pairs of pure strategies which are not uni-
formly dominated). [Xu, 2000] defines Ordinal Nash Equi-
libria (ONE) as the natural counterpart of Nash equilibria and
proposes an algorithm that computes ordinal Nash equilib-
ria for 2 and 3-players ordinal games, in polynomial time.
From the theoretical point of view, [Durieu et al., 2008]
study a few categories of ordinal games, among which ordi-
nal best-response potential games, and show that they always

admit ordinal Nash equilibria. This property is a counter-
part of the one holding for cardinal potential games, which
are also known to admit a pure Nash equilibrium [Mon-
derer and Shapley, 1996]. Finally, [De Clercq et al., 2014;
2015] study “possibilistic Boolean games”. These are a con-
cise version of ordinal games, constructed from possibilistic
logic preference bases. The set of alternatives of each player
is given by the instantiation of a separate set of propositional
variables. A pure Nash equilibrium (i.e. ONE) is defined
as usual. Then, the authors focus on the ill-known ordinal
game case, where players do not precisely know others’ pref-
erences. They propose an evaluation of ONE in terms of their
possibility and necessity degrees to be an ONE for the true
(ill-known) ordinal game.

Besides, there has been little progress, if any, in the analy-
sis of ordinal games which do not admit pure strategy equilib-
ria. The only proposed approach [Cruz Jr. and Simaan, 2000;
Ouenniche et al., 2016] consists in listing all potential com-
binations of pure strategies and use the list of ranks of pure
strategies of each player to analyze the game’s possible pure
equilibria. This kind of approach is hardly feasible in practice
and, again, it is oriented toward the search of a pure equilib-
rium. A consequence is that there is no real solution concept
for ordinal games which do not admit an ONE.

The present paper proposes the first definition of mixed
equilibria for ordinal games. This definition naturally ex-
tends possibilistic (single agent) decision theory [Dubois and
Prade, 1995]. Our first contribution is to show that ordinal
games always admit a possibilistic mixed equilibrium, which
can be seen as a qualitative counterpart to mixed probabilistic
equilibria. Then, we show that a possibilistic equilibrium can
be computed in polynomial time, which contrasts with mixed
probabilistic equilibria in cardinal game theory. The defini-
tion we propose is thus operational in two ways: (i) it tackles
the case when no ONE exists in an ordinal game and (ii) it
allows an efficient computation of mixed equilibia.

2 Ordinal Games and Nash Equilibria in
Possibility Theory

2.1 Normal Form Games and Nash Equilibria
A strategic game, or normal form game is classically defined
as follows [Von Neumann and Morgenstern, 1948]:
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Definition 1 (Normal form game) A normal form game is a
triple G = 〈N, (Ai)i∈N , (ui)i∈N 〉, where:
• N = {1, . . . , n} is a finite set of players.
• Ai is a finite set of actions available to player i ∈ N

(also called strategy space). A = ×i∈NAi is the product
set of available actions. a = (ai)i∈N ∈ A is a joint
action of the n players (or a strategy profile).
• (ui)i∈N is a set of utility functions. For any player i,
ui : A → L is the utility function of player i, i.e. ui(a)
is the utility for agent i of the joint action a ∈ A.

L = {α0, . . . , αk} is a finite totally ordered set, equipped
with preorder relation ≥, which is sufficient to define pure
Nash equilibria. We will use the following notation ∀a ∈ A:
• a−i = (a1, ..., ai−1, ai+1, ..., an) ∈ A−i = ×j 6=iAj

• (a′i, a−i) = (a1, ..., ai−1, a
′
i, ai+1, ..., an) ∈ A

Informally, a pure Nash equilibrium, for a game G =
〈N, (Ai)i∈N , (ui)i∈N 〉, is a joint action a∗ ∈ A, from which
no player has interest to deviate unilaterally. More formally:
Definition 2 (Pure Nash equilibrium)
Let G = 〈N, (Ai)i∈N , (ui)i∈N 〉 be a normal form game.
a∗ ∈ A is a pure Nash equilibrium of G, if and only if:

ui(a
∗) ≥ ui(ai, a∗−i), ∀i ∈ N, ∀ai ∈ Ai.

One known problem with normal form games is that a pure
Nash equilibrium may not exist for a given game G. How-
ever, when utility functions take real values, the following
has been proved (see, e.g. [Osborne and Rubinstein, 1994]).
By allowing players to adopt mixed strategies in the form of
probability distributions pi : Ai → [0, 1], one can ensure the
existence of a mixed Nash equilibrium p∗, verifying:
Definition 3 (Mixed Nash equilibrium)
Let G = 〈N, (Ai)i∈N , (ui)i∈N 〉 be a given normal form
game. Let p∗ = (p∗i )i∈N , where p∗i is a probability dis-
tribution over Ai. p∗ is a mixed Nash equilibrium of G, if
and only if it verifies: ui(p

∗) ≥ ui(pi, p
∗
−i), ∀i ∈ N, ∀pi,

where, ui(p) =def

∑
a∈A

(∏
k∈N pk(ak)

)
ui(a) is the ex-

pected utility to player i of the joint mixed strategy p and
p∗−i = {p∗j , j ∈ N, j 6= i}.
The existence of a mixed Nash equilibrium is guaranteed for
any game [Nash, 1950]. However, [Daskalakis et al., 2006]
have shown that it is hard to compute one (PPAD-complete:
a complexity class of problems which are not assumed to be
polynomial time solvable).

2.2 Ordinal Games
There are many natural examples of games in which the util-
ity functions of players take their values in an ordinal scale.
Let us consider the following example:
Example 1 (Firms competition) An established firm (E)
and a newcomer (N ) to a market of fixed size have to choose
the packaging of a similar product. Each firm can choose
between two different packagings: X and Y. The established
producer prefers the newcomers product to look like its own-
while the newcomer prefers that the products look different
(to attract customers). The option Y is more risky than X for

the newcomer (in case E also plays Y), but will generate more
profit if E plays X. E, however, is indifferent between X and Y.
Ordinal outcomes (uE , uN ), compatible with this knowledge,
are listed in the following table. These outcomes are ranked
from 0 (worst case) to 4 (best case):

E

N
X Y

X (2,2) (1,4)
Y (1,3) (2,0)

Preferences are purely ordinal, so are not proportional to any
expected profit. If we translate ordinal utilities to their cor-
responding real values, this problem admits a single mixed
Nash equilibrium1, p∗E = (0.6; 0.4) and p∗N = (0.5; 0.5).

However, such a direct translation to quantitative values
raises questions. If we replace the value uN (X,Y ) = 4 with
uN (X,Y ) = 5, the new mixed equilibrium becomes p∗E =
(0.5; 0.5) and p∗N = (0.5; 0.5). If we switch for uN (X,Y ) =
6, we get p∗E = (0.43; 0.57) and p∗N = (0.5; 0.5). The three
games give identical ordinal orderings of all pure joint strate-
gies to all players. However, with three different compatible
cardinal translations of the utilities, the resulting Nash equi-
libria verify either p∗E(X) > p∗E(Y ), p∗E(X) = p∗E(Y ) or
p∗E(X) < p∗E(Y ). Thus, a game theory that directly works
on the ordinal expression of utilities would be useful. We
propose such an approach, based on possibility theory, which
handles ordinal games and avoids the bias linked to ordinal-
cardinal utility translation.

2.3 Possibilistic Mixed Strategies in Ordinal
Games

In this paper, an ordinal game is a triple G =
〈N, (Ai)i∈N , (µi)i∈N 〉. The utility functions, µi, take their
values in a finite ordinal scale, L, contrarily to utility func-
tions ui which can take cardinal values.

In this section, we define a notion of ordinal mixed strat-
egy for such games, based on possibility theory [Dubois and
Prade, 1988]. A possibility distribution over the alternatives
of Ai of player i is a function πi : Ai → L that captures a
ranking over the elements of Ai. πi can have a dual interpre-
tation, either in terms of preference and in terms of likelihood.
More precisely:

• For player i distribution πi models the ranking of alter-
natives in terms of preference or comitment. Under this
interpretation, πi(ai) = 1L means that ai is satisfactory,
fully conceivable to player i to play, while πi(ai) = 0L
means that it is absolutely not an option for i 2.

• When interpreted by other players, the ranking πi can
be seen as a measure of likelihood of play. In this case,
πi(ai) = 1L means that ai is a completely plausible play
of player i. On the contrary, πi(ai) = 0L is interpreted
as ai is an impossible play of player i.

This dual preference/likelihood interpretation is natural in
game theory since, according to the other players, the most

1Which was computed using http://gambit.sourceforge.net/.
20L and 1L are the lowest and highest elements of L.
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preferred alternatives of player i should be the most likely to
be played. Possibilistic mixed strategies are defined as nor-
malized possibility distributions πi : Ai → L:

max
ai∈Ai

πi(ai) = 1L, the top element of L.

The joint possibility distribution over joint strategies a =
(a1, . . . , an), is defined as the minimum of the individual
players possibilistic mixed strategies:

π(a) = min
i∈N

πi(ai), ∀a = (a1, . . . , an) ∈ A.

2.4 Evaluating Possibilistic Mixed Strategies
Let an ordinal game G = 〈N, (Ai)i∈N , (µi)i∈N 〉 be given
and assume that a set of mixed possibilistic strategies πi over
Ai have been defined, π being the corresponding joint mixed
possibilistic strategy. Now, the question is to measure the
utility of π to each player, or, in other terms, the ranking of
joint mixed possibilistic strategies by each player.

The two following optimistic and pessimistic criteria have
been proposed and axiomatized for decision under uncer-
tainty in the possibilistic framework [Dubois and Prade,
1995; Dubois et al., 2001].

µOPT
i (π) = max

a∈A
min (π(a), µi(a)) .

µPES
i (π) = min

a∈A
max (n(π(a)), µi(a)) . (1)

Where n is the order-reversing map of L. For instance, if
L = {α0, . . . , αK}, n(αk) = αK−k, ∀αk ∈ L.
µOPT
i (π) and µPES

i (π) can be readily adapted to the eval-
uation of joint mixed possibilistic strategies, when these are
interpreted as measuring the likelihood of joint strategies.
They are soft versions of the maximax and maximin criteria.
When there is no knowledge about what other players will
play, π(a) = 1L, ∀a ∈ A1 × . . .×An. Then:
• According to µOPT

i (π), each player assumes that all
other players will be benevolent to him, i.e. act for the
best, since µOPT

i (π) = maxa µi(a).

• On the contrary, according to µPES
i (π), each player as-

sumes that all other players will act in the worst way for
him, since µPES

i (π) = mina µi(a).
Note that, as for expected utility theory, possibilistice deci-
sion criteria assume a form of commensurateness between
uncertainty and preference levels [Dubois et al., 2001]. In
the framework of competitive game theory, µOPT is rather
unnatural, so we will focus on µPES .

2.5 Possibilistic Mixed Equilibria
A possibilistic mixed equilibrium (ΠME) can be informally
defined, as in the stochastic case, as a set π∗ = (π∗1 , . . . , π

∗
n)

of (normalized) preference rankings from which no player
has interest to deviate unilaterally. Formally, we define:
Definition 4 (Possibilistic Mixed equilibrium)
Let G = 〈N, (Ai)i∈N , (µi)i∈N 〉 be an ordinal game. π∗ =
(π∗1 , . . . , π

∗
n) is a possibilistic mixed equilibrium for G if and

only if, for any possibilistic mixed strategy π, we have:

µPES
i (π∗) ≥ µPES

i (πi, π
∗
−i), ∀i ∈ N.

In this definition, the double nature of the joint possibility
distribution π∗ appears. Indeed, while the π∗i are obviously
interpreted as likelihood rankings in Equation (1), they are
defined as solutions to equations involving preference rank-
ings only in the above definition. In this respect, as aggre-
gations of preference rankings, they should be interpreted as
preference rankings themselves.

Note that, deterministic equilibria can be interpreted in the
same way in both possibilistic game theory and probabilis-
tic game theory settings. However, in the mixed-equilibrium
case, while usual mixed Nash equilibria are interpreted as
random plays that give good outcomes ”on average”, in the
possibilistic setting these should be interpreted as ”commit-
ments” in a negociation process (see Section 2.6), that is the
fixed point of a negociation where players indicate which op-
tions they may consider in actual play and which they are
more prone to play than others. As usual in possibility the-
ory, this is a ”one-shot game” interpretation, where games are
not repeated and possible outcomes cannot be ”averaged”...

Let us now look at some properties of possibilistic mixed
equilibria and their computation. We are going to give a con-
structive proof of the existence of a ΠME for any ordinal
game in the next section. But before this, let us define a least-
specific possibilistic Nash equilibrium. First, recall the usual
definition of specificity relation of possibility distributions.
Definition 5 (Specificity relation)
Let πi and π′i be two (normalized) possibility distributions
over Ai. We say that π′i is more specific than πi (written
π′i � πi), if the following holds: π′i(ai) ≤ πi(ai), ∀ai ∈ Ai.
≺ is the corresponding strict order. By extension, for mixed

strategies π = (πi)i∈N and π′ = (π′i)i∈N , we say that π′ is
more specific than π when the distributions π′i are all more
specific than the distributions πi, ∀i ∈ N . That is:

π′ � π ⇔ π′i(ai) ≤ πi(ai), ∀ai ∈ Ai, ∀i ∈ N.
Assume that a possibilistic joint strategy π is given. We can

show that the pessimistic utility of a player never decreases
when the joint strategy of all players is made more specific,
i.e. if players precise their intentions.
Proposition 1 (Improvement through specificity) Let G =
〈N, (Ai)i∈N , (µi)i∈N 〉 be an ordinal game. Let π be an ar-
bitrary possibilistic mixed strategy and let π′ � π be a more
specific possibilistic mixed strategy. Then, we can show that:

µPES
i (π) ≤ µPES

i (π′).

Proof: Notice that

µPES
i (π) = min

a
max

(
max
j∈N

n(πj(aj)), µi(a)

)
. So,

π′ � π ⇔ π′j(aj) ≤ πj(aj), ∀j ∈ N, aj ∈ Aj ,

⇔ n(πj(aj)) ≤ n(π′j(aj)), ∀j ∈ N, aj ∈ Aj ,

⇒ max
j∈N

n(πj(aj)) ≤ max
j∈N

n(π′j(aj)), ∀a ∈ A,

⇒ min
a

max

(
max
j∈N

n(πj(aj)), µi(a)

)
≤ min

a
max

(
max
j∈N

n(π′j(aj)), µi(a)

)
.
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So, π′ � π ⇒ µPES
i (π) ≤ µPES

i (π′). �
Updating a player’s mixed strategy for a more specific one

cannot decrease his own utility if all other players stick to
their own strategy. However, changing one’s strategy for
a more specific one may give incentive to other players to
change their own, as the following example shows.

Example 2 (ΠME and specificity) Let us consider the fol-
lowing ordinal game with two players, two actions and a sim-
ple binary scale {0, 1}: Since utilities are binary, possibility

E

N
X Y

X (0,1) (1,0)
Y (1,0) (0,1)

distributions correspond to subsets of {X,Y }. Now, we can
check that π = {πE = {X,Y }, πN = {X,Y }} has utility
zero to both players. If πE is made more specific (for example
π′E = {X}) and πN is left unchanged, this does not modify
the utility to player E. By symmetry, no player can unilater-
ally improve his utility. So, π is a ΠME. Note that {π′E , πN}
is no more a ΠME: If player N sees that player E has switched
to π′E = {X}, he will be better of if he changes his own strat-
egy to π′N = {X} and gets utility 1. In turn, this will give an
incentive to E to switch to π′E = {Y }, etc. Indeed, the only
ΠME of this game is π.

It will be useful, when interpreting and computing mixed
equilibria, to focus on those which are the least-specific, i.e.
put the less restrictions on players’ rankings of alternatives:

Definition 6 (Least-specific ΠME)
Let G = 〈N, (Ai)i∈N , (µi)i∈N 〉 be an ordinal game. π∗ =
(π∗1 , . . . , π

∗
n) is a least-specific possibilistic mixed equilib-

rium for G if and only if: (i) π∗ is a possibilistic mixed equi-
librium for G and (ii) There exists no π′ s.t. π∗ ≺ π′ and π′
is a ΠME.

2.6 A Negotiation Interpretation of Least-Specific
Possibilistic Mixed Equilibria

We will give a constructive proof of the existence of a possi-
bilistic mixed equilibrium for any ordinal game in the fol-
lowing section. However, in order to introduce the proof,
it is useful to recall the double nature of possibilistic mixed
strategies. These are first preference rankings of alternatives
expressed by each player. On the other hand, preference rank-
ings of other players can be interpreted by a player as likeli-
hood rankings of their available strategies.

So, when talking about the improvement and the specificity
of a ΠME one is faced with a double interpretation, again:

• Interpreting other players’ strategies as likelihood rank-
ings, a given player shows a kind of aversion for un-
certainty: It is more comfortable to see other players
commit to a given play. This is reflected in Proposition
1 where it is shown that more specific mixed strategies
lead to a better utility.

• On the other hand, as far as player i is concerned, his
mixed strategy πi can be viewed as a commitment to
play: The more specific πi the more constraints i puts

on himself. Thus, one can expect players to prefer to put
the lightest constraints on themselves, i.e. to keep πi as
less specific as possible.

According to these thoughts, one can see the search for
a possibilistic mixed equilibrium as a form of negotiation
where players trade, in turn, commitments on their own
strategies, so as to improve their position in the joint equilib-
rium, until no player has interest to trade anymore. We will
see that this iterative negotiation procedure leads to a (least-
specific) Nash equilibrium. Furthermore, we will show that a
ΠME can be computed in time polynomial in the size of the
utility tables µi, unlike ”quantitative” mixed Nash equilibria.

3 A Polynomial Time Algorithm for Building
Possibilistic Mixed Equilibria

The proof of the main result of this paper goes through three
steps. First, we define the problem of deciding, for a given
ordinal game, joint mixed possibilistic strategy and player,
whether this player can improve his utility by making (uni-
lateraly) his mixed strategy more specific. Then we pro-
pose a polynomial-time procedure which answers this ques-
tion and, if the answer is positive, returns an improved strat-
egy. Finally, we use this procedure as a building block for a
polynomial-time algorithm which computes a ΠME for any
arbitrary ordinal game.

3.1 Possibilistic Mixed Strategy Improvement
Assume ordinal game G = 〈N, (Ai)i∈N , (µi)i∈N 〉, and
mixed strategy π = (π1, . . . , πn) are given. Let us consider
the point of view of player i. We want to check whether πi
can be improved by making it minimally more specific.

To be more precise, we are looking for π′i ≺ πi, such that:

µPES
i (π′i, π−i) > µPES

i (π).

Furthermore, we want π′i to be a least-specific such distribu-
tion (there may exist more than one), i.e.

µPES
i (π′′i , π−i) ≤ µPES

i (π), ∀π′i ≺ π′′i � πi.
First, let us notice that

µPES
i (π) = min

a∈A
max

(
max
j∈N

n(πj(aj)), µi(a)

)
,

= min
ai∈Ai

max
(
n(πi(ai)), µ

PES
i (ai, π−i)

)
(2)

where µPES
i (ai, π−i) is the utility player i gets when playing

ai, when the other players follow the joint strategy π−i:

µPES
i (ai, π−i) = min

a−i∈A−i

max

(
max
j∈N\i

n(πj(aj)), µi(a)

)
.

Note that the computation of µPES
i (·, π−i), Ai → L takes

polynomial time in the game expression. Now, for a given
triple (G, π, i), let Di ⊆ Ai define the set of dominated ac-
tions of player i, given π:

Di =
{
ai ∈ Ai s.t. µPES

i (ai, π−i) ≤ µPES
i (π)

}
.

That is, when switching from the distribution πi to the fixed
action ai, player i does not improve his utility.
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Intuitively, in order to improve his situation in the game,
player i will make new commitments by decreasing, when
possible, the plausibility of his dominated actions, ai ∈ Di,
leaving the possibility of non-dominated actions unchanged.

Note that the following two facts hold:

µPES
i (π) ≥ µPES

i (ai, π−i), ∀ai ∈ Di, (3)

µPES
i (π) = min

ai∈Di

max
(
n(πi(ai)), µ

PES
i (ai, π−i)

)
.(4)

Fact (3) holds by definition of Di, while fact (4) holds since,

max
(
n(πi(ai)), µ

PES
i (ai, π−i)

)
> µPES

i (π), ∀ai ∈ Ai\Di.

Thus, if we want to transform π into a more specific distri-
bution π′, by changing only πi(ai) for ai ∈ Di, in order to
get an increased utility µPES

i (π′) > µPES
i (π), we have to

ensure that:

n(π′i(ai)) > µPES
i (π)⇔ π′i(ai) < n(µPES

i (π)), ∀ai ∈ Di.

This leads to the definition of π′ =IMPROVE(G, π, i):
• π′−i = π−i: Only player i changes his commitment.

• If (i) Π(Ai \ Di) < 1L or (ii) µPES
i (π) = 1L, then π

cannot be improved and π′ = π. Indeed, in the first case,
we cannot decrease the possibility of all ai in Di while
keeping a normalized distribution πi. In the second case,
there is no hope to improve µPES

i (π).

• If Π(Ai \Di) = 1L and µPES
i (π) < 1L, then

π′i(ai) = πi(ai), ∀ai ∈ Ai \Di and

π′i(ai) = min
(
πi(ai), n(µPES

i (π))
)
, ∀ai ∈ Di.

Given the above definition of the IMPROVE function, one
can prove the following results:
Proposition 2 (Improvement function)
Let G = 〈N, (Ai)i∈N , (µ

PES
i )i∈N 〉 be an ordinal game. Let

also π be a joint possibilistic mixed strategy and i ∈ N be a
player. Then, the following facts hold:

1. IMPROVE(G, π, i) is normalized.
2. IMPROVE(G, π, i) � π.
3. If IMPROVE(G, π, i) ≺ π, µPES

i (IMPROVE(G, π, i)) >
µPES
i (π). Else, IMPROVE(G, π, i) = π.

4. For any joint possibilistic mixed strategy π′′ such that
IMPROVE(G, π, i) ≺ π′′ � π, we have:

µPES
i (π′′) = µPES

i (π) < µPES
i (IMPROVE(G, π, i)).

5. If π′ = IMPROVE(G, π, i), then, ∀j ∈ N , ∀aj ∈ Aj

µPES
j (aj , π

′
−j) ≥ µPES

j (aj , π−j) and µPES
j (π′) ≥

µPES
j (π).

Proof:
1. IMPROVE(G, π, i) only changes (potentially) πi. And

when it does, we have taken the caution that the corre-
sponding π′i remains normalized.

2. The only potential change in π′ =IMPROVE(G, π, i) oc-
curs when π′i(ai) ← min

(
πi(ai), n(µPES

i (π))
)

. And,
obviously, π′i(ai) ≤ πi(ai). So, π′i � πi and π′ � π.

3. Note that if IMPROVE(G, π, i) = π′ ≺ π, then
(i) π′−i = π−i,
(ii) ∀ai ∈ Ai \Di, π

′
i(ai) = πi(ai) and

(iii) ∀ai ∈ Di, π
′
i(ai) ≤ n(µPES

i (π)) and

µPES
i (π′) = µPES

i (π′i, π−i),

= min
ai∈Ai

max
(
n(π′i(ai)), µ

PES
i (ai, π−i)

)
,

≥ min
ai∈Di

max
(
n(π′i(ai)), µ

PES
i (ai, π−i)

)
,

≥ min
ai∈Di

max
(
µPES
i (π), µPES

i (ai, π−i)
)
,

≥ µPES
i (π) > µPES

i (π).

The “else” part is trivial since
(
π′ � π and π′ 6≺ π

)
⇒

π′ = π.

4. We proved in 3. that ∀ai ∈ Di, π
′
i(ai) = n(µPES

i (π)).
Then, since π′−i = π−i and ∀ai ∈ Ai \ Di, π′i(ai) =
πi(ai), we get: π′ ≺ π′′ ⇒ ∃ai ∈ Di,

π′′i (ai) > π′i(ai),

⇔ n(π′′i (ai)) ≤ µPES
i (π),

⇔ max
(
n(π′′i (ai)), µ

PES
i (ai, π−i)

)
≤ max

(
µPES
i (π), µPES

i π−i(ai)
)

= µPES
i (π).

Thus, µPES
i (π′′) ≤ µPES

i (π). The other direction
µPES
i (π′′) ≥ µPES

i (π), comes from the specificity re-
lation π′′ � π.

5. First, note that if π′ = IMPROVE(G, π, i), π′ only differs
from π in its component π′i and π′i � πi. Then, note that,
∀j ∈ N \ i, aj ∈ Aj :

µPES
j (aj , π

′
−j) = min

a−j∈A−j

max
(
n(π′i(ai)),

max
k∈N\{j,i}

n(πk(ak)), µk(a)
)
,

≥ min
a−j∈A−j

max
(
n(πi(ai)),

max
k∈N\{j,i}

n(πk(ak)), µk(a)
)
,

≥ µPES
j (aj , π−j).

In addition, since µPES
i (ai, π

′
−i) does not need π′i to be

computed, we have µPES
i (ai, π

′
−i) = µPES

i (ai, π−i).
Now, since, ∀j ∈ N ,

µPES
j (π′) = min

aj∈Aj

max
(
n(π′j(aj)), µ

PES
j (aj , π

′
−j)
)
,

and we have both π′ � π (implying
n(π′j(aj)) ≥ n(πj(aj)), ∀j, aj) and µPES

j (aj , π
′
−j) ≥

µPES
j (aj , π−j), then: µPES

j (π′) ≥ µPES
j (π), ∀j ∈ N .

�

Properties 1, 2 and 3 in Proposition 2 show that
IMPROVE(G, π, i) is at least as specific as π and strictly im-
proves the utility of player i or leaves π unchanged. Property
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5 shows that IMPROVE(G, π, i) does not decrease the util-
ities of other players than i. Property 5 will be especially
useful for proving Proposition 3. Finally, property 4 shows
that IMPROVE(G, π, i) is the least specific improvement of π
to player i, when it changes π. Note that the complexity of
IMPROVE is dominated by that of the computation of the set
of tables {µPES

i (ai, π−i)}i∈N,ai∈Ai
. These can be computed

in time polynomial in |G|. Therefore, IMPROVE(G, π, i) can
itself be performed in polynomial time.

3.2 An Algorithm for the Construction of
Possibilistic Nash Equilibria

We exploit procedure IMPROVE in an algorithm which com-
putes a possibilistic mixed equilibrium of an ordinal game.

Data: G = 〈N, (Ai)i∈N , (µi)i∈N 〉
Result: π∗ = (π∗1 , . . . , π

∗
n), a ΠME

π0 ← (π0
1 , . . . , π

0
n) ; /* π0

i (ai) = 1L, ∀i, ai */
t← 0 ;
repeat

πloc ← πt ;
for i = 1 . . . n do πloc ← IMPROVE (G, πloc, i);
πt+1 ← πloc ;
t← t+ 1 ;

until πt = πt−1;
return π∗ = πt ;

Algorithm 1: Algorithm which computes a possibilistic
mixed equilibrium.

We have to show that Algorithm 1, which performs iter-
ates of the IMPROVE procedure, converges. In addition, we
will show that it converges towards a possibilistic mixed equi-
librium of the ordinal game G and that convergence occurs
within time polynomial in the expression of G.

Proposition 3 (Convergence)
Algorithm 1 converges in a finite number of steps and conver-
gence occurs in time polynomial in the size of G.

Proof: First, note that the outer loop of the algorithm requires
n calls to the function IMPROVE per iteration. Then, note
that by Prop. 2, result 3, π′ =IMPROVE(G, π, i) is either
more specific than π, or equal to π and that π′ can only dif-
fer from π in its component π′i. Finally, note that the number
of possible strict improvements of a player i’s mixed strategy
πi : Ai → L is upper bounded by |L| × |Ai|: For each im-
provement, one of the |Ai| coordinates of the mixed strategy
is decreased, and each coordinate belongs to L.

Therefore, Algorithm 1 converges after at most n × |L| ×
|Ai| calls to the IMPROVE procedure, which itself takes time
polynomial in the size of the expression of G. �

Proposition 4 (Soundness)
If Algorithm 1 has converged towards π∗, then π∗ is a possi-
bilistic mixed equilibrium of G.

Proof: Since π∗ has been obtained after convergence of Al-
gorithm 1, it verifies : π∗ = IMPROVE(G, π∗, i), ∀i ∈ N .

This implies that ∀i ∈ N, ∀πi, µPES
i (π∗) ≥

µPES
i (πi, π

∗
−i), that is, π∗ is a Nash equilibrium. �

Example 3 (Illustration of Algorithm 1) L = {0, · · · , 4}.
Let us consider the previous ordinal game: Let us start with

E

N
X Y

X (2,2) (1,4)
Y (1,3) (2,0)

π0
E = π0

N = [4; 4], that is, π0
E(X) = π0

N (X) = π0
E(Y ) =

π0
N (Y ) = 4: Uncertainty is maximal. Now,

µPES
E (X,π0

−E) = min
aN∈{X,Y }

max
(
n
(
π0
N (aN )

)
, µE(X, aN )

)
= min (µE(X,X), µE(X,Y )) = 1.

µPES
E (Y, π0

−E) = min (µE(Y,X), µE(Y, Y )) = 1.

µPES
N (X,π0

−N ) = min (µN (X,X), µN (Y,X)) = 2.

µPES
N (Y, π0

−N ) = min (µN (X,Y ), µN (Y, Y )) = 0.

Furthermore, µPES
E (π0) = 1, µPES

N (π0) = 0, A∗N =
{Y } and A∗E = {X,Y }. Since AE \ A∗E = ∅,
IMPROVE(G, π0, E) = π0. Since AN \ A∗N = {X},
we get IMPROVE(G, π0, N) = [π0

N (X);n(µPES
N (π0))] =

[4; 3]. Another round of improvement does not give any-
more changes. So, π∗ = (π∗E , π

∗
N ), where π∗E = [4; 4] and

π∗N = [4; 3], forms a possibilistic mixed equilibrium of the
ordinal game.

4 Concluding Remarks and Future Work
In this paper, we have proposed first steps towards the def-
inition of possibilistic mixed equilibria in ordinal game the-
ory. Our main contribution has been to show that possibilis-
tic mixed Nash equilibria exist for all possibilistic games and
can be computed in polynomial time. This contribution offers
several perspectives:

Concisely expressed games. Possibility theory can be em-
bedded nicely in logic, to provide enhanced reasoning tools.
[De Clercq et al., 2014] have studied the possibility and ne-
cessity of the existence of ONE in games expressed in pos-
sibilistic logic. Considering mixed possibilistic equilibria in
possibilistic boolean games would be natural. Of course, it
is likely that possibilistic mixed equilibrium computation be-
comes NP-hard.

Competitive Markov Decision Processes. These, also
called stochastic games [Filar and Vrieze, 1997] extend both
Markov Decision Processes [Puterman, 1994] and games.
Possibilistic Markov Decision Processes have been defined
in [Sabbadin et al., 1998; Sabbadin, 2001]. Possibilistic com-
petitive MDP are a natural extension to possibilistic MDP.

Partial observability. Games with incomplete informa-
tion [Harsanyi, 1967; Myerson, 1991] are a first way to deal
with partial observability. A second way is Partially Ob-
served Stochastic Games (POSG) [Sorin, 2002], which ex-
tend both Partially Observed MDP [Cassandra et al., 1994]
and games. Such an extended framework could also be de-
veloped in the possibilistic case, by grounding it on the pos-
sibilistic POMDP framework [Sabbadin, 2001].
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Jérôme Lang. Towards qualitative approaches to multi-
stage decision making. International Journal of Approxi-
mate Reasoning, 19:441–471, 1998.

[Sabbadin, 2001] Régis Sabbadin. Possibilistic Markov de-
cision processes. Engineering Applications of Artificial
Intelligence, 14:287–300, 2001.

[Sorin, 2002] Sylvain Sorin. A first course in zero-sum re-
peated games. Springer, 2002.

[Von Neumann and Morgenstern, 1948] John Von Neumann
and Oskar Morgenstern. Theory of games and economic
behavior. 1948.

[Xu, 2000] Chunhui Xu. Computation of noncooperative
equilibria in ordinal games. European Journal of Oper-
ational Research, 122:115–122, 2000.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

111


