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Abstract

In the classical multi-armed bandit problem, d arms are available to the decision maker who pulls
them sequentially in order to maximize his cumulative reward. Guarantees can be obtained on a relative
quantity called regret, which scales linearly with d (or with

√
d in the minimax sense). We here consider

the sparse case of this classical problem in the sense that only a small number of arms, namely s <
d, have a positive expected reward. We are able to leverage this additional assumption to provide an
algorithm whose regret scales with s instead of d. Moreover, we prove that this algorithm is optimal
by providing a matching lower bound – at least for a wide and pertinent range of parameters that we
determine – and by evaluating its performance on simulated data.

1 Introduction

We consider the celebrated stochastic multi-armed bandit problem Robbins (1985), where a decision maker
sequentially samples from d > 1 processes, also called arms, aiming at maximizing its cumulative reward.
Specifically, those arms are characterized by their distributions ν1, . . . , νd and pulling arm i ∈ [d] :=
{1, ..., d} at time t yields a reward Xi(t) ∼ νi, the sequence (Xi(t))t>1 being assumed to be i.i.d. There are
many motivations behind the study of those models, ranging from random clinical trials, to maximization of
the click through rate, portfolio optimization, etc.
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An algorithm (or policy) maps anterior observations to the next arm I(t) ∈ [d] to be pulled. The
performance of a given algorithm is evaluated by its cumulative regret Reg(T ) defined as the difference
between the rewards gathered by the sequence (I(t))16t6T and those that might have been obtained in
expectation by always behaving optimally, that is, by pulling the arm with maximal mean µi := Eνi [X] at
each round:

Reg(T ) = Tµ∗ −
T∑
t=1

XI(t)(t) where µ∗ = max
i∈[d]

µi .

The classical multi-armed bandit problem is now well understood, and there exist algorithms minimizing
the regret such that

E [Reg(T )] .
∑
i∈[d]
∆i>0

log(T )

∆i
, where ∆i = µ∗ − µi ,

and where the notation . indicates that the inequality holds up to some universal multiplicative constants
and some additive constants1. Converse statements have also been proved, first by Lai and Robbins (1985)
and then by Burnetas and Katehakis (1996): Any consistent policy (i.e. whose regret is always less than Tα

for all α > 0) always have a regret larger than
∑d

i=1
log(T )

∆i
(again, up to some constants).

When T is fixed and the parameters µi are chosen to maximize regret, the distribution-independent
bounds are of order

√
dT as first shown in Cesa-Bianchi and Lugosi (2006).

The main drawback of those results is that the regret scales linearly with the number of arms d,or with√
d in the minimax analysis. Since upper and lower bounds match, this is actually ineluctable. On the other

hand, we aim at leveraging an additional assumption to reduce that (linear) dependency in d and even get rid
of it, if possible. We therefore define and investigate the sparse bandit problem (SPB) where the decision
maker knows a priori that only s of the d arms have a significant mean µi.

Specifically, we assume that exactly s arms have positive means2. Without loss of generality, we number
the arms in nonincreasing order and write

µ∗ = µ1 > µ2 > · · · > µs > 0 > µs+1 > · · · > µd.

A key quantity will be the lowest positive mean µs: if µs is arbitrarily close to 0, then the sparsity assumption
is useless. On the other side of the spectrum, if µs � 0, then the sparsity assumption will turn out to be
helpful.

Informally, we aim at replacing the dependency in the total number of arms d with the same dependency
in the number s of arms with positive means. In other words, we wish to achieve an upper bound of the
following kind

E [Reg(T )] .
∑
i∈[s]
∆i>0

log(T )

∆i
,

whenever this is possible. Notice that the above is precisely the optimal regret bound if the agent knew in
advance which are s arms with positive means. In the worst case, this gives a distribution independent upper
bound of the order of

√
sT instead of the classical

√
dT (up to logarithmic terms).

1We focus, for the sake of clarity, on the leading terms in T with explicit dependencies in the different parameters of the
problems.

2Equivalently, we could be given a threshold τ and the exact number s of arms with means strictly greater than τ .
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The Sparse Bandit problem is therefore a variation of the classical stochastic multi-armed bandit problem
(see Bubeck and Cesa-Bianchi (2012) for a survey) in which the agent knows the number of arms with
positive means.

There have been some works regarding sparsity assumptions in bandit problems. In the full information
setting, some of them focus on sparse reward vectors, i.e., at most s components of (X1(t), . . . , Xd(t)) are
positive (see for instance Langford et al. (2009); Kwon and Perchet (2016)). Another considered problem is
the one of sparse linear bandits Carpentier et al. (2012); Abbasi-Yadkori et al. (2012); Gerchinovitz (2013);
Lattimore et al. (2015) in which the underlying unknown vector of parameter is assumed to be sparse – that
is with a constraint on its L1 norm – or even spiky in the crude and very specific case where s = 1 Bubeck
et al. (2013). However, none of the previously cited work tackles the following concrete problem. Assume
that you are planning a marketing campaign for wich you have thousands of possible products to display.
Most probably, many of them will be similar and have similar, very low expected returns but you do not
have any possibility to know that in advance. In many common datasets such as Yandex’s one 3, depending
on the query it is usual to have only 50 items out of 1500 that can be considered as relevant. Consequently,
in order to avoid exploring thoses bad items, you want to be able to set rules to eliminate them as quickly as
possible and get a regret that scales in the number of good arms.

1.1 Contributions

We introduce and investigate the sparse bandits problem by deriving an asymptotic lower bound on the
regret. We give an analogous result to the seminal bound of Lai and Robbins (1985), and we construct an
anytime algorithm SPARSEUCB that uses the optimistic principle of Auer et al. (2002) together with the
sparsity information available in order to reach optimal performance, up to constant terms.

Concretely, the lower bound that we prove distinguishes the possible behavior of any uniformly efficient
algorithm according to the value of the sparsity information available to the agent. To fix ideas, assume that
µ1 = 1 and for 2 6 i 6 s, µi = µ, ∆i = ∆ = 1− µ. Then, we show that, if ds >

∆
µ2

+ 1, the sparsity of the
problem is highly relevant so that regret is asymptotically lower-bounded as

lim inf
T→+∞

Reg(T )

log(T )
> max

{ s

2∆
,
s∆

2µ2

}
=

s

2∆
, if µ >

1

2
.

The performance of the SPARSEUCB algorithm matches the lower bound as it guarantees

Reg(T ) . max
{s log(T )

2∆
,
s∆ log(T )

2µ2

}
=
s log(T )

2∆
, if µ >

1

2
.

2 The Stochastic Sparse Bandits Problem

We consider the classical stochastic multi-armed bandit problem, where a decision maker samples sequen-
tially from d ∈ N i.i.d. processes ((Xi(t))t>1)i∈[d]. We will keep denoting by νi the probability distribution
of Xi(t) and Eνi [Xi(t)] = µi its mean.

The decision maker pulls at stage t > 1 an arm I(t) ∈ [d], and receives reward Xi(t) which is his
only observation (specifically, he does not observe Xi(t) for i 6= I(t)). The (expected) cumulated reward
of the decision maker after T > 1 stages is then

∑T
t=1 µI(t) and his performance is evaluated through his

3see https://www.kaggle.com/c/yandex-personalized-web-search-challenge
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regret, defined as the difference between the highest possible expected reward (had the means µ1, . . . , µd
been known in advance), and the actual reward. In other words:

Reg(T ) := Tµ∗ −
T∑
t=1

XI(t)(t), where µ∗ = max
i∈[d]

µi.

If we introduce the notations ∆i = µ∗ − µi and Ni(t) :=
∑t−1

τ=1 1{I(τ) = i}, the number of times the
decision maker pulled arm i up to time t− 1, then the expected regret writes

E [Reg(T )] =
d∑
i=1

∆iE [Ni(T + 1)] .

This expression indicates that the (expected) regret should scale with d. And this is indeed the case without
further assumption to leverage.

Assumption 1. s arms have positive means (i.e., µi > 0), while the other d − s arms have nonpositive
means (i.e., µi′ 6 0).

An arm with positive (resp. nonpositive) mean will also be refered to as good (resp. bad). In the re-
maining of the paper, we will assume, without loss of generality and to simplify notation, that the means are
re-ordered in nonincreasing order:

µ1 > µ2 > . . . > µs > 0 > µs+1 > . . . > µd .

We will also denote by Xi(n) the empirical mean of the n first realizations of arm i so that

Xi(Ni(t)) =
1

Ni(t)

t−1∑
τ=1

1{I(τ) = i}Xi(τ),

with the convention that Xi(0) = 0. Besides, we assume that the distributions νi are sub-Gaussians, mean-
ing that for all arm i ∈ [d] and all a > 0 and t > 1, we have

P [|Xi(t)− µi| > a] 6 2e−a
2/2.

For instance, this is the case if the Xi(t) are assumed to be bounded, with support included in [−1, 1].
Together with a Chernoff bound, one can easily see that this implies for all arm i ∈ [d] and all a > 0 and
n > 1,

P
[
Xi(n)− µi > a

]
6 e−na

2/2.

3 Lower Bound

This section is devoted to proving a lower bound on the regret of any uniformly efficient algorithm for the
sparse bandit problem. To avoid too heavy expressions, the lower bound we establish holds for problems
where the bad arms have a null expected reward, though handling general negative means does not require
huge modifications from the given proof. Our goal is to provide a result that is easily generalizable to any
stochastic bandit problem containing a sparsity information in the form of a threshold on the values of the
expected return of the arms of interest. A generalization of the presented bound can be found in Appendix
B.
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Definition 1. An algorithm is uniformly efficient if for any sparse bandit problem and all α ∈ (0, 1], its
expected regret satisfies E [Reg(T )] = o(Tα).

We state the bound for Gaussian bandit models with a fixed variance equal to 1/4. In that case, a
distribution is simply characterized by its mean µ and the Kullback-Leibler (KL) divergence between two
models µ and µ′ is equal to 2(µ− µ′)2. Consider

S(d, s) =
{
µ = (µ1, . . . , µd) ∈ Rd+

∣∣∣µ has exactly s positive components
}
.

Theorem 1. Let µ ∈ S(d, s) such that its components are nonincreasing:

µ1 > µ2 > · · · > µs > µs+1 = · · · = µd = 0,

and we denote ∆i = µ1 − µi for all i ∈ [d]. Then, for any uniformly efficient algorithm, played against
arms whose distributions are Gaussian with variance 1/4 and with respective means µ1, . . . , µd, one of the
following asymptotic lower bounds hold.

• If d−sµ1 −
∑

i∈[s]
∆i>0

∆i

µ2i
> 0,

lim inf
T→∞

Reg(T )

log(T )
>
∑
i∈[s]
∆i>0

max
{ 1

2∆i
,

∆i

2µ2
i

}
(1)

• otherwise, there exist k 6 s such that d−sµ1 −
∑s

i=k
∆i

µ2i
< 0, and the lower bound is

lim inf
T→∞

Reg(T )

log(T )
>
∑
i∈[k]
∆i>0

1

2∆i
+

s∑
i=k+1

µ2
k

µ2
i

∆i

2∆2
k

+
(d− s)

2µ1

(
1− µ2

k

∆2
k

)
. (2)

Remarks. Since the decision maker has more knowledge on the parameters of the problem than in the
classical multi-armed bandit problem, we expect the lower bound to be less than the traditional one (without
the sparsity assumption), which is

lim inf
T→∞

Reg(T )

log(T )
>
∑
i∈[d]
∆i>0

1

2∆i
.

Indeed, since the max is smaller than the sum, in the first case, we have∑
i∈[s]
∆i>0

max
{ 1

2∆i
,

∆i

2µ2
i

}
6
∑
i∈[s]
∆i>0

1

2∆i
+
∑
i∈[s]
∆i>0

∆i

2µ2
i

6
∑
i∈[s]
∆i>0

1

2∆i
+
d− s
µ1

=
∑
i∈[d]
∆i>0

1

2∆i
.

Similarly, in the second case, we get that

k∑
i=1

1

2∆i
+

s∑
i=k+1

µ2
k

µ2
i

∆i

2∆2
k

+
(d− s)

2µ1

(
1− µ2

k

∆2
k

)

=
∑
i∈[d]
∆i>0

1

2∆i
− µ2

k

∆2
k

( d− s
2µ1

−
s∑

i=k+1

∆i

2µ2
i︸ ︷︷ ︸

>0

)
−

s∑
i=k+1

1

2∆i
.
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Moreover, if ∆s
µ2s

> d−s
µ1

, then both lower bounds match. Stated otherwise, the sparsity assumption is irrele-
vant as soon as

µs 6 µ1
−1 +

√
1 + 4(d− s)

2(d− s) ' µ1√
d− s

.

Proof. The proof relies on changes of measure arguments originating from Graves and Lai (1997). First,
consider the set of changes of distributions that modify the best arm without changing the marginal of the
best arm in the original sparse bandit problem:

B(µ) =

{
µ′ ∈ S(d, s)

∣∣∣∣µ′1 = µ1 and max
i∈[d]

µi < max
i∈[d]

µ′i

}
.

Concretely, if one considers an alternative sparse bandit model µ′ such that one of the originally null arms
becomes the new best arm, then one of the originally non-null arms in µ must be taken to zero in µ′ in order
to keep the sparse structure of the problem.

In general, the equivalent of Th. 17 in (Kaufmann et al., 2015) or Proposition 3 in (Lagrée et al., 2016)
can be stated in our case as follows: For all changes of measure µ′ ∈ B(µ),

lim inf
T→∞

∑d
i=1 2E[Ni(T + 1)](µi − µ′i)2

log(T )
> 1. (3)

Details on this type of informational lower bounds can be found in Garivier et al. (2017.To appear.) and
references therein. Now, following general ideas from Graves and Lai (1997) and lower bound techniques
from Lagrée et al. (2016) and Combes et al. (2015), we may give a variational form of the lower bound on
the regret satisfying the above constraint.

lim inf
T→∞

Reg(T )

log(T )
> inf

c∈C

∑
i∈[d]

ci∆i, (4)

where the set C corresponds to constraints that are directly implied by Eq.(3) above:

C =

(ci)i∈[d] ∈ Rd+

∣∣∣∣∣∣∀µ′ ∈ B(µ), 2
∑
i∈[d]

ci(µi − µ′i)2 > 1

 .

We aim at obtaining a lower bound of the infimum from Eq.(4). In this constrained optimization problem,
the constraints set is huge because every change of measure µ′ ∈ B(µ) must satisfy (3). On the other side,
relaxing some constraints – or considering only a subset of B(µ)– simply allows to reach even lower values
4.

We consider C̃ defined as

C̃ =

{
(ci)i∈[d] ∈ Rd+

∣∣∣∣∣ for all i ∈ [s] \ {1} and j ∈ [d] \ [s],
ci∆

2
i > 1/2

cjµ
2
1 + ciµ

2
i > 1/2

}

and we prove that C is a subset of C̃, namely that there are more acceptable vectors of coefficients in C
allowing us to reach lower values of the argument.

4At that point, we may lose the optimality of the finally obtained lower bound but this is a price we accept to pay in order to
obtain a computable solution.
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µ⇤0 µi
µs+1, . . . , µd

µ0
j = µ⇤

i � s, µ0
i = 0

µ⇤µs+1, . . . , µd µj

µ0
j = µ⇤

µs µs

Figure 1: Illustration of the various changes of distribution considered in B(µ)

Let (ci)i∈[d] ∈ C and let us prove that it belongs to C̃. Let i ∈ [s] \ {1}, γ > 0 and consider µ(i,γ) ∈ Rd
defined as the following modification of µ:

µ
(i,γ)
k =

{
µ1 + γ if k = i

µk otherwise,
k ∈ [d].

We easily see that µ(i,γ) belongs to B(µ). Therefore, by definition of C, (ci)i∈[d] satisfies:∑
k∈[d]

ck(µk − µ(i,γ)
k )2 >

1

2
,

which, by definition of µ(i,γ) boils down to ci(∆i + γ)2 > 1/2. This being true for all γ > 0, we have
ci∆

2
i > 1/2. The first condition in the defintion of C̃ is then satisfied.
Similary, for i ∈ [s] \ {1}, j ∈ [d] \ [s] and γ > 0 we consider µ(i,j,γ) ∈ Rd defined by:

µ
(i,j,γ)
k =


0 if k = i

µ1 + γ if k = j

µk otherwise,

k ∈ [d].

µ(i,j,γ) also belongs to B(µ). By definition of C, (ci)i∈[d] satisfies:∑
k∈[d]

ck(µk − µ(i,j,γ)
k )2 >

1

2
,

which boils down to ciµ2
i +cj∆

2
j > 1/2 (after taking the infinimum over γ > 0). Since ∆j = µ1, the second

condition in the definition of C̃ is satisfied. We have proved that (ci)i∈[d] belongs to C̃ and consequently that
C is a subset of C̃. Therefore,

lim inf
T→+∞

Reg(T )

log(T )
> inf

c∈C

∑
i∈[d]

ci∆i > inf
c∈C̃

∑
i∈[d]

ci∆i.

The computation of the optimization problem over C̃ is deferred to Appendix A.

Remark 1. This is a linear optimization problem under inequality constraints so there exist algorithmic
methods such as the celebrated Simplex algorithm Dantzig (2016) to compute a numeric solution of it.
Nonetheless, in our case, it is possible to give an explicit solution.
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4 Sparse UCB

4.1 The SPARSEUCB algorithm

The SPARSEUCB algorithm is formally defined in Algorithm 1 but let us first provide an informal descrip-
tion. The algorithm can be in different phases (denoted r, f and u), depending on past observations, and its
behavior radically changes from one phase to another. At each time t > 1, the variable ω(t) ∈ {r, f, u} will
specify the phase the algorithm is in. The variable is not useful for the algorithm itself, but will be handy
for reference in the analysis. We now describe the different phases.

Round-robin The algorithm starts with a round-robin phase, which corresponds to ω(t) = r. Each of the
d arms is pulled once successively.

Then, for each time t > d+ 1, the following sets are defined:

J (t) :=

{
i ∈ [d]

∣∣∣∣∣Xi(Ni(t)) > 2

√
log(Ni(t))

Ni(t)

}
,

K(t) :=

{
i ∈ [d]

∣∣∣∣∣Xi(Ni(t)) > 2

√
log(t)

Ni(t)

}
.

We will refer to the arms in J (t) as the active arms and those in K(t) as active and sufficiently
sampled.

If there are less than s active arms, i.e., |J (t)| < s, the algorithm enters a round-robin phase, and
pulls each arm successively. This implies that ω(t) = r for the next d stages.

Force-log If there are at least s active arms, but less than s sufficiently sampled arms (|K(t)| < s), the
algorithm enters a force-log phase (ω(t) = f). In this phase, the algorithm pulls any arm in the set
J (t) \ K(t).

UCB If the set K(t) contains at least s arms, the algorithm enters a UCB phase (ω(t) = u). The algorithm
selects an arm in K(t) according to the UCB rule, i.e. it chooses the arm i ∈ K(t) which maximizes
the quantity:

Xi(Ni(t)) + 2

√
log(t)

Ni(t)
.

The pseudo-code of the whole procedure is given in Algorithm 1 and the skeleton in Figure 2.
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round-robin • •

force-log

UCB
if |J (t)| < s

if |J (t)| > s

if |K(t)| < s

if |K(t)| > s

Figure 2: Skeleton of the SPARSEUCB algorithm. Each • corresponds to a conditional statement, where
each departing arrow corresponds to a condition (which is written midway).

Input: the total number of arms d and the number of arms with positive means s
Initialization: t← 1

for k = 1 . . . d do /* round-robin */
I(t)← k
ω(t)← r
t← t+ 1

end
while t 6 T do

Compute J (t)←
{
i ∈ [d]

∣∣∣Xi(Ni(t)) > 2
√

log(Ni(t))
Ni(t)

}
Compute K(t)←

{
i ∈ [d]

∣∣∣Xi(Ni(t)) > 2
√

log(t)
Ni(t)

}
if |J (t)| < s then

for k = 1 . . . d do /* round-robin */
I(t)← k
ω(t)← r
t← t+ 1

end
else if |K(t)| < s then /* force-log */

I(t) ∈ J (t) \ K(t)
ω(t)← f
t← t+ 1

else /* UCB */

I(t) ∈ arg maxi∈K(t)

{
Xi(Ni(t)) + 2

√
log(t)
Ni(t)

}
ω(t)← u
t← t+ 1

end
end

Algorithm 1: SPARSEUCB
The broad idea is that the algorithm should quickly identify the s good arms, and then pull those arms

according to an UCB rule (or, alternatively, any other policy). At the end, only those s good arms would be

9



pulled an infinite number of times.
The set J (t) of active arms is defined in such a way that the expected number of pulls needed for a

good arm to become active is finite. Therefore, only a finite number (in expectation) of round-robin phases
is needed for all s good arms to become active (see Lemma 7).

Reciprocally, a bad arm (with non-positive mean) is only pulled while active, that is a finite number of
times in expectation. The main issue occurs when a bad arm happens to be active. In that case, the delay
between two successive pulls of an active null arm typically increases exponentially fast because the regret
scales with log(t). Consequently, it would take an exponential number of stages for this arm to become
inactive again. And this could be dramatic for the regret if the best arm was, at the same time, inactive, as
the regret would increase by a fixed constant of at least ∆2 on all those stages. The purpose of the force-log
phases is to make sure that each active arm gets pulled sufficiently often so that the expected number of steps
a bad arm remains active is finite. If the best arm happened to be inactive, then the number of active arms
would drop below s, and performing a round-robin phase would allow it to quickly become active again.

Theorem 2. The SPARSEUCB algorithm guarantees

E [Reg(T )] . log(T )
∑
i∈[s]
∆i>0

(
1

∆i
+

∆i

µ2
i

)
,

where notation . removes universal multiplicative constants and additive data-dependant constants. The
detailed statement can be found in Appendix C.

4.2 Sketch of the proof

We decompose the event {I(t) = i} of a good arm i ∈ [s] being pulled at time t > 1 with respect to the
different phases of SPARSEUCB:

{I(t) = i} = Ri(t) t Fi(t) t Ui(t) t Vi(t), t > 1, (5)

where the different events are defined as follows:

• Ri(t) := {I(t) = i, ω(t) = r} is event of arm i being pulled at time t during a round-robin phase;

• Fi(t) := {I(t) = i, ω(t) = f} is the event of arm i being pulled at time t during a force-log phase;

• Ui(t) := {I(t) = i, ω(t) = u, 1 ∈ K(t)} is the event of arm i being pulled at time t during a UCB
phase while the optimal arm is active and sufficiently sampled;

• Vi(t) := {I(t) = i, ω(t) = u, 1 6∈ K(t)} is the event of arm i being pulled at time t during a UCB
phase while the optimal arm is not active or not sufficiently sampled.

For the bad arms i ∈ {s+ 1, . . . , d}, we consider a simpler decomposition. For t > d+ 1, we introduce
Ai(t) := {I(t) = i, i ∈ J (t)}, which is the event of arm i being pulled at time t while active, so that

{I(t) = i} = Ri(t) tAi(t), t > 1,

see, e.g. Property (v) from Lemma 6.
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Using the above decompositions, we can write the regret as:

E [Reg(T )] =
∑
i∈[d]
∆i>0

∆iE

[
T∑
t=1

1 {Ri(t)}
]

+
∑
i∈[s]
∆i>0

∆iE

[
T∑
t=1

1 {Fi(t)}
]

+
∑
i∈[s]
∆i>0

∆iE

[
T∑
t=1

1 {Ui(t)}
]

+
∑
i∈[s]
∆i>0

∆iE

[
T∑
t=1

1 {Vi(t)}
]

+
d∑

i=s+1

∆iE

[
T∑
t=1

1 {Ai(t)}
]
.

We upper-bound independently the five above quantities. For the sake of clarity, we only provide here
the main ideas of proof. A detailed analysis can be found in Appendix C.

Lemma 1. The regret induced the round-robin phases is controlled by:

E

[
+∞∑
t=1

1 {Ri(t)}
]
6 1 + 3s+ 8

s∑
j=1

1

µ2
j

(
1 + 4 log

(
16

µ2
j

))
, i ∈ [d].

Main argument of proof. The algorithm performs a round-robin phase only if less than s arms are
active, thus necessarily when one of the good arms j ∈ [s] is not active. This implies that Xj(Nj(t)) <

2
√

log(Nj(t))
Nj(t) . The probability of this happening decreases exponentially fast and as a consequence, the

expected number of round-robin phases is bounded. 2

Lemma 2. The regret induced by a good arm i ∈ [s] during force-log phases is controlled by:

E

[
T∑
t=1

1 {Fi(t)}
]
6

16 log(T ) + 8

µ2
i

.

Main argument of proof. Arm i ∈ [s] is pulled during a force-log phase if its empirical mean is

below 2
√

log(t)
Ni(t)

. Because arm i has a positive mean, the probability of this happening turns out to decrease

exponentially, as soon as Ni(t) >
16 log(T )

µ2i
. Therefore, the expected number of times arm i is pulled during

a force-log phase is bounded by 16 log(T )
µ2i

plus a constant term. 2

Lemma 3. The regret induced by a good arm i ∈ [s] during UCB phases, while 1 ∈ K(t), is controlled by

E

[
T∑
t=1

1 {Ui(t)}
]
6

16 log(T ) + 8

∆2
i

+ 3.

Main argument of proof. The proof basically follows the steps of the classic UCB analysis by Auer
et al. (2002). 2

Lemma 4. The regret induced by good arms during UCB phases, while 1 6∈ K(t), is controlled by:

∑
i∈[s]

∆iE

[
T∑
t=1

1 {Vi(t)}
]
6
d∆sπ

2

6
.

11



Main argument of proof. The algorithm performs a UCB phase if the set K(t) has at least s arms. If it
does not contain the best arm 1, it must necessarily contain an arm j ∈ {s+ 1, . . . , d}, i.e. with nonpositive

mean. As a consequence, the empirical mean of arm j is above 2
√

log(t)
Nj(t) . Because arm j has a nonpositive

mean, the probability of this happening turns out to decrease as t−1/2. Consequently, the expected number
of times a good arm is pulled during a UCB phase while the best arm does not belong to K(t) is finite. 2

Lemma 5. The regret induced by a bad arm i ∈ {s+ 1, . . . , d} while active is controlled by:

E

[
+∞∑
t=1

1 {Ai(t)}
]
6
π2

6
.

Main argument of proof. Arm i is active if its empirical mean is above 2
√

log(Ni(t))
Ni(t)

. Because its mean

is nonpositive, this happens with a total probability of the order of
∑
t−2. Therefore, the regret incurred

when i is active is bounded. 2

It only remains to combine the above results, to upper bound the expected regret as

E [Reg(T )] . log(T )
∑
i∈[s]
∆i>0

(
1

∆i
+

∆i

µ2
i

)
+ d

s∑
j=1

µ1 log(1/µ2
j )

µ2
j

,

where we omitted multiplicative universal constants. We emphasize the fact that the last term is independent
of T , hence the dominating term is

E [Reg(T )] . log(T )
∑
i∈[s]
∆i>0

max

{
1

∆i
,
∆i

µ2
i

}
.

5 Optimality, ranges of sparsity and constants optimization

We prove in this section that the algorithm SPARSEUCB is optimal, up to multiplicative factor, for a wide
range of parameters. For this purpose, we recall the different bounds we obtained, up to multiplicative
universal constants and additive data-dependent constants.

5.1 Strong sparsity

The regime of strong sparsity is attained when d−s
µ1
−∑ i∈[s]

∆i>0

∆i

µ2i
> 0. In that case, the lower bound of

Theorem 1 rewrites as

lim inf
T→∞

Reg(T )

log(T )
&
∑
i∈[s]
∆i>0

max
{ 1

∆i
,
∆i

µ2
i

}

while SPARSEUCB suffers an expected regret bounded as

Reg(T )

log(T )
.
∑
i∈[s]
∆i>0

1

∆i
+

∆i

µ2
i

.
∑
i∈[s]
∆i>0

max
{ 1

∆i
,
∆i

µ2
i

}
.

12



Obviously, SPARSEUCB is optimal for all those values of parameters. More importantly, its regret scales
linearly with s and is independent of the number of arms with non-positive means.

The minimax regret of SPARSEUCB is necessarily of the same order of UCB, as they achieve the
same regret when d−s

µ1
−∑ i∈[s]

∆i>0

∆i

µ2i
is arbitrarily close to 0. So we consider instead the minimax regret

with respect to the distributions with a relative sparsity level bounded away from 0, i.e., such that for some
θ ∈ (0, 1), µs > θµ1. In particular, this yields that d−s

s > 1−θ
θ2

so that the strong sparsity assumption is
satisfied.

Then, for this class of parameters, it is quite straightforward to get that the minimax regret of UCB scales

as
√
dT log(T )

√
1 + θ

1−θ
s
d while the minimax regret of SPARSEUCB increases as

√
sT log(T )

√
(1−θ)2
θ2

+ 1.
As a consequence, for any fixed class of parameters, the dependency in the number of arms in the minimax
regret shrinks from

√
d to
√
s

5.2 Variants & small improvements

Of course, the minimax regret of SPARSEUCB exhibits an extra
√

log(T ) term, which is due to the fact that
we used UCB as a basic algorithm. In the order hand, we could have used instead of UCB, any variant such
as UCB-2, improved-UCB, ETC, MOSS... In the same line of thoughts, the threshold of the force-log phase

could also be updated to 2
√

log(T/Ni(t))
Ni(t)

so that the term
√

log(T ) can be replaced by
√

log(s), which gives
a regret scaling in

Reg(T ) .


∑

i∈[s]
∆i>0

log(T∆2
i )

∆i
+

log(Tµ2i )∆i

µ2i
in the distribution dependent sense

√
sT
√

(1−θ)2
θ2

+ 1
√

log(s) + log( (1−θ)2
θ2

+ 1) in the minimax sense

Similarly, under some additional assumptions on the probility distribution at stake, one might use KL-
UCB instead of UCB to replace the dependency in ∆i

(
1

∆2
i

+ ∆i

µ2i

)
into ∆i

(
1

KL(µi,µ∗)
+ ∆i

KL(0,µi)

)
when this

makes sense5.

Another way to slightly improve the guarantees of the algorithm is to change the round-robin phases
into sampling phases in which arms are not selected uniformly at random but with probability depending on
the past performances of the different arms, as in Bubeck et al. (2013). Unfortunately, this does not improve
the leading term (in T ) of the regret, but merely the terms uniformly bounded (in T ).

6 Experiments

This section aims at experimentally validating the theoretical results we obtained. We empirically compare
the regret of UCB and SPARSEUCB for various levels of sparsity: we either fix d and s and allow µs/∆s to
vary or conversely fix the expected returns and allow s/d to vary. According to the conclusions of Section 5,
we observe that for a range of settings, SPARSEUCB does behave near-optimally in the long run, up to
multiplicative constants. We also see that even when SPARSEUCB is not optimal, it is still almost always
preferable to UCB as soon as there is some sparsity in the problem. Without loss of generality, experiments
are performed on problems for which µ1 = 0.9 and for 2 6 i 6 s, all µi’s are equal to µs = µ1 −∆s.

5Notice that the sparse bandit problem is trivial with Bernoulli distributions.
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Figure 3: Cumulated regret of UCB and SPARSEUCB for µ∗ = 0.9, d = 15, s = 7 and, from left to right,
∆s = 0.7, 0.25, 0.1.
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Figure 4: Cumulated regret of UCB and SPARSEUCB for d = 15, µ = 0.9 and, from left to right,
s = 12, 6, 2.

6.1 Varying µs

We fix d = 15 and s = 7 such that the limit between weak and strong sparsity as defined in Section 5 is
reached at µs = 0.4. We allow ∆s to vary in [0.1, 0.7]. We compare the behavior of SPARSEUCB and
UCB for these bandit problems, and we also compute and display the lower bound of Corollary 1, that is
for the smallest class of sparse of problems containing ours – for ε = µs.

On Figure 3 we present the expected regret averaged over Monte-Carlo 100 repetitions for each exper-
iment. When the sparsity of the problem is not strong, that is when ∆s = 0.7, UCB has a lower regret
than SPARSEUCB for a long time but the asymptotic behavior of the latter tends to show that UCB will
eventually be worse in the long run. However, when the sparsity gets stronger, SPARSEUCB is much closer
to optimal than UCB and reaches a much lower regret.

6.2 Influence of the number of arms

We now fix d = 15, µ∗ = 0.9 and ∆s = 0.3 and we allow the number of effective arms s to vary in
{2, 6, 12}. Note that given the fixed parameters, the regime of weak sparsity defined in previous section
only holds when s > 10.

On Figure 4 we present the expected regret averaged over 100 Monte-Carlo repetitions. Clearly, when
s = 12, we are in the weak sparsity regime and there is no real improvement brought by SPARSEUCB as
compared to the usual UCB policy. On the contrary, as s gets smaller, SPARSEUCB gets closer and closer
to optimal.
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7 Conclusions and Open Questions

We introduced a new variation of the celebrated stochastic multi-armed bandit problem that include an ad-
ditional sparsity information on the expected return of the arms. We characterized the range of parameters
that lead to interesting sparse problems and gave a lower bound on the regret that scales in O(s log(T )) in
the Strong Sparsity domain. We provide SPARSEUCB that is a good alternative to the classical UCB in the
sparse bandit situation as it has both good theoretical guarantees and good empirical performances. How-
ever, we noticed in the experiments that for parameters lying in the Weak Sparsity domain, one would rather
switch to the classical UCB policy as the price of focusing on the s best arms paid by SPARSEUCB is too
high as compared to the resulting improvement on the regret. Moreover, it appears in many real applications
that the learner often knows the existence of s without knowing its exact value and that leverages a new and
unsolved stochastic sparse problem.
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A End of Proof of Lower Bound

Recall Theorem 1:

Theorem 2. For a Gaussian sparse bandit problem ν = (ν1, . . . , νs, νs+1, . . . , νd) ∈ S(d, s) ∈ Rd, an
asymptotic lower bound on the regret is given by the solution to the following linear optimization problem:

f(µ) > inf
c�0

ci∆i (6)

s.t. ∀i ∈ {2, ..., s}, 2ci∆
2
i > 1; (7)

∀i ∈ {2, . . . , s}, ∀j ∈ {s+ 1, ...d}, 2cjµ
2
1 + 2ciµ

2
i > 1 (8)

∀i ∈ {1, . . . , d}, ci > 0 (9)

whose solution can be computed explicitly and gives the following problem-dependent lower bound:

• If d−sµ1 −
∑

i∈[s]
∆i>0

∆i

µ2i
> 0,

lim inf
T→∞

Reg(T )

log(T )
>
∑
i∈[s]
∆i>0

max
{ 1

2∆i
,

∆i

2µ2
i

}
(10)

• otherwise, there exist k 6 s such that d−sµ1 −
∑s

i=k
∆i

µ2i
< 0, and the lower bound is

lim inf
T→∞

Reg(T )

log(T )
>
∑
i∈[k]
∆i>0

1

2∆i
+

s∑
i=k+1

µ2
k

µ2
i

∆i

2∆2
k

+
(d− s)

2µ1

(
1− µ2

k

∆2
k

)
. (11)

16



Proof. We now solve the following linear programming in order to obtain the given explicit form for the
Lower Bound.

f(µ) > inf
c�0

ci∆i

s.t. ∀i ∈ {2, ..., s}, 2ci∆
2
i > 1;

∀i ∈ {2, . . . , s}, ∀j ∈ {s+ 1, ...d}, 2cjµ
2
1 + 2ciµ

2
i > 1

∀i ∈ {1, . . . , d}, ci > 0

First, remark that for all the best arms i ∈ {1, . . . , s}, we must have ci > 1/2∆2
i so if µ2

i /∆
2
i > 1, the

d−s corresponding constraints on suboptimal cj , j > s are empty. We define S∗ :=
{
i ∈ [s]

∣∣µ2
i /∆

2
i > 1

}
.

It remains s− |S∗| constrains on each cj for j > s:

cj > max
i∈[s]\S∗

1− 2ciµ
2
i

2µ2
1

=:
λ

2µ2
1

It remains to properly identify λ as a function of the parameters of the problem. Because of the first set of
constraints, for all i /∈ S∗,

ci = max

{
1

2∆2
i

,
1− λ
2µ2

i

}
For those coefficients i 6 s such that ci = 1−λ

2µ2i
, we have

λ 6 1−
(
µi
∆i

)2

:= Θi ∈ [0, 1]

where the quantity Θi increases with i, i.e. the worse the arm is, the bigger his Θi. Let k /∈ S∗ be the smaller
index such that

Θk−1 < λ 6 Θk. (12)

Then, we set the values of the coefficients as{
ci = 1/2∆2

i i < k

ci = (1− λ)/2µ2
1 i > k

We can rewrite the optimization problem as a function of λ > Θk−1:

f(µ) >
k−1∑
i=1

1

2∆i
+

s∑
i=k

∆i
1− λ
2µ2

i

+ (d− s) λ

2µ1

=

k−1∑
i=1

1

2∆i
+

s∑
i=k

∆i

2µ2
i

+
λ

2

(
d− s
µ1
−

s∑
i=k

∆i

µ2
i

)
(13)

Now we must distinguish two cases depending on the sign of

d− s
µ1
−

s∑
i=k

∆i

µ2
i

(14)
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Strong sparsity. If d−sµ1 −
∑

i∈[s]
∆i>0

∆i

µ2i
> 0, then we must set the coefficients such that λ reaches its lowest

allowed value, which is λ = 0. Hence, ci = max{ 1
2∆2

i
, 1

2µ2i
} for all i 6 s. The lower bound is then

f(µ) =
∑
i∈[s]
∆i>0

max
{ 1

2∆i
,

∆i

2µ2
i

}
.

Weak sparsity Otherwise, there exists k 6 s such that the expression of Eq. 14 is negative. Then, we
have by definition of k,

λ = Θk

and, rearranging the terms of Eq.(13), the Lower Bound finally writes

lim inf
T→∞

Reg(T )

log(T )
>

k∑
i=1

1

2∆i
+

s∑
i=k+1

µ2
k

µ2
i

∆i

2∆2
k

+
(d− s)

2µ1

(
1− µ2

k

∆2
k

)
.

A special case of the above bound is when k = s. Then

λ = 1− µ2
s

∆2
s

.

In that case, the lower bound is

f(µ) >
s∑
i=1

1

2∆i
+

d∑
i=s+1

∆i(1− µ2
s/∆

2
s)

2µ2
1

=
d∑
i=1

1

2∆i
− (d− s)

2µ1

µ2
s

∆2
s

B Generalization of Theorem 1

The lower bound of Theorem 1 can be generalized to a wider class of problems including a sparsity infor-
mation. We assume that we know ε > 0 such that µs+1 > µs − ε. A sparse bandit problem as defined in
Section 2 is at least included in such class of problem for ε = µs. Introducing ε > 0 allows us to provide
a result that applies to our problem as well as to similar ones such as the Stochastic Thresholded Bandit
6 for which one would assume that there exists a threshold µs > τ > 0 such that the s arms of interest
have an expected return at of at least τ . In that case, a change of variable ε ← µs − τ in the following
Theorem provides a lower bound on the regret of any uniformly efficient algorithm for that problem. We
chose to introduce this wilder class of problems in order to provide a generic result and its associated proof
technique, but we state the specific lower bound for our own problem in Theorem 1 below.

Theorem 3. For a Gaussian sparse bandit problem ν = (ν1, . . . , νs, νs+1, . . . , νd) ∈ S(d, s, ε) ∈ Rd, an
asymptotic lower bound on the regret is given by

6This problem has not been studied yet in a regret minimization setting to our knowledge but its setting is close to ours.
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• If d−sµ1 −
∑

i∈[d]
∆i>0

∆i
(µi−µs+ε)2

> 0,

f(µ) =
∑
i∈[s]
∆i>0

max
{ 1

2∆i
,

∆i

2(µi − µs + ε)2

}
;

• otherwise, there exist k 6 s such that d−sµ1 −
∑s

i=k
∆i

(µi−µs+ε)2
< 0, and the lower bound is

lim inf
T→∞

Reg(T )

log(T )
>

k∑
i=1

1

2∆i
+

s∑
i=k+1

(µk − µs + ε)2

(µi − µs + ε)2

∆i

2∆2
k

+
(d− s)

2µ1

(
1− (µk − µs + ε)2

∆2
k

)
.. (15)

C Analysis of the SPARSEUCB algorithm

We provide in this section the detailed statements and proofs concerning the upper bound guaranteed by the
SPARSEUCB algorithm.

Theorem 4. For T > 1, the SPARSEUCB algorithm guarantees:

E [Reg(T )] 6 16 log(T )
∑
i∈[s]
∆i>0

(
1

∆i
+

∆i

µ2
i

)
+

∑
i∈[d]

∆i

1 + 3s+

s∑
j=1

1 + 4 log(16/µ2
j )

µ2
j



+
∑
i∈[s]
∆i>0

∆i

(
3 +

8

µ2
i

+
8

∆2
i

)
+
π2

6

d∑
i=s+1

∆i +
d∆sπ

2

6
.

We gather without proof in the following lemma a few properties which are immediate from the defini-
tion of the algorithm.

Lemma 6. By definition of the algorithm, we have:

(i) For all t > d+ 1 and i ∈ [d], Ni(t) > 1 and the sets J (t) and K(t) are well-defined.

(ii) For all t > d + 1 and i ∈ [d], if arm i is pulled at time t during a round-robin phase, then the set
J (t− i+ 1) contains less than s arm. In other words,

Ri(t) ⊂ {|J (t− i+ 1)| < s} .

(iii) For all t > 1 and i, k ∈ [d], arm i is pulled at time t during a round-robin phase if, and only if arm k
is also pulled during a round-robin phase at time t− i+ k. In other words,

{I(t) = i, ω(t) = r} = {I(t− i+ k) = k, ω(t− i+ k) = r} .

(iv) For all t > d + 1 and i ∈ [d], if arm i is pulled at time t during a force-log phase, it does not belong
to K(t) i.e. its empirical mean at time t is strictly below 2

√
log(t)/Ni(t). In other words,

Fi(t) ⊂
{
Xi(Ni(t)) < 2

√
log(t)

Ni(t)
, I(t) = i

}
.
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(v) For all t > 1 and i ∈ [d], arm i is pulled at time t during a force-log or a UCB phase only if it belongs
to the set J (t). In other words, Fi(t), Ui(t) and Vi(t) are subsets of Ai(t).

(vi) For all t > d+1, if an arm is pulled at time t during an UCB phase while the best arm does not belong
to the set K(t), necessarily, a bad arm j ∈ {s+ 1, . . . , d} belongs to K(t). In other words,

⊔
i∈[d]

Vi(t) ⊂
⋃
j>s

{
Xj(Nj(t)) > 2

√
log(t)

Nj(t)

}
.

Lemma 7. For i ∈ [d], the number of times arm i is pulled, while the algorithm is performing a round-robin
phase, is bounded in expectation as:

E

[
+∞∑
t=1

1 {Ri(t)}
]
6 1 + 3s+

s∑
j=1

1

µ2
j

(
8 + 32 log

(
16

µ2
j

))
.

Proof. By definition of the algorithm, arm i is pulled exactly once during the first d stages:

d∑
t=1

1 {Ri(t)} = 1.

Let t > d+ 1. Using the definition of Ri(t) and property (ii) from Lemma 6, we write

Ri(t) = {I(t) = i, ω(t) = r} ∩ {|J (t− i+ 1)| < s} .

If |J (t− i+ 1)| < s, necessarily, there exists j ∈ [s] such that j 6∈ J (t− i+ 1), in other words, such that:

Xj(Nj(t− i+ 1)) < 2

√
log(Nj(t− i+ 1))

Nj(t− i+ 1)
.

Thus, we write:

Ri(t) ⊂
s⋃
j=1

{
Xj(Nj(t− i+ 1)) < 2

√
log(Nj(t− i+ 1))

Nj(t− i+ 1)
, I(t) = i, ω(t) = r

}
.

Therefore,

+∞∑
t=d+1

1 {Ri(t)} 6
s∑
j=1

+∞∑
t=d+1

1

{
Xj(Nj(t− i+ 1)) < 2

√
log(Nj(t− i+ 1))

Nj(t− i+ 1)
, I(t) = i, ω(t) = r

}

=
s∑
j=1

∑
d<t<+∞
I(t)=i
ω(t)=r

1

{
Xj(Nj(t− i+ 1)) < 2

√
log(Nj(t− i+ 1))

Nj(t− i+ 1)

}
. (16)

For a given arm j ∈ [s], the quantity Nj(t− i+ 1) in the above last sum is (strictly) increasing. Indeed, let
t < t′ such that I(t) = I(t′) = i and ω(t) = ω(t′) = r. As a consequence of property (iii) from Lemma 6,
we have
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(i) I(t− i+ k) 6= 1 for k ∈ {2, . . . , d};

(ii) I(t′ − i+ 1) = 1.

(iii) I(t− i+ j) = j;

The above properties (i) and (ii) imply t − i + d 6 t′ − i, which in turn, together with property (iii),
gives that arm j is pulled at least once between time t − i + 1 and t′ − i (at time t − i + j). Therefore,
Nj(t− i+ 1) < Nj(t

′ − i+ 1). Therefore, the last sum in Equation (16) can be bounded, with a change of
variable, as

∑
d<t<+∞
I(t)=i
ω(t)=r

1

{
Xj(Nj(t− i+ 1)) < 2

√
log(Nj(t− i+ 1))

Nj(t− i+ 1)

}
6

+∞∑
u=1

1

{
Xj(u) < 2

√
log(u)

u

}
.

Going back to Equation (16), we can now bound the expectation of the number of times arm i was pulled
after time d as follows:

E

[
+∞∑
t=d+1

1 {Ri(t)}
]
6

s∑
j=1

+∞∑
u=1

P

[
Xj(u) < 2

√
log(u)

u

]

6
s∑
j=1

+∞∑
u=1

P

[
Xj(u)− µj < 2

√
log(u)

u
− µj

]
.

One can easily check that

u > 3 +
32

µ2
j

log

(
16

µ2
j

)
implies 2

√
log(u)

u
− µj 6 −

µj
2
.

Therefore, we set uj := 3 + d(32/µ2
j ) log(16/µ2

j )e and write:

E

[
+∞∑
t=d+1

1 {Ri(t)}
]
6

s∑
j=1

+∞∑
u=1

P

[
Xj(u)− µj < 2

√
log(u)

u
− µj

]

6
s∑
j=1

3 +
32

µ2
j

log

(
16

µ2
j

)
+

+∞∑
u=uj

P
[
Xj(u)− µj < −

µj
2

]
6

s∑
j=1

3 +
32

µ2
j

log

(
16

µ2
j

)
+

+∞∑
u=uj

e−uµ
2
j/8


6 3s+

s∑
j=1

1

µ2
j

(
8 + 32 log

(
16

µ2
j

))
.
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Lemma 8. For i ∈ [s] and T > d + 1, the number of times arm i is pulled up to time T during force-log
phases, is bounded in expectation as:

E

[
T∑
t=1

1 {Fi(t)}
]
6

16 log(T ) + 8

µ2
i

.

Proof. Let i ∈ [s] and T > d+ 1. By definition of the algorithm, 1 {Fi(t)} = 0 for t 6 d. Using property
(iv) from Lemma 6, we write

T∑
t=d+1

1 {Fi(t)} 6
T∑

t=d+1

1

{
Xi(Ni(t)) < 2

√
log(t)

Ni(t)
, I(t) = i

}

6
∑

d+16t<+∞
I(t)=i

1

{
Xi(Ni(t)) < 2

√
log(T )

Ni(t)

}
.

The quantity Ni(t) being increasing in the above sum, with a change of variable, we write:

T∑
t=d+1

1 {Fi(t)} 6
+∞∑
u=1

1

{
Xi(u) < 2

√
log(T )

u

}
.

We now take the expectation:

E

[
T∑

t=d+1

1 {Fi(t)}
]
6

+∞∑
u=1

P

[
Xi(u) < 2

√
log(T )

u

]
=

+∞∑
u=1

P

[
Xi(u)− µi < 2

√
log(T )

u
− µi

]
.

We consider u0 := d16 log(T )/µ2
i e which gives that 2

√
log(T )/u − µi 6 −µi/2 as soon as u > u0.

Therefore,

+∞∑
u=1

P

[
Xi(u)− µi < 2

√
log(T )

u
− µi

]
6

16 log(T )

µ2
i

+
+∞∑
u=u0

P
[
Xi(u)− µi < −

µi
2

]
6

16 log(T )

µ2
i

+
+∞∑
u=u0

e−uµ
2
i /8

6
16 log(T )

µ2
i

+
8

µ2
i

,

hence the result.

Lemma 9. For i ∈ [s] such that ∆i > 0 and T > 1, we have

E

[
T∑
t=1

1 {Ui(t)}
]
6

16 log(T ) + 8

∆2
i

+ 3.

Proof. Let i ∈ [s] such that ∆i > 0 and t > 1, and assume that:

i ∈ argmaxj∈K(t)

{
Xj(Nj(t)) + 2

√
log(t)

Nj(t)

}
and 1 ∈ K(t).
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In particular, we have:

Xi(Ni(t)) + 2

√
log(t)

Ni(t)
> X1(N1(t)) + 2

√
log(t)

N1(t)
.

Using the definition of ∆i, the above inequality can be equivalently written:

Xi(Ni(t))− µi >
∆i

2
+

(
∆i

2
− 2

√
log(t)

Ni(t)

)
+

(
X1(N1(t))− µ1 + 2

√
log(t)

N1(t)

)
.

We consider τi := d16 log(t)/∆2
i e and we can see that as soon as Ni(t) > τi, we have:

∆i

2
− 2

√
log(t)

Ni(t)
> 0.

When this is the case, we either have

Xi(Ni(t))− µi >
∆i

2
or X1(N1(t))− µ1 6 −2

√
log(t)

N1(t)
.

With the above in mind, we can write

E

[
T∑
t=1

1 {Ui(t)}
]
6 τi + E

 ∑
16t6n
Ni(t)>τi

(
1

{
Xi(Ni(t))− µi >

∆i

2

}

+ 1

{
X1(N1(t))− µ1 6 −2

√
log(t)

N1(t)

})]

6 τi +
+∞∑
u=τi

P
[
Xi(u)− µi >

∆i

2

]
+

+∞∑
t=1

P

[
X1(N1(t))− µ1 6 −2

√
log(t)

N1(t)

]
.

The arms being subgaussian, we bound the above probabilities as follows:

E

[
T∑
t=1

1 {Ui(t)}
]
6 τi +

+∞∑
u=τi

e−u∆2
i /8 +

T∑
t=1

1

t2
6 1 +

16

∆2
i

log(T ) +
8

∆2
i

+
π2

6

6
16 log(T ) + 8

∆2
i

+ 3.

Lemma 10. For T > 1, we have

∑
i∈[s]

∆iE

[
T∑
t=1

1 {Vi(t)}
]
6
d∆sπ

2

6
.
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Proof. Using the fact that ∆i 6 ∆s for all i ∈ [s],

∑
i∈[s]

∆iE

[
T∑
t=1

1 {Vi(t)}
]
6 ∆s

T∑
t=1

E

∑
i∈[s]

1 {Vi(t)}

 .
Using property (vi) from Lemma 6, we bound the above expectation as follows:

E

∑
i∈[s]

1 {Vi(t)}

 6
∑
j>s

P

[
Xj(Nj(t)) > 2

√
log(t)

Nj(t)

]
.

Using the fact the arms are subgaussian and that µj 6 0 (for j > s), we bound the above probability as:

P

[
Xj(Nj(t)) > 2

√
log(t)

Nj(t)

]
= P

[
Xj(Nj(t))− µj > 2

√
log(t)

Nj(t)

]
6 e−2 log(t) = t−2.

The result follows.

Lemma 11. For i ∈ {s+ 1, . . . , d}, we have

E

[
+∞∑
t=1

1 {Ai(t)}
]
6
π2

6
.

Proof. Let i ∈ {s+ 1, . . . , d}. By definition of the algorithm, 1 {Ai(t)} = 0 for t 6 d. Using the definition
of Ai(t), we write

+∞∑
t=1

1 {Ai(t)} =
+∞∑
t=d+1

1 {Ai(t)} =
∑

d<t<+∞
I(t)=i

1

{
Xi(Ni(t)) > 2

√
log(Ni(t))

Ni(t)

}
.

In the last sum above, the quantity Ni(t) is (strictly) incrasing. Using a change of variable, and taking the
expectation, we get:

E

[
+∞∑
t=d+1

1 {Ai(t)}
]
6 E

[
+∞∑
u=1

1

{
Xi(u) > 2

√
log(u)

u

}]
=

+∞∑
u=1

P

[
Xi(u) > 2

√
log(u)

u

]
.

We now use the assumption that the arms have subgaussian laws and that µi 6 0 to bound the above
probability as:

P

[
Xi(u) > 2

√
log(u)

u

]
6 P

[
Xi(u)− µi > 2

√
log(u)

u

]
6 e−2 log(u) = u−2.

The result follows.
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