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BLACKWELL APPROACHABILITY WITH PARTIAL
MONITORING: OPTIMAL CONVERGENCE RATES

JOON KWON AND VIANNEY PERCHET

Abstract. We study the Blackwell approachability problem with partial
monitoring. When the target set is a polytope and is approachable, we con-
struct, for the first time, approaching strategies with convergence rate of order
T−1/2 in the case of outcome-dependent signals and of order T−1/3 in the
case of general signals. Those rates are known to be unimprovable without
further assumption on the target set or the signalling structure. It therefore
establishes the optimal convergence rates for those two cases. Moreover, the
proposed strategies are computationally efficient.
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1. Introduction

Online learning has become a standard topic, especially through regret minimi-
sation [CBL06, SS11, BCB12]: the decision maker aims at controlling some cumu-
lative loss against any possible sequence of loss functions that Nature can generate.
However, there exists more general frameworks [RST11], such as Blackwell ap-
proachability [Bla56], which is the focus of the present work: the decision maker
receives vector-valued payoffs (instead of scalar payoffs) and his goal is to make the
average payoff converge to a given target set. Blackwell approachability contains
regret minimization as a special case, as well as many of its variants: internal/swap
regret, online combinatorial optimization, etc. (see e.g. [Per14, Kwo16]).
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2 KWON AND PERCHET

We here study the partial monitoring setting, where the decision maker does not
observe his (vector-valued) payoffs. Instead, he recieves a random signal, whose
law may depend on his decision and on the state of Nature.

1.1. Previous work. In the full information setting, both the regret minimization
and approachability problems have a worst-case convergence of rate of order T−1/2.
The rate deals respectively with the average regret in regret minimization, and the
distance of the average payoff to the target set in approachability.

In regret minimization with partial monitoring, depending on the signalling
structure, the decision maker may or may not be able to minimize the regret.
This has given rise to two main directions of research.

The first one, initiated by [PS01] identifies the signaling structures which allow
the average regret to be minimized and aims at constructing strategies in those
cases: [PS01] constructed a strategy which guarantees a convergence rate of order
T−1/4 and [CBLS06] proposed an improved strategy with a T−1/3 guarantee as
well as a general lower bound of the same order. Later, [BPS10, BFP+14] gave
a classification of signaling structures according to convergence rates: they estab-
lished that the optimal convergence rate is either T−1/2, T−1/3 or 1—this last rate
corresponds to the case where the average regret cannot be minimized.

The second line of research was proposed by [Rus99] and focus on the case
where average regret cannot be minimized. In that case, he introduced a weaker
variant of the regret, which involves the best performance that the Decision Maker
could have achieved in hindsight (had he known the sequence of signal laws, but
not the sequence of decisions of Nature), for a given signalling structure. His
notion of regret, however, coincide with the standard average regret when the lat-
ter can be minimized. [Rus99] however did not provide an explicit strategy nor
convergence rates. [MS03] constructed approachability-based strategies in the spe-
cial case where the law of the signal only depends on Natures action (the so-called
outcome-dependent case). [LMS08] proposed strategies with convergence rates of or-
der T−1/4

√
log T in the case of outcome-dependent signals and of order T−1/5

√
log T

in the case of general signals. The optimal rate of order T−1/3 in the case of gen-
eral signals (for both internal and external regret) was achieved by [Per11b] using
calibration-based algorithms.

More recently, the problem of approachability with partial monitoring was con-
sidered by [Per11a]. The regret minimization problem from [Rus99] and the internal
regret from [LS07, Per11b] turn out to be special cases of this very general frame-
work. However, the convergence rate of the strategy provided in [Per11a] had the
drawback of deteriorating quickly with the dimension of the payoff space, as it
scales as T−1/(I+3) where I is the number of actions of the decision maker. A
dimension-free rate of order T−1/5 was given in [MPS14]—see also [MPS13]. How-
ever, the optimal rate of convergence was conjectured to be of order T−1/3, as for
regret minimization.

Other works on the topic include [LS16] which focus on internal regret minimiza-
tion with partial monitoring, and [MSZ15] in the context of repeated games with
incomplete information.

1.2. Main contributions. We construct, for the first time, approachability strate-
gies for polytope target sets with convergence rates of order T−1/3 in the case of
general signals and of order T−1/2 in the case of outcome-dependent signals. Those



BLACKWELL APPROACHABILITY WITH PARTIAL MONITORING 3

rates are known to be unimprovable without further assumption on the target set
or the signalling structure: in the case of general signals, a lower bound of order
T−1/3 was given in [CBLS06], and the T−1/2 rate is already optimal in the full in-
formation setting. It therefore establishes the optimal convergence rates for those
two cases. Moreover, the proposed strategies are computationally efficient.

1.3. Outline. In Section 2, we present the model of two-player games with vector-
valued payoffs and with partial monitoring. In Section 3, we recall the dual char-
acterizations of approachability, both in partial monitoring and in full information.
In Section 4, we make sure that the known lower bound of order T−1/3 applies
to our setting. In Section 5, we first construct an auxiliary full information game
which we then use to define the strategy for the initial game. The efficiency of
the strategy is discussed. In Section 6 we state and prove Theorem 6.1 which is
our main result. It establishes an T−1/3 rate of convergence for the strategy. In
Section 7, we deal with the special case of outcome-dependent signals for which we
propose a modified strategy which is proved in Theorem 7.2 to have an T−1/2 rate
of convergence.

1.4. Notation. Exponents will be used to denote the components of a vector: for
instance x = (xi)i∈I ∈ RI . Bold letters will denote maps and calligraphic letters
will denote sets. ⟨ · | · ⟩ will denote the scalar product.

2. The game

2.1. Ingredients. We consider a repeated two-player game with vector-valued pay-
offs and partial monitoring between the decision maker and Nature. The decision
maker (resp. Nature) has a finite set of pure actions I (resp. J ). Denote by

∆(I) :=

{
x = (xi)i∈I ∈ RI

+

∣∣∣∣∣∑
i∈I

xi = 1

}

the simplex which represents the set of probability distributions over I. ∆(I) is
also called the set of mixed actions of the decision maker. ∆(J ) is defined similarly.
Let g : I×J → Rd be the vector-valued payoff function which we bilinearly extend
to g : ∆(I)×∆(J ) → Rd:

g(x, y) := Ei∼x
j∼y

[g(i, j)] =
∑
i∈I
j∈J

xiyjg(i, j)

where x = (xi)i∈I ∈ ∆(I) and y = (yj)j∈J ∈ ∆(J ).

Denote by ∥g∥2 := max i∈I
j∈J

∥g(i, j)∥2 its maximum Euclidean norm. Let S be a

finite set of signals and s : I × J → ∆(S) the signal distribution function, which
we also bilinearly extend to ∆(I) × ∆(J ). All the above elements are assumed
to be known to the decision maker. The special case where the law of the signal
s(i, j) does not depend on i is called the outcome-dependent signals case, and will
be treated in Section 7.
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2.2. The play. The game is played as follows. At time t ⩾ 1,
• the decision maker and Nature simultaneously choose pure actions it ∈ I

and jt ∈ J , possibly at random according to mixed actions xt ∈ ∆(I) and
yt ∈ ∆(J );

• the decision maker gets (but does not observe) vector payoff gt := g(it, jt) ∈
Rd;

• the decision maker observes signal st ∈ S which is drawn according to
s(it, jt) ∈ ∆(S).

Formally, a strategy for the decision maker is a sequence of measurable maps σ =
(σt)t⩾1 where σt : (∆(I)×I ×S)t−1 → ∆(I) indicates the mixed action xt at time
t as a function of the information available to the decision maker. In other words:

xt = σt(x1, i1, s1, . . . , xt−1, it−1, st−1).

Similarly, a strategy for Nature is a sequence (τt)t⩾1 where τt : (∆(I) × I × S ×
∆(J )× J )t−1 → ∆(J ), so that

yt = τt(x1, i1, s1, y1, j1, . . . , xt−1, it−1, st−1, yt−1, jt−1).

For T ⩾ 1, denote gT := 1
T

∑T
t=1 gt the average vector payoff up to time T .

2.3. Flags. The flag function f : ∆(J ) → ∆(S)I is defined by

f(y) = (s(i, y))i∈I , y ∈ ∆(J ).

For t ⩾ 1, denote ft := f(yt) the flag associated with yt. Denote F = f(∆(J ))
the set of all possible flags, which is a polytopial subset of RS×I . The notion
of flags is fundamental in games with partial monitoring. Although the decision
maker does not directly observe it, he can, as will be shown, estimate it. Moreover,
it is the maximal information available to him: two mixed actions y, y ∈ ∆(J )
from Nature that generate the same flag f(y) = f(y) are indistinguishable by the
decision maker. For x ∈ ∆(I) and f ∈ F , let m(x, f) := g(x, f−1(f)) be the set
of all payoffs that are compatible with mixed action x and flag f . The set-valued
map m : ∆(I)×F ⇒ Rd will be essential in the statement of the characterization
of approachable sets (Proposition 3.2) and in the construction of the strategies.

3. Approachability

We recall the definition of approachability and the characterizations of approach-
able convex sets in both the partial monitoring and full information cases.

Definition 3.1. A closed convex set C ⊂ Rd is approachable if there exists a
strategy of the decision maker which guarantees

E [d2 (gT , C)] −−−−−→
T→+∞

0,

uniformly in the strategy τ of Nature, where gT =
∑T

t=1 gt, where d2( · , C) de-
notes the Euclidean distance to C, and where the expectation corresponds to the
randomization introduced by the strategies and the signals.

Proposition 3.2 (Characterization of approachable convex sets in games with
partial monitoring [Per11a]). A closed convex set C ⊂ Rd is approachable if and
only if

∀f ∈ F , ∃x ∈ ∆(I), m(x, f) ⊂ C.
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3.1. In games with full information. The construction of our strategies in Sec-
tion 5 will involve an auxiliary full information game. We quickly review the charac-
terizations of approachability in full information games with convex compact action
sets and bilinear payoff functions. Let X and Y be convex compact action sets and
g : X ×Y → Rd a bilinear payoff function. The special case of target sets which are
closed convex cones will be of particular importance in the subsequent sections. A
few facts about closed convex cones are gathered in Appendix B.

Proposition 3.3 (Characterization of approachability in full information games).
A closed convex set C ⊂ Rd is approachable if and only if one of the following
properties hold.

(i) ∀g ∈ Rd, ∃x ∈ X , ∀y ∈ Y, ⟨g(x, y)−PC(g)|g −PC(g)⟩ ⩽ 0, where PC
denotes the Euclidean projection on C;

(ii) ∀y ∈ Y, ∃x ∈ X , g(x, y) ∈ C.
Moreover, if C is a closed convex cone, the above is also equivalent to
(iii) ∀z ∈ C◦, ∃x ∈ X , ∀y ∈ Y, ⟨g(x, y)|z⟩ ⩽ 0,
where C◦ denotes the polar cone of C (see Appendix B for definitions and properties
about closed convex cones).

Proof. The first two characterizations are classic [Bla56]. Let us assume that C is a
closed convex cone. Let us prove that (ii) and (iii) are equivalent. C being a closed
convex cone, g(x, y) ∈ C is equivalent to maxz∈C◦ ⟨g(x, y)|z⟩ ⩽ 0. Then, (ii) can be
rewritten

max
y∈Y

min
x∈X

max
z∈C◦

⟨g(x, y)|z⟩ ⩽ 0.

X being compact and the quantity ⟨g(x, y)|z⟩ being linear in x, y and z, we can
apply Sions minimax theorem twice to get

max
z∈C◦

min
x∈X

max
y∈Y

⟨g(x, y)|z⟩ ⩽ 0,

which is exactly (iii). □

4. On the lower bound

We recall the label-efficient matching pennies problem, for which a lower bound
of order T−1/3 is known [CBLS06]. For the sake of completeness, we show that this
problem is a special case of our general setting from Section 2, and make sure that
the corresponding target set is indeed an approachable polytope. Together with the
upper bound of order T−1/3 that we will obtain in Theorem 6.1, this ensures that
the convergence rate of order T−1/3 is optimal.

The set of pure actions is I = {a, b, c} for the decision maker and J = {a, b}
for Nature. We denote ℓ : I × J → {0, 1} the loss function for the decision maker
which is defined as follows. If the decision maker and Nature play the same action,
the loss is 0; otherwise the loss is 1:

ℓ(a, a) = ℓ(b, b) = 0 and ℓ(a, b) = ℓ(b, a) = ℓ(c, a) = ℓ(c, b) = 1.

The set of signals is S = {a, b, d}. If the decision maker plays action c, the signal
corresponds to the action of Nature. Otherwise, the signal is d, which is uninfor-
mative:

s(a, a) = s(a, b) = s(b, a) = s(b, b) = d, s(c, a) = a and s(a, b) = b.
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The goal of the decision maker is to make its average expected regret asymptot-
ically nonpositive:

lim sup
T→+∞

E

[
1

T

(
T∑

t=1

ℓ(it, jt)−min
i∈I

T∑
t=1

ℓ(i, jt)

)]
⩽ 0.

We classically rewrite this problem as an approachability problem, by introducing
suitable vector-valued payoff function and target set. We consider the following
vector-valued payoff function:

g(i, j) = (ℓ(i, j)− ℓ(i′, j))i′∈I ∈ RI , i ∈ I, j ∈ J ,

which bilinearly extends to ∆(I)×∆(J ) as:

g(x, y) = (ℓ(x, y)− ℓ(i′, y))i′∈I , x ∈ ∆(I), y ∈ ∆(J ),

and consider the negative orthant RI
− as the target set, which is indeed a polytope.

Proposition 4.1. The target set RI
− is approachable.

Proof. First note that by definition of s, the flag function f writes:

f(y) =

s(a, y)
s(b, y)
s(c, y)

 =

 δd
δd

yaδa + ybδb

 , y = (ya, yb) ∈ ∆(J ),

which shows in particular that f is injective.
Let us prove the result by using the characterization of approachability given by

Proposition 3.2. Let f ∈ F . By definition of F , there exists y = (ya, yb) ∈ ∆(J )
such that f(y) = f . We consider x ∈ ∆(I) defined as

x = (xa, xb, xc) :=

{
(0, 1, 0) if ya ⩽ yb

(1, 0, 0) if yb < ya.

Let us prove that m(x, f) ⊂ RI
−. We have

m(x, f) = {g(x, y′) | f(y′) = f} = {g(x, y)} ,

where the last equality stands because f is injective as we saw. Therefore, it remains
to prove that g(x, y) ∈ RI

−. Using the definition of g, this is equivalent to

ℓ(x, y) ⩽ ℓ(i, y), for all i ∈ I,

which easily follows from the definition of ℓ and the construction of x. □

Besides, the expected average regret is bounded from above by the distance of
the average vector payoff gT :=

∑T
t=1 g(it, jt) to the target set RI

−:

E

[
max
i∈I

1

T

T∑
t=1

(ℓ(it, jt)− ℓ(i, jt))

]
= E

[
max
i∈I

1

T

T∑
t=1

g(it, jt)
i

]
= E

[
max
i∈I

giT

]

⩽ E
[
max
i∈I

(giT )+

]
⩽ E

[√∑
i∈I

(
giT
)2
+

]
= E

[
d2

(
gT , Rd

−
)]

.

The above proves that the lower bound of order T−1/3 from [CBLS06] does apply
the our case of approachable polytope target sets.
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5. Construction of the strategy

We study the case where the target set is the negative orthant Rd
− and we assume

it to be approachable. Since a polytope can be represented as an orthant in a higher
dimension space, the extension to polytope target sets can be easily carried out as
in e.g. [MPS14, Section 5.4.2]. Most of the proofs are postponed to Section A.

5.1. Bi-piecewise affinity. We aim in this section at constructing a vector-valued
map r : ∆(I)×F → Rd which can be seen as a simplified version of the set-valued
map m : ∆(I)×F ⇒ Rd. Its properties will be gathered at the end of the section
in Proposition 5.4.

Definition 5.1. Let U be a convex set and V a vector space. Let a : U ⇒ V be a
set-valued function. a is affine if for all u, u′ ∈ U and λ ∈ [0, 1],

a(λu+ (1− λ)u′) = λa(u) + (1− λ)a(u′).

The map f being affine on ∆(J ) by definition, [RZ96, Proposition 2.4] guarantees
the existence of a polytopial decomposition of F such that f−1 is affine on each of
those polytopes. The decomposition can then be refined so that each point of F
can be written as a unique convex combination of the vertices of the polytope to
which it belongs. This is formalized by the following lemma.

Lemma 5.2. There exists a finite family (Fk)k∈K of polytopes (denote Bk the set
of vertices of Fk and B =

∪
k∈K Bk) such that

(i) F =
∪

k∈K Fk;
(ii) for each k ∈ K, f−1 is affine on Fk;

(iii) for all f ∈ F , there exists a unique µ = (µb)b∈B ∈ ∆(B) such that
(a) f =

∑
b∈B µb · b;

(b) for k ∈ K, f ∈ Fk =⇒ suppµ ⊂ Bk.

From now on, we assume given such a decomposition.
We are going to construct the map r = (rn)1⩽n⩽d component by component,

and first on ∆(I) × B before extending it to ∆(I) × F . Denote (gn)1⩽n⩽d the
components of g. For x ∈ ∆(I) and b ∈ B, we set rn(x, b) as being the maximum
real number of the set gn(x, f−1(b)):
(1) rn(x, b) := maxgn(x, f−1(b)).

We then extend r to ∆(I)×F as follows. Using property (iii) from Lemma 5.2, a
given flag f ∈ F can be uniquely written

f =
∑
b∈B

µb · b,

with suppµ contained in one of the polytopes Fk. We then use the above coefficients
(µb)b∈B to define

(2) rn(x, f) :=
∑
b∈B

µb · rn(x, b).

This construction will lead to piecewise affinity of r(x, f) in f – see Proposition 5.4
below. We now turn to the piecewise affinity in x.

Lemma 5.3. There exists a finite family of polytopes (X ℓ)ℓ∈L such that
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(i) ∆(I) =
∪

ℓ∈L X ℓ;
(ii) For each ℓ ∈ L and f ∈ F , r( · , f) is affine on X ℓ.

Let A be the set of the vertices of the polytopes X ℓ given the above lemma. The
following proposition summarizes some properties of r.

Proposition 5.4. (i) For all x ∈ ∆(I), y ∈ ∆(J ) and 1 ⩽ n ⩽ d, we have
gn(x, y) ⩽ rn(x, f(y));

(ii) For all f ∈ F , there exists x ∈ ∆(I) such that r(x, f) ∈ Rd
−;

(iii) For all x ∈ ∆(I), r(x, · ) is affine on each Fk (k ∈ K);
(iv) For all f ∈ F , r( · , f) is affine on each X ℓ (ℓ ∈ L).

5.2. From bi-piecewise affinity to linearity. In Section 5.1, we constructed a
map r : ∆(I) × F → Rd which is bi-piecewise affine. In this section, we aim at
constructing a linear map R : (RS×I)K×A → Rd which encodes the map r in the
following sense. From all pairs (x, f) ∈ ∆(I)×F , there is a simple construction of
a vector g̃ ∈ (RS×I)K×A such that R(g̃) = r(x, f).

Lemma 5.5. For every k ∈ K, there exists a map r[k] : ∆(I) × RS×I → Rd such
that

(i) for all x ∈ ∆(I), the map r[k](x, · ) : RS×I → Rd is linear;
(ii) for all x ∈ ∆(I) and f ∈ Fk, r[k](x, f) = r(x, f).

Define Lr as the maximal operator norm of the linear maps r[k](a, · ):

Lr := max
k∈K
a∈A

max
f∈RS×I

f ̸=0

∥∥r[k](a, f)∥∥
2

∥f∥2
.

Lemma 5.6. Lr is a common Lipschitz constant to r(a, · ) and r[k](a, · ) (k ∈ K
and a ∈ A). In other words, for all k ∈ K and a ∈ A, we have

(i) for all f, f ′ ∈ RS×I ,
∥∥r[k](a, f)− r[k](a, f ′)

∥∥
2
⩽ Lr ∥f − f ′∥2;

(ii) for all f, f ′ ∈ F , ∥r(a, f)− r(a, f ′)∥2 ⩽ Lr ∥f − f ′∥2.

For each k ∈ K, define the linear map Rk : (RS×I)A → Rd as follows

Rk

(
(g̃ka)a∈A

)
:=
∑
a∈A

r[k](a, g̃ka), for all (g̃ka)a∈A ∈ (RS×I)A.

Then, define the linear map R : (RS×I)K×A → Rd by setting

R(g̃) :=
∑
k∈K

Rk

((
g̃ka
)
a∈A

)
=
∑
k∈K

∑
a∈A

r[k](a, g̃ka), for all g̃ = (g̃ka)k∈K
a∈A

∈ (RS×I)K×A.

The following proposition shows that R does indeed encode r.

Proposition 5.7. Let x ∈ ∆(I), f ∈ F , ℓ ∈ L such that x ∈ X ℓ, and k0 ∈ K such
that f ∈ Fk0 . Moreover, let

x =
∑
a∈A

λa · a where

{
(λa)a∈A ∈ ∆(A)

supp(λa)a∈A ⊂ X ℓ.
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be an expression of x as a convex combination of the vertices of X ℓ. Then,

R

((
1{k0=k}λ

a · f
)
k∈K
a∈A

)
= r(x, f).

Proof. Using the definition of R,

R

((
1{k0=k}λ

a · f
)
k∈K
a∈A

)
=
∑
k∈K

∑
a∈A

r[k](a,1{k0=k}λ
a · f) =

∑
a∈A

λa · r[k0](a, f)

=
∑
a∈A

λa · r(a, f) = r(x, f),

where the second equality holds because by linearity of r[k](a, · ) (property (i) in
Lemma 5.5), the fourth because r[k0](x, · ) and r(x, · ) coincide on Fk0 (property
(ii) in Lemma 5.5), and the last by affinity of r( · , f) on X ℓ (property (iv) in
Proposition 5.4). □

5.3. The auxiliary full information game. We now construct an auxiliary ap-
proachability game. The important point will be that the target set is approachable.
This fact will be used in the construction and the analysis of the strategy for the
initial game.

The payoff space for this auxiliary game is (RS×I)K×A. An element g̃ ∈
(RS×I)K×A will often be written as

g̃ =
(
g̃ka
)
k∈K
a∈A

, where g̃ka ∈ RS×I .

Then, if z̃ =
(
z̃ka
)
k∈K
a∈A

also belongs to (RS×I)K×A, the scalar product ⟨g̃|z̃⟩ can

obviously be written as the sum of the scalar products
⟨
g̃ka
∣∣z̃ka⟩, and a similar

expression holds for the square Euclidean norm:

⟨g̃|z̃⟩ =
∑
k∈K
a∈A

⟨
g̃ka
∣∣z̃ka⟩ and ∥g̃∥22 =

∑
k∈K
a∈A

∥∥g̃ka∥∥2
2
.

The auxiliary game is defined as follows. Let K×A be the set of pure actions for
the decision maker and F the convex action set for Nature. The payoff function g̃
takes values in (RS×I)K×A and is defined as follows. For (k, a) ∈ K×A and f ∈ F ,

g̃((k, a), f) :=
(
1{k=k′}1{a=a′} · f

)
k′∈K
a′∈A

∈ (RS×I)K×A.

This payoff function is be bilinearly extended to ∆(K×A)×RS×I . For each k ∈ K,
let Fk

c := R+Fk = (Fk)◦◦ be the smallest closed convex cone containing the convex
compact set Fk (see Appendix B for definitions and properties about closed convex
cones), and consider the following subset of (RS×I)A:

C̃k := R−1
k (Rd

−) ∩ (Fk
c )

A ⊂ (RS×I)A.

We then define the target set C̃ as the Cartesian product of the sets C̃k:

C̃ :=
∏
k∈K

C̃k ⊂ (RS×I)A×K.

Lemma 5.8. (i) The sets C̃k and C̃ are closed convex cones.
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(ii) C̃ ⊂ R−1(Rd
−) ∩

(∏
k∈K

(Fk
c )

A

)
.

Proposition 5.9. The set C̃ is approachable in the auxiliary game. In other words,
for all z̃ ∈ C̃◦, there exists x̃ := x̃(z̃) ∈ ∆(K ×A) such that

∀f ∈ F , ⟨g̃(x̃, f)|z̃⟩ ⩽ 0.

Proof. This full information game has convex compact action sets and a bilinear
payoff function. Thanks to Proposition 3.3, the statement of the proposition is then
equivalent to Blackwell’s condition:

∀f ∈ F , ∃ x̃ ∈ ∆(K ×A), g̃(x̃, f) ∈ C̃,

which we now aim at proving. Let f ∈ F and k0 ∈ K such that f ∈ Fk0 . According
to property (ii) in Proposition 5.4, there exists x ∈ ∆(I) such that such that
r(x, f) ∈ Rd

−. By Lemma 5.3, there exists ℓ ∈ L such that x ∈ X ℓ and we can write
x as a convex combination of the vertices of X ℓ:

x =
∑
a∈A

λa · a where

{
(λa)a∈A ∈ ∆(A)

supp(λa)a∈A ⊂ X ℓ.

Now consider the mixed action

x̃ :=
(
1{k=k0}λ

a
)
k∈K
a∈A

∈ ∆(K ×A)

and let us prove that g̃(x̃, f) ∈ C̃. We have by definition of g̃:

g̃(x̃, f) =
(
1{k=k0}λ

a · f
)
k∈K
a∈A

,

and since C̃ =
∏

k∈K C̃k, we only have to check that (λaf)a∈A belongs to C̃k0 =

R−1
k0

(Rd
−)∩ (Fk0

c )A. First, because f ∈ Fk0 , λaf belongs to the closed convex cone
Fk0

c = R+Fk0 and we have indeed (λaf)a∈A ∈ (Fk0
c )A. Then, let us prove that

Rk0
((λaf)a∈A) ∈ Rd

−. Using Proposition 5.7,

Rk0((λ
af)a∈A) = R

((
1{k=k0}λ

a · f
)
k∈K
a∈A

)
= r(x, f) ∈ Rd

−.

Therefore, we have proved that (λaf)a∈A belongs to C̃k0 = R−1
k0

(Rd
−)∩ (Fk0

c )A, and
thus, that g̃(x̃, f) ∈ C̃, which concludes the proof. □

5.4. The strategy for the initial game. Let Z̃ := C̃◦∩B2 where B2 denotes the
closed unit Euclidean ball on (RS×I)K×A. The strategy is defined as follows. Let
(ηt)t⩾1 be a positive and nonincreasing sequence and (γt)t⩾1 be a nonincreasing
sequence with values in (0, 1]. For t ⩾ 1,

• compute z̃t := PZ̃

(
ηt−1

∑t−1
s=1 g̃s

)
, where PZ̃ denotes the Euclidean pro-

jection onto Z̃ (the g̃t’s are defined below);
• compute x̃t := x̃ (z̃t) ∈ ∆(K ×A), where x̃ is defined in Proposition 5.9;
• draw (kt, at) ∼ x̃t and then it ∼ (1− γt)at + γtu, where u := ( 1

|I| , . . . ,
1
|I| )

is the uniform distribution over I;
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• observe signal st ∼ s(it, jt) and compute estimator

f̂t =

(
1{it=i}

(1− γt)ait + γt/|I|
δst

)
i∈I

∈ RS×I ,

where δst is the Dirac mass associated with st ∈ S and seen as an element
of RS ;

• set g̃t = g̃((kt, at), f̂t).
Let (Gt)t⩾1 be the filtration where for each t ⩾ 1,

Gt is generated by (k1, a1, i1, s1, . . . , kt−1, at−1, it−1, st−1, kt, at).

The following lemma gathers the properties of estimator f̂t.

Lemma 5.10. For all t ⩾ 1,

(i) E
[
f̂t

∣∣∣Gt

]
= E [ft | Gt];

(ii) E
[∥∥∥f̂t∥∥∥2

2

∣∣∣∣Gt

]
⩽ |I|2

γt
;

(iii)
∥∥∥f̂t∥∥∥2

2
⩽ |I|2

γ2
t

.

6. Main result

We now state our main result which establishes that the strategy defined in
Section 5.4 guarantees that the average payoff gT (of the initial game) converges
in expectation to the negative orthant Rd

− at rate T−1/3. This is an improvement
over the convergence at rate T−1/5 guaranteed by the strategy from [MPS14].

Theorem 6.1. Against any strategy of Nature, the strategy defined in Section 5.4
with parameters

γt = min
{
1, γ0t

−1/3
}
, t ⩾ 1, where γ0 =

(
7Lr |I| |K| |A|

3 ∥g∥2

)2/3

ηt = η0t
−2/3, t ⩾ 1, where η0 =

√
γ0

3 |I|2
.

guarantees for all T ⩾ γ3
0 ,

E
[
d2

(
gT , Rd

−
)]

⩽ 16 ∥g∥1/32 (Lr |I| |K| |A|)2/3

T 1/3

+
4 ∥g∥2√

T
+

6 ∥g∥2/32 (Lr |I| |K| |A|)1/3

T 2/3
,

where d2( · , Rd
−) denotes the Euclidean distance to the negative orthant Rd

−.

Remark 6.2. Since Lr scales linearly with ∥g∥2, so does the dominant term of the
above bound, as expected.

Let us introduce some notation. Let g̃T be the average for t = 1, . . . , T of
auxiliary payoffs g̃t. In the analysis we will partition the set of stages {1, . . . , T}
with respect to the realized values of kt ∈ K and at ∈ A. For k ∈ K and a ∈ A, let
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NT (k, a) be the set of stages t ∈ {1, . . . , T} where kt = k and at = a, and λT (k, a)
the corresponding proportion of stages:

NT (k, a) := {1 ⩽ t ⩽ T | kt = k, at = a}

λT (k, a) :=
|NT (k, a)|

T
.

Then, for any sequence (ut)1⩽t⩽T , we denote uT (k, a) its average over t ∈ NT (k, a):

uT (k, a) :=


1

|NT (k, a)|
∑

t∈NT (k,a)

ut if NT (k, a) ̸= ∅

0 otherwise.

The proof is divided into the subsections below which are mostly independent. Here
is a overview of the main steps:

gT

is close to 1

T

T∑
t=1

g(at, yt) (Lemma 6.11),

which is equal to
∑
k∈K
a∈A

λT (k, a) · g(a, yT (k, a)) (Lemma 6.10),

which is closer to Rd
− than

∑
k∈K
a∈A

λT (k, a) · r(a, fT (k, a)) (Lemma 6.9),

which is close to
∑
k∈K
a∈A

λT (k, a) · r[k](a, f̂T (k, a)) (Lemma 6.8),

which is equal to R(g̃T ) (Lemma 6.5),

which is close to Rd
− (Lemmas 6.4 and 6.3).

6.1. Average auxiliary payoff g̃T is close to auxiliary target set C̃.

Lemma 6.3.

E
[
d2

(
g̃T , C̃

)]
⩽ 1

2ηTT
+

|I|2

2TγT

T∑
t=1

ηt−1,

Proof. For t ⩾ 1, we can write

z̃t = PZ̃

(
ηt−1

t−1∑
s=1

g̃s

)
= argmin

z̃∈Z̃

∥∥∥∥∥z̃ − ηt−1

t−1∑
s=1

g̃s

∥∥∥∥∥
2

2

= argmax
z̃∈Z̃

{⟨
ηt−1

t−1∑
s=1

g̃s

∣∣∣∣∣z̃
⟩

− 1

2
∥z̃∥22

}
.

Then, Theorem C.1 together with the fact that
∥∥∥Z̃∥∥∥

2
=
∥∥∥C̃◦ ∩ B2

∥∥∥
2
⩽ 1 gives

max
z̃∈Z̃

T∑
t=1

⟨g̃t|z̃⟩ −
T∑

t=1

⟨g̃t|z̃t⟩ ⩽
1

2ηT
+

1

2

T∑
t=1

ηt−1 ∥g̃t∥22 .
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By taking the expectation and dividing by T , we get

E
[
max
z̃∈Z̃

⟨
g̃T
∣∣z̃⟩] ⩽ 1

2ηTT
+ E

[
1

T

T∑
t=1

⟨g̃t|z̃t⟩

]
+

1

2T

T∑
t=1

ηt−1E
[
∥g̃t∥22

]
.

We first analyze the first sum of the right-hand side. Let us prove that each scalar
product ⟨g̃t|z̃t⟩ is nonpositive in expectation. For all 1 ⩽ t ⩽ T , we replace g̃t by
its definition:

E [⟨g̃t|z̃t⟩] = E
[⟨

g̃((kt, at), f̂t)
∣∣∣z̃t⟩] .

We then consider the conditional expectation with respect to Gt. The application
g̃((kt, at), · ) being linear, and the variables kt, at and z̃t being measurable with
respect to Gt, we can make E

[
f̂t

∣∣∣Gt

]
appear as follows:

E [⟨g̃t|z̃t⟩] = E
[
E
[⟨

g̃((kt, at), f̂t)
∣∣∣z̃t⟩ ∣∣∣Gt

]]
= E

[⟨
g̃
(
(kt, at),E

[
f̂t

∣∣∣Gt

])∣∣∣z̃t⟩]
= E [⟨g̃((kt, at),E [ft | Gt])|z̃t⟩] = E [⟨g̃((kt, at), ft)|z̃t⟩] ,

where we used Lemma 5.10 to replace the conditional expectation of f̂t by the
conditional expectation of ft. Now consider the sigma-algebra Ht generated by

(k1, a1, i1, s1, . . . , kt−1, at−1, it−1, st−1).

By definition of the strategy, the law of random variable (kt, at) knowing Ht is
x̃t. We now summarize the above computation by introducing the conditional
expectation with respect to Ht and ft:

E [⟨g̃t|z̃t⟩] = E [⟨g̃((kt, at), ft)|z̃t⟩] = E [E [⟨g̃((kt, at), ft)|z̃t⟩ |Ht, ft]]

= E [⟨g̃ (E [(kt, at) |Ht, ft] , ft)|z̃t⟩] = E [⟨g̃ (E [(kt, at) |Ht] , ft)|z̃t⟩]
= E [⟨g̃(x̃t, ft)|z̃t⟩] .

By definition of the strategy, x̃t = x̃(z̃t). In other words (see Proposition 5.9), for
all f ∈ F , the scalar product ⟨g̃(x̃t, f)|z̃t⟩ is nonpositive. This is in particular true
for f = ft. Therefore, E [⟨g̃t|z̃t⟩] ⩽ 0.

We now turn to the second sum that involves the squared norms ∥g̃t∥22. For
1 ⩽ t ⩽ T , using the definition of g̃,

∥g̃t∥22 =
∥∥∥g̃((kt, at), f̂t)∥∥∥2

2
=

∥∥∥∥∥(1{k=kt}1{a=at}f̂t

)
k∈K
a∈A

∥∥∥∥∥
2

2

=
∑
k∈K
a∈A

∥∥∥1{k=kt}1{a=at}f̂t

∥∥∥2
2
=
∥∥∥f̂t∥∥∥2

2
.

Using (ii) from Lemma 6.3, we have

E
[
∥g̃t∥22

]
= E

[∥∥∥f̂t∥∥∥2
2

]
= E

[
E
[∥∥∥f̂t∥∥∥2

2

∣∣∣∣Gt

]]
⩽ |I|2

γt
⩽ |I|2

γT
,

where for the last inequality, we used the assumption that sequence (γt)t⩾1 is
nonincreasing.
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Putting everything together, we obtain in expectation the following bound on
the distance from g̃T to C̃:

E
[
d2

(
g̃T , C̃

)]
= E

[
max
z̃∈Z̃

⟨
g̃T
∣∣z̃⟩] ⩽ 1

2ηTT
+

|I|2

2γTT

T∑
t=1

ηt−1,

where the above equality comes from the expression of the Euclidean distance to C̃
given by Proposition B.6. □

6.2. From g̃T in the auxiliary space to R(g̃T ) in the initial space.

Lemma 6.4.

d2

(
R(g̃T ), Rd

−
)
⩽ (Lr

√
|K| |A|) · d2

(
g̃T , C̃

)
.

Proof. It follows from property (ii) in Lemma 5.8 that C̃ ⊂ R−1(Rd
−). Therefore,

we can write

d2(R(g̃T ), Rd
−) = min

g′∈Rd
−

∥∥R(g̃T )− g′
∥∥
2
⩽ min

g̃∈R−1(Rd
−)

∥∥R(g̃T )−R(g̃)
∥∥
2

⩽ min
g̃∈C̃

∥∥R(g̃T )−R(g̃)
∥∥
2
⩽ ∥R∥ ·min

g̃∈C̃

∥∥g̃T − g̃
∥∥
2

= ∥R∥ · d2

(
g̃T , C̃

)
,

where ∥R∥ is the operator norm of R. To conclude the proof, let us prove that the
latter is bounded from above by Lr

√
|K| |A|. Let g̃ ∈ (RS×I)K×A. By definition of

R, and using the Lipschitz constant Lr from Lemma 5.6 which is common to the
linear applications r[k](a, · ), we have

∥R(g̃)∥2 =

∥∥∥∥∥∥∥
∑
k∈K
a∈A

r[k](a, g̃ka)

∥∥∥∥∥∥∥
2

⩽
∑
k∈K
a∈A

∥∥∥r[k](a, g̃ka)∥∥∥
2
⩽
∑
k∈K
a∈A

Lr

∥∥g̃ka∥∥
2

⩽ Lr

√√√√|K| |A|
∑
k∈K
a∈A

∥g̃ka∥22 = Lr

√
|K| |A| · ∥g̃∥2 ,

where we used the Cauchy-Schwarz inequality for the third inequality, and the proof
is complete. □

6.3. Decomposition of R(g̃T ). We have the following expression of the image by
R of the average auxiliary payoff g̃T .

Lemma 6.5.

R(g̃T ) = R

(
1

T

T∑
t=1

g̃t

)
=
∑
k∈K
a∈A

λT (k, a) · r[k](a, f̂T (k, a)).
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Proof. Using the definitions of R, g̃t, g̃, and the linearity of R and r[k](a, · ), we
can write

R

(
1

T

T∑
t=1

g̃t

)
=

1

T

T∑
t=1

R(g̃t) =
1

T

T∑
t=1

∑
k∈K
a∈A

r[k](a, g̃kat )

=
1

T

T∑
t=1

∑
k∈K
a∈A

r[k]
(
a,1{k=kt}1{a=at}f̂t

)

=
∑
k∈K
a∈A

λT (k, a) · r[k](a, f̂T (k, a)).

□

6.4. Average estimator f̂T (k, a) is close to average flag fT (k, a).

Lemma 6.6.

E

∑
k∈K
a∈A

λT (k, a)
∥∥∥f̂T (k, a)− fT (k, a)

∥∥∥
2

 ⩽ |I| |K| |A|
(

8√
TγT

+
8

3TγT

)
.

Proof. Let k ∈ K and a ∈ A. Consider the random process (Xt(k, a))t⩾1 defined
by

Xt(k, a) := 1{kt=k, at=a}

(
f̂t − ft

)
,

and to which we are aiming at applying Corollary D.4. (Xt(k, a))t⩾1 is a martingale
difference sequence with respect to filtration (Gt)t⩾1. Indeed, since 1{kt=k, at=a} is
measurable with respect to Gt,

E
[
1{kt=k, at=a}

(
f̂t − ft

) ∣∣∣Gt

]
= 1{kt=k, at=a}E

[
f̂t − ft

∣∣∣Gt

]
= 0.

where the last equality follows from (i) in Lemma 5.10. Moreover, using (iii) from
Lemma 5.10, we bound each Xt(k, a) as follows.

∥Xt(k, a)∥2 ⩽
∥∥∥f̂t − ft

∥∥∥
2
⩽
∥∥∥f̂t∥∥∥

2
+ ∥ft∥2 ⩽ |I|

γt
+
∥∥(s(i, yt))i∈I

∥∥
2

=
|I|
γt

+

√∑
i∈I

∥s(i, yt)∥22 ⩽ |I|
γt

+
√
|I| ⩽ 2 |I|

γt
⩽ 2 |I|

γT
,

where we used the fact that 0 < γt ⩽ 1 for the penultimate inequality, and the
assumption that sequence (γt)t⩾1 is nonincreasing for the last inequality. As far as
the conditional variances are concerned, we have

E
[
∥Xt(k, a)∥22

∣∣∣Gt

]
= E

[
1{kt=k, at=a}

∥∥∥f̂t − ft

∥∥∥2
2

∣∣∣∣Gt

]
⩽ E

[∥∥∥f̂t − ft

∥∥∥2
2

∣∣∣∣Gt

]
⩽ E

[∥∥∥f̂t∥∥∥2
2

∣∣∣∣Gt

]
+ E

[
∥ft∥22

∣∣∣Gt

]
⩽ |I|2

γt
+ |I|

⩽ 2 |I|2

γt
⩽ 2 |I|2

γT
.



16 KWON AND PERCHET

where the first term of the second line has been bounded using property (ii) from
Lemma 5.10, whereas the second term is bounded by |I| since

∥ft∥22 =
∥∥(s(i, yt))i∈I

∥∥2
2
=
∑
i∈I

∥s(i, yt)∥22 ⩽ |I| .

Therefore we have
1

T

T∑
t=1

E
[
∥Xt(k, a)∥22

∣∣∣Gt

]
⩽ 2 |I|2

γT
.

We can now apply Corollary D.4 with M = 2 |I| /γT and V = 2 |I|2 /γT to get:

E

[∥∥∥∥∥ 1T
T∑

t=1

Xt(k, a)

∥∥∥∥∥
2

]
⩽ 8 |I|√

TγT
+

8 |I|
3TγT

.

Besides, it follows from the definition of Xt(k, a) that

1

T

T∑
t=1

Xt(k, a) = λT (k, a)
(
f̂T (k, a)− fT (k, a)

)
.

Finally, by summing over k and a, we obtain:

E

∑
k∈K
a∈A

λT (k, a)
∥∥∥(f̂T (k, a)− fT (k, a)

)∥∥∥
2

 ⩽ |I| |K| |A|
(

8√
TγT

+
8

3TγT

)
.

□

6.5. Average estimator f̂T (k, a) is close to Fk
c .

Lemma 6.7.

E

∑
k∈K
a∈A

d2

(
g̃
ka
T , Fk

c

) ⩽
√
|K| |A|

(
1

2ηTT
+

|I|2

2γTT

T∑
t=1

ηt−1

)

Proof. Consider the set Z̃0 defined by

Z̃0 :=
∏
k∈K

(
(Fk

c )
◦ ∩ B2

)A
,

and let us assume for the moment that the following inclusion holds:

(3) Z̃0 ⊂
√
|K| |A| · Z̃.

For each k ∈ K and a ∈ A, Fk
c being a closed convex cone, Proposition B.6 gives

the following expression of the distance of g̃kaT to Fk
c :

d2

(
g̃
ka
T , Fk

c

)
= max

z̃ka∈(Fk
c )◦∩B2

⟨
g̃
ka
T

∣∣∣z̃ka⟩ .
By summing over k and a, we have:∑

k∈K
a∈A

d2

(
g̃
ka
T , Fk

c

)
=
∑
k∈K
a∈A

max
z̃ka∈(Fk

c )◦∩B2

⟨
g̃
ka
T

∣∣∣z̃ka⟩ = max
z̃∈Z̃0

∑
k∈K
a∈A

⟨
g̃T
∣∣z̃⟩

⩽
√
|K| |A| ·max

z̃∈Z̃

⟨
g̃T
∣∣z̃⟩ =√|K| |A| · d2

(
g̃T , C̃

)
,
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where for the inequality we used inclusion (3), and for the last equality Propo-
sition B.6 together with the fact that Z̃ = C̃◦ ∩ B2 by definition. Taking the
expectation and substituting distance d2(g̃T , C̃) by the bound from Lemma 6.3
yields the result.

Let us now prove inclusion (3). Let z̃ = (z̃ka)k∈K
a∈A

∈ Z̃0. First, let us prove that

z̃ ∈ C̃◦. Let g̃ ∈ C̃. We can write

⟨g̃|z̃⟩ =
∑
k∈K
a∈A

⟨
z̃ka
∣∣g̃ka⟩ .

But for each k ∈ K and a ∈ A, by definition of Z̃0, we have z̃ka ∈ (Fk
c )

◦, and since
C̃ ⊂

∏
k∈K(Fk

c )
A by definition, we also have g̃ka ∈ Fk

c . Therefore,
⟨
g̃ka
∣∣z̃ka⟩ ⩽ 0

and consequently, ⟨g̃|z̃⟩ ⩽ 0. This proves Z̃0 ⊂ C̃◦.
Let z̃ ∈ Z̃0. By definition of Z̃0, we have

∥∥z̃ka∥∥
2
⩽ 1 for all k ∈ K and a ∈ A.

Thus

∥z̃∥2 =

√√√√∑
k∈K
a∈A

∥z̃ka∥22 ⩽
√

|K| |A|,

and therefore Z̃0 ⊂
√
|K| |A| · B2. Finally, we have

Z̃0 ⊂ C̃◦ ∩
√

|K| |A| · B2 =
√

|K| |A| · Z̃.

□

6.6. r[k](a, f̂T (k, a)) is close to r(a, fT (k, a)).

Lemma 6.8.

E

∑
k∈K
a∈A

λT (k, a)
∥∥∥r(a, fT (k, a))− r[k](a, f̂T (k, a))

∥∥∥
2

 ⩽ Lr |I| |K| |A|
(

8√
TγT

+
8

3TγT

)

+ Lr

√
|K| |A|

(
1

ηTT
+

|I|2

γTT

T∑
t=1

ηt−1

)
.

Proof. Let (k, a) ∈ K×A and denote f := fT (k, a) and f̂ := f̂T (k, a) in this proof
only to alleviate notation. Denote P[k] the Euclidean projection onto Fk

c . Then
of course P[k](f̂) belongs to Fk

c , and since r(a, · ) and r[k](a, · ) coincide on Fk
c by

Lemma 5.5, we can write

r(a, f)− r[k](a, f̂) = r(a, f)− r(a, f̂) + r(a, f̂)− r(a,P[k](f̂))

+ r[k](a,P[k](f̂))− r[k](a, f̂).

Thus, by taking the norm and using the triangle inequality and the Lipschitz con-
stant Lr which is common to r(a, · ) and r[k](a, · ), we get∥∥∥r(a, f)− r[k](a, f̂)

∥∥∥
2
⩽ Lr

(∥∥∥f − f̂
∥∥∥
2
+ 2 · d2

(
f̂ , Fk

c

))
.

We now multiply by λT (k, a). The last term in the above right-hand side is trans-
formed as

2λT (k, a) · d2

(
f̂ , Fk

c

)
= 2 · d2

(
λT (k, a)f̂ , Fk

c

)
= 2 · d2

(
g̃
ka
T , Fk

c

)
,
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where used the fact that Fk
c is a convex cone to push the factor λT (k, a) into the

distance. Therefore,

λT (k, a)
∥∥∥r(a, f)− r[k](a, f̂)

∥∥∥
2
⩽ Lr · λT (k, a)

∥∥∥f − f̂
∥∥∥
2
+ 2Lr · d2

(
g̃
ka
T , Fk

c

)
.

Finally, we get the result by taking the expectation, summing over k and a, and
plugging Lemmas 6.6 and 6.7. □

6.7. g is closer to Rd
− than r.

Lemma 6.9.

d2

∑
k∈K
a∈A

λT (k, a) · g(a, yT (k, a)), Rd
−

 ⩽ d2

∑
k∈K
a∈A

λT (k, a) · r(a, fT (k, a)), Rd
−

 .

Proof. Let k ∈ K and a ∈ A such that λT (k, a) > 0, in other words such that
|NT (k, a)| ⩾ 1. First note that f(yT (k, a)) = fT (k, a). Indeed, using the affinity of
f ,

f(yT (k, a)) = f

 1

|NT (k, a)|
∑

t∈NT (k,a)

yt

 =
1

|NT (k, a)|
∑

t∈NT (k,a)

f(yt)

=
1

|NT (k, a)|
∑

t∈NT (k,a)

ft = fT (k, a).

For each component n ∈ {1, . . . , d}, we have gn(a, yT (k, a)) ⩽ rn(a, fT (k, a)) by
property (i) in Proposition 5.4. Finally, using the explicit expression of the Eu-
clidean distance to Rd

−, we have

d2

∑
k∈K
a∈A

λT (k, a) · g(a, yT (k, a)), Rd
−

 =

√√√√√√√ d∑
n=1

∑
k∈K
a∈A

λT (k, a) · gn(a, yT (k, a))


2

+

⩽

√√√√√√√ d∑
n=1

∑
k∈K
a∈A

λT (k, a) · rn(a, fT (k, a))


2

+

= d2

∑
k∈K
a∈A

λT (k, a) · r(a, fT (k, a)), Rd
−

 .

□

6.8. Decomposition of g(at, yt) with respect to the realized auxiliary ac-
tion (kt, at).

Lemma 6.10.

1

T

T∑
t=1

g(at, yt) =
∑
k∈K
a∈A

λT (k, a) · g(a, yT (k, a))
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Proof. Using the definitions of NT (k, a) and λT (k, a), and the linearity of g(a, · ),
we have

1

T

T∑
t=1

g(at, yt) =
1

T

∑
k∈K
a∈A

∑
t∈NT (k,a)

g(a, yt)

=
∑
k∈K
a∈A

|NT (k, a)|
T

· 1

|NT (k, a)|
∑

t∈NT (k,a)

g(a, yt)

=
∑
k∈K
a∈A

λT (k, a) · g(a, yT (k, a)).

□
6.9. From g(it, jt) to g(at, yt).
Lemma 6.11.

E

[∥∥∥∥∥ 1T
T∑

t=1

g(it, jt)−
1

T

T∑
t=1

g(at, yt)

∥∥∥∥∥
2

]
⩽ 2

√
π ∥g∥2√
T

+
2 ∥g∥2
T

T∑
t=1

γt.

Proof. Consider the process (Xt)t⩾1 defined by
Xt = g(it, jt)− (1− γt)g(at, yt)− γtg(u, yt),

and the filtration (G′
t)t⩾1 where G′

t is generated by
(k1, a1, y1, i1, s1, . . . , kt−1, at−1, yt−1, it−1, st−1, kt, at, yt).

(Xt)t⩾1 is a martingale difference sequence with respect to filtration (G′
t)t⩾1. In-

deed, knowing G′
t, the law of it is (1− γt)at + γtu by definition of the strategy, and

thus the law of (it, jt) is ((1− γt)at + γtu)⊗ yt. We can then write, by bilinearity
of g:

E [g(it, jt) | G′
t] = (1− γt)g(at, yt) + γtg(u, yt).

Moreover, ∥Xt∥2 is always bounded by 2 ∥g∥2:
∥Xt∥2 = ∥(1− γt) (g(it, jt)− g(at, yt)) + γt (g(it, jt)− g(u, yt))∥2

⩽ (1− γt) ∥g(it, jt)− g(at, yt)∥2 + γt ∥g(it, jt)− g(u, yt)∥2
⩽ 2 ∥g∥2 .

We can thus apply Corollary D.2 with M = 2 ∥g∥2 to get

E

[∥∥∥∥∥ 1T
T∑

t=1

Xt

∥∥∥∥∥
2

]
⩽ 2

√
π ∥g∥2√
T

.

Therefore,∥∥∥∥∥ 1T
T∑

t=1

g(it, jt)−
1

T

T∑
t=1

g(at, yt)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1T
T∑

t=1

(Xt + γt(g(u, yt)− g(at, yt)))

∥∥∥∥∥
2

⩽
∥∥∥∥∥ 1T

T∑
t=1

Xt

∥∥∥∥∥
2

+

∥∥∥∥∥ 1T
T∑

t=1

γt (g(u, yt)− g(at, yt))

∥∥∥∥∥
2

⩽
∥∥∥∥∥ 1T

T∑
t=1

Xt

∥∥∥∥∥
2

+
2 ∥g∥2
T

T∑
t=1

γt,
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And taking the expectation:

E

[∥∥∥∥∥ 1T
T∑

t=1

g(it, jt)−
1

T

T∑
t=1

g(at, yt)

∥∥∥∥∥
2

]
⩽ 2

√
π ∥g∥2√
T

+
2 ∥g∥2
T

T∑
t=1

γt.

□

6.10. Final bound. We now combine the above lemmas in the order specified at
the beginning of the section to get:

(4)

E
[
d2

(
gT , Rd

−
)]

⩽ 2
√
π ∥g∥2√
T

+
2 ∥g∥2
T

T∑
t=1

γt + Lr |I| |K| |A|
(

8√
TγT

+
8

3TγT

)

+
3Lr

2

√
|K| |A|

(
1

ηTT
+

|I|2

γTT

T∑
t=1

ηt−1

)
.

We take care of the above second term as follows. Using the fact that γt ⩽ γ0t
−1/3,

we have:

1

T

T∑
t=1

γt ⩽
1

T

T∑
t=1

γ0t
−1/3 ⩽ γ0

T

∫ T

0

t−1/3 dt =
3γ0
2

T−1/3.

Besides, we assume from now on that T ⩾ γ3
0 , so that γT = γ0T

−1/3. Then, the
third term from (4) is equal to

8Lr |I| |K| |A| γ−1/2
0 T−1/3 +

8

3
Lr |I| |K| |A| γ−1

0 T−2/3.

Also, the expression ηt = η0t
−2/3 allows to write

T∑
t=1

ηt−1 = η0

(
2 +

T−1∑
t=2

t−2/3

)
⩽ η0

(∫ 1

0

t−2/3 dt+

∫ T−1

1

t−2/3 dt

)
= 3η0T

1/3,

which gives, after simplification, the following upper bound on the last term from
(4):

3Lr

√
|K| |A|
2

(
η−1
0 + 3 |I|2 γ−1

0 η0

)
T−1/3.

Therefore, injecting the expression η0 =

√
γ0/3 |I|2 and rearranging the terms

according to their respective dependencies in T , the bound becomes:

E
[
d2

(
gT , Rd

−
)]

⩽
(
3 ∥g∥2 γ0 + 8Lr |I| |K| |A| γ−1/2

0 + 3
√
3Lr

√
|K| |A| |I| γ−1/2

0

)
T−1/3

+ 2
√
π ∥g∥2 T

−1/2 +
8

3
Lr |I| |K| |A| γ−1

0 T−2/3.

The above first term is further bounded from above by:(
3 ∥g∥2 γ0 + 14Lr |I| |K| |A| γ−1/2

0

)
T−1/3.
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Eventually, injecting the expression γ0 = (7Lr |I| |K| |A| /3 ∥g∥0)2/3 gives our final
bound:

E
[
d2

(
gT , Rd

−
)]

⩽ 16 ∥g∥1/32 (Lr |I| |K| |A|)2/3T−1/3

+ 4 ∥g∥2 T
−1/2 + 6 ∥g∥2/32 (Lr |I| |K| |A|)1/3T−2/3.

7. Outcome-dependent signals

This section studies the special case where the law s(i, j) of the signal does not
depend on the pure action i of the decision maker. In other words, we assume that

s( · , j) is constant, for all j ∈ J .

We aim at constructing a strategy which achieves a T−1/2 convergence rate.
Again, we assume that the target set is the negative orthant Rd

− and that it is
approachable. We will heavily rely on elements from the previous sections. To take
advantage of the above assumption, the strategy from Section 5 will be modified in
two ways. First, the estimator will be simpler since exploration is unnecessary, and
second, the mixed action of the decision maker will not be perturbed with the uni-
form distribution. Unless stated otherwise, all previous notation and assumptions
stand.

The modified strategy is defined as follows. Let (ηt)t⩾1 be a positive and nonin-
creasing sequence. For 1 ⩽ t ⩽ T ;

• compute z̃t = PZ̃

(
ηt−1

t−1∑
s=1

g̃s

)
and x̃t := x̃(z̃t) ∈ ∆(K ×A).

• draw (kt, at) ∼ x̃t and then it ∼ at;
• observe signal st ∈ S and compute estimator

f̂t = (δst)i∈I ∈ RS×I ;

• set g̃t = g̃((kt, at), f̂t).
The definition of the strategy implies that the law of it knowing Gt is at. Let us
state the properties of the new estimator.

Lemma 7.1. For t ⩾ 1,

(i) E
[
f̂t

∣∣∣Gt

]
= E [ft | Gt];

(ii)
∥∥∥f̂t∥∥∥2

2
= |I|.

Theorem 7.2. Against any strategy of Nature, the above strategy with parameters

ηt = η0t
−1/2, t ⩾ 1, where η0 =

√
1

2 |I|

guarantees for all T ⩾ 1:

E
[
d2

(
gT , Rd

−
)]

⩽ 4 ∥g∥2 + 8Lr

√
|I| |K| |A|√

T
.

One can check that statements from Lemmas 6.4, 6.5, 6.9 and 6.10 still hold. We
state and prove below new versions of the remaining lemmas, which were affected by



22 KWON AND PERCHET

the modifications of the estimator and the law of it. The analysis can be summarized
as follows.

gT is close to 1

T

T∑
t=1

g(at, yt) (Lemma 7.7)

is equal to
∑
k∈K
a∈A

λT (k, a) · g(a, yT (k, a)) (Lemma 6.10)

is closer to Rd
− than

∑
k∈K
a∈A

λT (k, a) · r(a, fT (k, a)) (Lemma 6.9)

is close to
∑
k∈K
a∈A

λT (k, a) · r[k](a, f̂T (k, a)) (Lemma 7.6)

is equal to R(g̃T ) (Lemma 6.5)

is close to Rd
− (Lemmas 6.4 and 7.3).

7.1. Average auxiliary payoff g̃T is close to auxiliary target set C̃.

Lemma 7.3.

E
[
d2

(
g̃T , C̃

)]
⩽ 1

2ηTT
+

|I|
2T

T∑
t=1

ηt−1.

Proof. We follow the proof of Lemma 6.4. The regret bound given by Theorem C.1
still holds:

max
z̃∈Z̃

T∑
t=1

⟨g̃t|z̃⟩ −
T∑

t=1

⟨g̃t|z̃t⟩ ⩽
1

2ηT
+

1

2T

T∑
t=1

ηt−1 ∥g̃t∥22 .

In Lemma 6.4, the second sum was nonpositive in expectation thanks to the fact
that E

[
f̂t

∣∣∣Gt

]
= E [ft | Gt]. The same reasoning can be applied in the present case

since the property of the estimator is guaranteed by Lemma 7.1. Therefore, we
have

E
[
d2

(
g̃T , C̃

)]
⩽ 1

2ηTT
+

1

2T

T∑
t=1

ηt−1E
[
∥g̃t∥22

]
.

Then, for 1 ⩽ t ⩽ T , we have

∥g̃t∥22 =
∥∥∥g̃((kt, at), f̂t)∥∥∥2

2
=

∥∥∥∥∥(1{kt=k, at=a}f̂t

)
k∈K
a∈A

∥∥∥∥∥
2

2

=
∥∥∥f̂t∥∥∥2

2
= |I| ,

where we used property (ii) from Lemma 7.1 for the last equality. The result
follows. □

7.2. Average estimator f̂T (k, a) is close to average flag fT (k, a).

Lemma 7.4.

E

∑
k∈K
a∈A

λT (k, a)
∥∥∥f̂T (k, a)− fT (k, a)

∥∥∥
2

 ⩽ 2 |K| |A|
√

π |I|
T

.
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Proof. Let k ∈ K and a ∈ A. As in Lemma 6.6, we consider

Xt(k, a) := 1{kt=k, at=a}

(
f̂t − ft

)
,

which is a sequence of martingale differences with respect to filtration (Gt)t⩾1 thanks
to property (i) from Lemma 7.1. But this time, we use Corollary D.2 instead of
Corollary D.4. Each Xt is bounded as follows

∥Xt(k, a)∥2 ⩽
∥∥∥f̂t∥∥∥

2
+ ∥ft∥2 =

√
|I|+

√∑
i∈I

∥s(i, yt)∥22 ⩽ 2
√

|I|,

where we used property (ii) from Lemma 7.1. Corollary D.2 then gives

E
[
λT (k, a)

∥∥∥f̂T (k, a)− fT (k, a)
∥∥∥
2

]
= E

[∥∥∥∥∥ 1T
T∑

t=1

Xt(k, a)

∥∥∥∥∥
2

]
⩽ 2

√
π |I|
T

.

The result follows by summing over k ∈ K and a ∈ A. □

7.3. Average estimator f̂T (k, a) is close to Fk
c .

Lemma 7.5.

E

∑
k∈K
a∈A

d2

(
g̃
ka
T , Fk

c

) ⩽
√
|K| |A|

(
1

2ηTT
+

|I|
2T

T∑
t=1

ηt−1

)
.

Proof. The following inequality from the proof of Lemma 6.7 still holds∑
k∈K
a∈A

d2

(
g̃
ka
T , Fk

c

)
⩽
√
|K| |A| · d2

(
g̃T , C̃

)
.

Then, taking the expectation and injecting the new bound on E
[
d2

(
g̃T , C̃

)]
given

by Lemma 7.3 yields the result. □

7.4. r[k](a, f̂T (k, a)) is close to r(a, fT (k, a)).

Lemma 7.6. For all k ∈ K and a ∈ A,

E

∑
k∈K
a∈A

λT (k, a)
∥∥∥r(a, fT (k, a))− r[k](a, f̂T (k, a))

∥∥∥
2

 ⩽ 2Lr |K| |A|
√

π |I|
T

+ Lr

√
|K| |A|

(
1

ηTT
+

|I|
T

T∑
t=1

ηt−1

)
.

Proof. Let k ∈ K and a ∈ A. Using notation f = fT (k, a) and f̂ = f̂T (k, a), the
following inequality from the proof of Lemma 6.8 still holds

λT (k, a)
∥∥∥r(a, f)− r[k](a, f̂)

∥∥∥
2
⩽ Lr · λT (k, a)

∥∥∥f − f̂
∥∥∥
2
+ 2Lr · d2

(
g̃
ka
T , Fk

c

)
.

The result follows from taking the expectation, summing over k ∈ K and A, and
injecting the bounds from Lemmas 7.4 and 7.5. □
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7.5. From g(it, jt) to g(at, yt).

Lemma 7.7.

E

[∥∥∥∥∥ 1T
T∑

t=1

g(it, jt)−
1

T

T∑
t=1

g(at, yt)

∥∥∥∥∥
2

]
⩽ 2

√
π ∥g∥2√
T

.

Proof. The process (g(it, jt)−g(at, yt))t⩾1 is a martingale difference sequence with
respect to filtration (G′

t)t⩾1 introduced in the proof of Lemma 6.11. It is moreover
bounded by 2 ∥g∥2. Therefore, Corollary D.2 gives:

E

[∥∥∥∥∥ 1T
T∑

t=1

g(it, jt)−
1

T

T∑
t=1

g(at, yt)

∥∥∥∥∥
2

]
⩽ 2

√
π ∥g∥2√
T

.

□

7.6. Final bound. Similarly to the proof of Theorem 6.1, the combination of the
above lemmas gives:

(5) E
[
d2

(
gT , Rd

−
)]

⩽ 2
√
π ∥g∥2√
T

+
2
√
πLr |K| |A|

√
|I|√

T

+
3Lr

√
|K| |A|
2

(
1

ηTT
+

|I|
T

T∑
t=1

ηt−1

)
.

The expression ηt = η0t
−1/2 allows to write

T∑
t=1

ηt−1 = η0

(
2 +

T−1∑
t=2

t−1/2

)
⩽ η0

(∫ 1

0

t−1/2 dt+

∫ T−1

1

t−1/2 dt

)
⩽ 2η0T

1/2.

Then, the last term from (5) is bounded from above by

3Lr

√
|K| |A|
2

(
1

η0
+ 2 |I| η0

)
T−1/2.

Injecting the expression η0 =
√
1/2 |I| and simplifying finally yields the result:

E
[
d2

(
gT , Rd

−
)]

⩽
(
4 ∥g∥2 + 8Lr

√
|I| |K| |A|

)
T−1/2.

8. Discussion

8.1. Computational efficiency. We discuss the computational efficiency of the
strategies studied in Sections 6 and 7. The following arguments hold for both.

The first step of the strategy is the computation of z̃t which consists of an
Euclidean projection onto Z̃ := C̃◦ ∩ B2, which is efficient. Indeed, C̃◦ being a
closed convex cone, the Euclidean projection onto Z̃ can be immediately deduced
from the Euclidean projection onto C̃◦. The latter projection can be efficiently
computed since C̃◦ is a polytope (as it can be easily checked). The second step is the
computation of x̃t := x̃(z̃t) which, according to the definition of x̃ in Proposition 5.9,
can be computed by solving the following minimax problem:

min
x̃∈∆(K×A)

max
f∈F

⟨g̃(x̃, f)|z̃t⟩ .
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The sets ∆(K×A) and F being polytopes, this can be solved efficiently using e.g.
linear programming. Then, the computations of estimator f̂t and auxiliary payoff
g̃t are easy.

Therefore, the whole strategy can be efficiently computed. Moreover, the per-
step complexity is constant.

8.2. High probability guarantee and almost-sure convergence. Theorem
6.1 only provides a convergence guarantee in expectation. We quickly describe how
the analysis can be adapted to obtain, for the same strategy, a high probability
guarantee as well as almost-sure convergence.

We do not modify Lemmas 6.4, 6.5, 6.9 and 6.10 as they do not involve expec-
tations.

The proof of Lemma 6.3 is modified as follows in order to obtain a high prob-
ability guarantee on d2(g̃T , C̃). We can easily see that (⟨g̃t|z̃t⟩)t⩾1 is a bounded
sequence of super-martingale differences with respect to filtration (Ht)t⩾1 and that
(∥g̃t∥22 − (|I| /γt)2)t⩾1 is a bounded sequence of super-martingale differences with
respect to (Gt)t⩾1. Applying the Hoeffding–Azuma inequality then gives the high
probability version of the lemma.

The modification of Lemmas 6.6 and 6.11 is straightforward. We simply apply
the high probability version of the involved concentration inequalities instead of the
bounds in expectation: Proposition D.3 instead of Corollary D.4 and Proposition
D.1 instead of Corollary D.2, respectively.

The high probability versions of Lemmas 6.7 and 6.8 immediately follow from
those of Lemma 6.3, and Lemmas 6.6 and 6.7, respectively.

Then, the almost-sure convergence follow from a standard Borel-Cantelli argu-
ment.

8.3. Using other regret minimizing strategies. As explained in the proof of
Lemma 6.3, the strategy defined in Section 5.4 is based on a regret minimizing
strategy, specifically, the Mirror Descent strategy associated with the Euclidean
regularizer on Z̃ and time-varying parameters (ηt)t⩾1. As detailed in the proof,
this strategy guarantees the following regret bound:

max
z̃∈Z

T∑
t=1

⟨g̃t|z̃⟩ −
T∑

t=1

⟨g̃t|z̃t⟩ ⩽
1

2ηT
+

1

2

T∑
t=1

ηt−1 ∥g̃t∥22 .

We can easily see that any regret minimizing strategy which guarantees a regret
bound of the form

max
z̃∈Z

T∑
t=1

⟨g̃t|z̃⟩ −
T∑

t=1

⟨g̃t|z̃t⟩ ⩽
A

ηT
+B

T∑
t=1

ηt−1 ∥g̃t∥22

could be used to construct an alternative approachability strategy for the initial
game, with the same rate of convergence. In particular, any Mirror Descent strategy
(see e.g. [SS11, Bub11]) associated with some strongly convex regularizer on Z̃
would be appropriate.

An interesting question is whether the choice of another regularizer would help
improve the dependency in |I|, |K| and |A| of the bound from Theorem 6.1. Note
however that a general regularizer would not a priori retain the computational
efficiency of the Euclidean regularizer (see Section 8.1).
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8.4. Comparison with [MPS14]. The strategy proposed in [MPS14] is compu-
tationally efficient and has a dimension-independent convergence rate of T−1/5. We
here highlight a few ideas which were already present in [MPS14], and those we have
introduced in the present work to achieve an optimal convergence rate of T−1/3.

[MPS14] already used the single-valued map r which is a simpler version of the
set-valued map m, which retains the key property characterizing the approacha-
bility of the target set (see Proposition 3.2 and property (ii) in Proposition 5.4).
Besides, the decomposition of F and ∆(I) into polytopes was considered to obtain
the piecewise-affinity of r. This fundamental property was then used in the averag-
ing of the flag estimators. The proposed strategy is constructed by dividing time
into blocks of the same length: the decision maker plays a constant mixed action
on each time block, which is used to average the flag estimators; and the decision
maker changes his mixed action from one block to the other in order to achieve the
convergence to the target set.

The strategy constructed in Section 5.4 manages to average the estimators and
to approach the target at the same time, resulting in an improved (and optimal)
convergence rate of T−1/3. We enumerate some of the main ideas used to achieve
this. First, we introduce the linear map R which allows to easily relate the auxiliary
game and the initial game. In particular, it gives a simple comparison between a)
the distance of the average payoff to the target set in the initial game and b)
the distance of the average auxiliary payoff to the auxiliary target set (Lemma
6.4). Moreover, it combines well with the use of convex cones. Those are used, in
particular, to consider the distance d2(g̃

ka
T , Fk

c ) instead of d2(f̂T (k, a), Fk): this
avoids the difficulty of having a different estimator normalization for each couple
(k, a), by simply considering working with sums. Finally, the auxiliary target set C̃
is defined by

C̃ =
∏
k∈K

C̃k where C̃k = R−1
k (Rd

−) ∩ (Fk
c )

A.

The set R−1
k (Rd

−) corresponds to approaching the negative orthant in the initial
game, whereas the set (Fk

c )
A corresponds to making the sure the average estimator

f̂T (k, a) is close to Fk. Considering the intersection therefore allows to manage
both at the same time.

Appendix A. Proofs of technical lemmas

A.1. Proof of Lemma 5.3. Let 1 ⩽ n ⩽ d and b ∈ B. Let us first prove that
rn( · , b) is piecewise affine. The map f being affine and defined on ∆(J ), the set
f−1(b) is a polytope. Denote yb,1, . . . , yb,q its vertices. Let x ∈ ∆(I). By linearity
of g(x, · ), rn(x, b) can then be written

rn(x, b) = maxgn(x, f−1(b)) = max
1⩽p⩽q

gn(x, yb,p).

rn( · , b) now appears as the maximum of a finite family (gn( · , yb,p))1⩽p⩽q of linear
functions. It is therefore piecewise affine and so is r( · , b). Therefore, for each b ∈ B
there exists a decomposition of ∆(I) into polytopes on each of which r( · , b) is
affine. B being finite, we can consider the decomposition (X ℓ)ℓ∈L which refines all
of them. r( · , b) is therefore affine on each polytope X ℓ for all b ∈ B. Let us now
prove that r( · , f) is affine on each polytope X ℓ for all f ∈ F .
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Let f ∈ F , ℓ ∈ L, x1, x2 ∈ X ℓ and λ ∈ [0, 1]. Using property (iii) from
Lemma 5.2, we consider the unique decomposition f =

∑
b∈B µb · b and k ∈ K

such that suppµ ⊂ Fk. Using the definition of r and the affinity of r( · , b) on X ℓ,
we have

r(λx1 + (1− λ)x2, f) =
∑
b∈B

µb · r(λx1 + (1− λ)x2, b)

=
∑
b∈B

µb (λr(x1, b) + (1− λ)r(x2, b))

= λ
∑
b∈B

µb · r(x1, b) + (1− λ)
∑
b∈B

µb · r(x2, b)

= λr(x1, f) + (1− λ)r(x2, f),

where the last equality stands because of the uniqueness of the decomposition of f
lets us recognize the definitions of r(x1, b) and r(x2, b) from Equation (2).

A.2. Proof of Proposition 5.4. (i) Let x ∈ ∆(I) and y ∈ ∆(J ). Denote f =
f(y). We use property (iii) from Lemma 5.2 to get the unique decomposition f =∑

b∈B µb · b and k ∈ K such that suppµ ⊂ Fk. f−1 being affine on Fk by property
(ii) in Lemma 5.2, we have

f−1

 ∑
b∈suppµ

µb · b

 =
∑
b∈B

µb · f−1(b).

Therefore we can write

g(x, y) ∈ g(x, f−1(f)) = g

x, f−1

 ∑
b∈suppµ

µb · b

 = g

(
x,
∑
b∈B

µb · f−1(b)

)

=
∑

b∈suppµ

µb · g(x, f−1(b)).

Then for each 1 ⩽ n ⩽ d,

gn(x, y) ⩽ max
∑

b∈suppµ

µb · gn(x, f−1(b)) =
∑
b∈B

µb ·maxgn(x, f−1(b))

=
∑
b∈B

µb · rn(x, b) = rn(x, f),

where for the second equality, we recognized the definition of rn(x, b) from Equation
(1) on page 7, and the the last equality, the definition of rn(x, f) from Equation
(2).

(ii) Let f ∈ F . Thanks to the characterization of approachability from Propo-
sition 3.2, there exists x ∈ ∆(I) such that m(x, f) ∈ Rd

−. Let f =
∑

b∈B µb · b be
the unique decomposition of f given by Lemma 5.2. With the same arguments as
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above, we have for each 1 ⩽ n ⩽ d,

rn(x, f) =
∑
b∈B

µb · rn(x, b) =
∑
b∈B

µb ·maxgn(x, f−1(b))

= max
∑
b∈B

µb · gn(x, f−1(b)) = maxgn

(
x, f−1

(∑
b∈B

µb · b

))
= maxgn(x, f−1(f)) = maxmn(x, f) ⩽ 0.

Therefore, r(x, f) ∈ Rd
−.

(iii) Let x ∈ ∆(I), k ∈ K, f1, f2 ∈ Fk and λ ∈ [0, 1]. We use property (iii) from
Lemma 5.2 to write f1 =

∑
b∈B µb

1 · b and f2 =
∑

b∈B µb
2 · b with suppµ1 ⊂ Fk and

suppµ2 ⊂ Fk. The unique decomposition of λf1 + (1 − λ)f2 given by Lemma 5.2
is then

λf1 + (1− λ)f2 =
∑
b∈B

(λµb
1 + (1− λ)µb

2) · b.

Therefore, using the definition of r and the affinity of r(x, · ) on Fk,

r(x, λf1 + (1− λ)f2) = r

(
x,
∑
b∈B

(λµb
1 + (1− λ)µb

2) · b

)

=
∑
b∈B

(λµb
1 + (1− λ)µb

2) · r(x, b)

= λ
∑
b∈B

µb
1 · r(x, b) + (1− λ)

∑
b∈B

µb
2 · r(x, b)

= λr(x, f1) + (1− λ) · r(x, f2).

(iv) is already proved in Lemma 5.3.

A.3. Proof of Lemma 5.5. Let k ∈ K and x ∈ ∆(I). Let us consider span(Fk) ⊂
RS×I , the linear span of Fk. There exists a basis (f1, . . . , fq) of span(Fk) such that
fp belongs to Fk for each 1 ⩽ p ⩽ q. We now define r[k](x, · ) on span(Fk) by setting

r[k](x, fp) := r(x, fp), for each element fp of the basis,

and extending linearly. r[k](x, · ) can then be further extended to the whole space
RS×I by setting its value to zero on some complementary subspace of span(Fk).

Let us now prove that r[k](x, · ) coincides with r(x, · ) on Fk. Let f ∈ Fk. In
particular, f belongs to span(Fk) and can be uniquely written

f =

q∑
p=1

λpfp, where λ1, . . . , λq ∈ R.

The application r[k](x, · ) being linear by definition, we have

r[k](x, f) =

q∑
p=1

λpr(x, fp).

We now aim at proving that the above sum is equal to r(x, f). This cannot be done
by directly applying the affinity of r(x, · ) (property (iii) in Lemma 5.4) because
some of the above coefficients λp may be negative. To overcome this, we first
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separate the terms according to the signs of the coefficients λp. We denote Λ+

(resp. Λ−) the sum of all positive (resp. negative) coefficients λp and write

r[k](x, f) =
∑
λp>0

λpr(x, fp) +
∑
λp<0

λpr(x, fp)

= Λ+
∑
λp>0

(
λp

Λ+

)
r(x, fp) + Λ−

∑
λp<0

(
λp

Λ−

)
r(x, fp).

Since each of the above sum is now a convex combination, we can apply the affinity
of r(x, · ):

r[k](x, f) = Λ+ · r

x,
∑
λp>0

(
λp

Λ+

)
fp

+ Λ−r

x,
∑
λp<0

(
λp

Λ−

)
fp

 .

Let us prove that

(6) r(x, f)− Λ−r

x,
∑
λp<0

(
λp

Λ−

)
fp

 = Λ+ · r

x,
∑
λp>0

(
λp

Λ+

)
fp

 .

This will prove that r[k](x, f) = r(x, f).

r(x, f)− Λ−r

x,
∑
λp<0

(
λp

Λ−

)
fp

 = (1− Λ−)

(
1

1− Λ− r(x, f)

+
−Λ−

1− Λ− r

x,
∑
λp<0

(
λp

Λ−

)
fp


= (1− Λ−)

× r

x,
1

1− Λ− f +
∑
λp<0

(
− λp

1− Λ−

)
fp


= (1− Λ−) · r

x,
1

1− Λ−

f −
∑
λp<0

λpfp


=
(
1− Λ−) · r

x,
∑
λp>0

(
λp

1− Λ−

)
fp

 .

For relation (6) to be true, it is now enough to prove that Λ+ + Λ− = 1. Since
Fk ⊂ F ⊂ ∆(S)I , for any f0 = (f is

0 )s∈S
i∈I

∈ Fk, we have

∑
s∈S
i∈I

f is
0 =

∑
i∈I

∑
s∈S

f is
0 =

∑
i∈I

1 = |I| .
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•f = f0 • f ′ = fq•
f1

•
f2 •

fq−1
. . .

Fk1

Fk2 Fkq−1

By applying the above to f and the fp, we get

|I| =
∑
s∈S
i∈I

f is =
∑
s∈S
i∈I

∑
λp>0

λpf
is
p +

∑
λp<0

λpf
is
p


=
∑
λp>0

λp

∑
s∈S
i∈I

f is
p +

∑
λp<0

λp

∑
s∈S
i∈I

f is
p

= Λ+ |I|+ Λ− |I| ,

and we indeed get Λ+ + Λ− = 1 by dividing by |I|, which concludes the proof.

A.4. Proof of Lemma 5.6. Property (i) follows from the definition of Lr and the
linearity of the map r[k](a, · ).

(ii) Let k ∈ K, a ∈ A and f, f ′ ∈ F . (Fk)k∈K being a finite decomposition of F
into convex polytopes, there exists a finite sequence (k1, k2, . . . , kq) in K such that
the kp’s are all different and a sequence (f0 = f, f1, f2, . . . , fq = f ′) in the affine
segment [f, f ′] such that [fp−1, fp] ⊂ Fkp for each 1 ⩽ p ⩽ q. Therefore, using the
fact that r[k

′](a, · ) and r(a, · ) coincide on Fk′ for all k′ ∈ K, we can write

∥r(a, f)− r(a, f ′)∥2 =

∥∥∥∥∥
q∑

p=1

(r(a, fp−1)− r(a, fp))

∥∥∥∥∥
2

=

∥∥∥∥∥
q∑

p=1

r[kp](a, fp−1)− r[kp](a, fp)

∥∥∥∥∥
2

⩽
q∑

p=1

∥∥∥r[kp](a, fp−1)− r[kp](a, fp)
∥∥∥
2

⩽ Lr

q∑
p=1

∥fp−1 − fp∥2

= Lr ∥f − f ′∥2 ,

where the last equality holds because the points f0, . . . , fq are aligned and ordered.

A.5. Proof of Lemma 5.8. (i) Let k ∈ K. R−1
k (Rd

−) is a closed convex cone as
the inverse image via a linear application of the closed convex cone Rd

− (Propo-
sition B.5). Fk

c is a closed convex cone by definition, and (Fk
c )

A is thus a
closed convex cone as a Cartesian product of closed convex cones. Therefore,
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C̃k = R−1
k (Rd

−) ∩ (Fk
c )

A is also a closed convex cone as the intersection of two
closed convex cones. Then, C̃ is also a closed convex cone as a Cartesian product
of closed convex cones.

(ii) Let g̃ = (g̃ka)k∈K
a∈A

∈ C̃. By definition of C̃, for each k ∈ K, (g̃ka)a∈A belongs

to C̃k and thus to (Fk
c )

A. Therefore, g̃ ∈
∏

k∈K(Fk
c )

A. Moreover,

R(g̃) =
∑
k∈K

Rk

(
(g̃ka)a∈A

)
belongs to Rd

−. Indeed, each term of the above sum belongs to Rd
− because for all

k ∈ K, (g̃ka)a∈A ∈ C̃k ⊂ R−1
k (Rd

−).

A.6. Proof of Lemma 5.10. (i) Let i ∈ I. Note that by definition of the strategy,
we have

P [it = i | Gt] = (1− γt)a
i
t +

γt
|I|

,

and therefore, estimator f̂t rewrites as

f̂t =

(
1{it=i}

P [it = i | Gt]

)
i∈I

.

Then, using the conditional expectation with respect to event {it = i}, we have

E
[
f̂ i
t

∣∣∣Gt

]
= E

[
1{it=i}

P [it = i | Gt]
δst

∣∣∣∣Gt

]
= P [it = i | Gt]× E

[
δst

P [it = i | Gt]

∣∣∣∣Gt, {it = i}
]

= E [δst | Gt, {it = i}]
= E [E [δst | yt,Gt, {it = i}] | Gt, {it = i}]
= E [s(i, yt) | Gt, {it = i}]
= E [s(i, yt) | Gt]

= E
[
f i
t

∣∣Gt

]
,

hence the result.
(ii) We write

E
[∥∥∥f̂t∥∥∥2

2

∣∣∣∣Gt

]
= E

[∑
i∈I

∥∥∥∥ 1{it=i}

P [it = i | Gt]
δst

∥∥∥∥2
2

∣∣∣∣∣Gt

]

= P [it = i | Gt]× E

[∑
i∈I

∥∥∥∥ δst
P [it = i | Gt]

∥∥∥∥2
2

∣∣∣∣∣Gt, {it = i}

]

=
∑
i∈I

1

P [it = i | Gt]
E
[
∥δst∥

2
2

∣∣∣Gt, {it = i}
]

=
∑
i∈I

1

P [it = i | Gt]

⩽ |I|2

γt
,
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where the last inequality stands because P [it = i | Gt] ⩾ γt/|I| by definition of the
strategy.

(iii) We have∥∥∥f̂t∥∥∥2
2
=
∑
i∈I

∥∥∥∥ 1{it=i}

P [it = i | Gt]
δst

∥∥∥∥2
2

=
∑
i∈I

1{it=i}
∥δst∥

2
2

P [it = i | Gt]
2

⩽ |I|2

γ2
t

∑
i∈I

1{it=i} =
|I|2

γ2
t

.

A.7. Proof of Lemma 7.1. (i) For i ∈ I, we write

E
[
f̂ i
t

∣∣∣Gt

]
= E [E [δst | Gt, yt] | Gt] = E [s(i, yt) | Gt] = E

[
f i
t

∣∣Gt

]
.

(ii) The Euclidean norm of a Dirac being equal to 1,∥∥∥f̂t∥∥∥2
2
= ∥(δst)i∈I∥22 =

∑
i∈I

∥δst∥
2
2 = |I| .

Appendix B. Closed convex cones

Throughout the section, W will be a finite-dimensional vector space and W∗ its
dual.

Definition B.1. A nonempty subset C of W is a closed convex cone if it is closed
and if for all w,w′ ∈ C and λ ∈ R+, we have w + w′ ∈ C and λw ∈ C.

The following proposition gathers a few immediate properties.

Proposition B.2. (i) A closed convex cone is convex.
(ii) An intersection of closed convex cones is a closed convex cone.

(iii) A Cartesian product of closed convex cones is a closed convex cone.
(iv) A half-space of the form {w ∈ W | ⟨z|w⟩ ⩽ 0} (for some z ∈ W∗) is a closed

convex cone.

Definition B.3. Let A be a subset of W. The polar cone of A is a subset of the
dual space W∗ defined by

A◦ = {z ∈ W∗ | ∀w ∈ A, ⟨w|z⟩ ⩽ 0} .

The following proposition is an immediate consequence of the Bipolar theorem
— see e.g. Theorem 3.3.14 in [BL10].

Proposition B.4. Let A be a subset of W.
(i) A◦◦ is the smallest closed convex cone containing A.

(ii) If A is closed and convex, then A◦◦ = R+A.
(iii) If A is a closed convex cone, then A◦◦ = A.

Proposition B.5. Let φ : W → W̃ be a linear application between two finite-
dimensional vector spaces W and W̃, φ∗ its transpose, C and C̃ closed convex cones
in W and W̃ respectively.

(i) φ(C) is a closed convex cone.
(ii) Then φ−1(C̃) = φ∗(C̃◦)◦. In particular, φ−1(C̃) is a closed convex cone.
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Proof. Property (i) is obvious. We prove property (ii) as follows. For w ∈ W,

w ∈ φ−1(C̃) ⇐⇒ φ(w) ∈ C̃ ⇐⇒ φ(w) ∈ C̃◦◦

⇐⇒ ∀z̃ ∈ C̃◦, ⟨z̃|φ(w)⟩ ⩽ 0

⇐⇒ ∀z ∈ C̃◦, ⟨φ∗(z̃)|w⟩ ⩽ 0

⇐⇒ w ∈ φ∗(C̃◦)◦.

Therefore, φ−1(C̃) is a closed convex cone because it is a polar cone. □

Proposition B.6 (see e.g. [AHR12]). Let C be a closed convex cone in Rn. For
all point w ∈ Rn, its Euclidean distance to C can be written

d2 (w, C) = max
z∈C◦∩B2

⟨w|z⟩ .

where B2 denotes the closed unit Euclidean ball.

Appendix C. Regret minimization

The construction of the strategies from Sections 5 and 7 are based on regret
minimizing strategies. The following statement is very similar to well-known regret
bounds (see e.g. [RT09, Proposition 11], [SS11, Lemma 2.20] or [BCB12, Theorem
5.4]) but allows for time-varying parameters (ηt)t⩾1.

Theorem C.1 (Theorem 5.1 in [KM14], Theorem I.3.1 in [Kwo16]). Let n ⩾ 1, Rn

endowed with its canonical Euclidean structure, Z a nonempty convex compact sub-
set of Rd, (ut)t⩾1 a sequence in Rn, (ηt)t⩾1 a positive and nonincreasing sequence,
and

zt = argmax
z∈Z

{⟨
ηt−1

t−1∑
s=1

us

∣∣∣∣∣z
⟩

− 1

2
∥z∥22

}
, t ⩾ 1.

Then, for all T ⩾ 1,

max
z∈Z

T∑
t=1

⟨ut|z⟩ −
T∑

t=1

⟨ut|zt⟩ ⩽
∥Z∥22
2ηT

+
1

2

T∑
t=1

ηt−1 ∥ut∥22 .

Appendix D. Concentration inequalities

Proposition D.1 (Corollary 3.5 in [KS91]). Let (Ut)t⩾1 be a sequence of martin-
gale differences in Rd, bounded almost-surely by M > 0:

∀t ⩾ 1, ∥Ut∥2 ⩽ M, a.s.

Then, for every ε > 0 and T ⩾ 1,

P

[∥∥∥∥∥ 1T
T∑

t=1

Ut

∥∥∥∥∥
2

⩾ ε

]
⩽ 2 exp

(
− Tε2

4M2

)
.

Corollary D.2. Under the assumptions of Proposition D.1, we have:

E

[∥∥∥∥∥ 1T
T∑

t=1

Ut

∥∥∥∥∥
2

]
⩽ M

√
π

T
.
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Proof. The result follows from Proposition D.1 by integrating the tail of the distri-
bution:

E
[∥∥UT

∥∥
2

]
=

∫ +∞

0

P
[∥∥UT

∥∥
2
⩾ ε
]
dε ⩽

∫ +∞

0

2e−Tε2/4M2

dε

= 2

∫ +∞

0

e−ε2(T/4M2) dε = M

√
π

T
.

□

The following Bernstein-like inequality is proved in [Pin94] — see also Corollary
A.2 in [TY14].

Proposition D.3. Let (Xt)t⩾1 be a martingale difference sequence in a Hilbert
space with respect to a filtration (Gt)t⩾0. Suppose that ∥Xt∥ ⩽ M almost-surely,
and

1

T

T∑
t=1

E
[
∥Xt∥2

∣∣∣Gt−1

]
⩽ V.

Then,

P

[
max
1⩽t⩽T

∥∥∥∥∥
t∑

t′=1

Xt′

∥∥∥∥∥ ⩾ ε

]
⩽ 2 exp

(
− ε2

2TV + 2Mε/3

)
.

Corollary D.4. Under the assumptions of Proposition D.3,

E

[∥∥∥∥∥ 1T
T∑

t=1

Xt

∥∥∥∥∥
]
⩽ 4

√
2

√
V

T
+

4M

3T
.

Proof. Let A ⩾ 0 to be chosen later.

E
[∥∥XT

∥∥] = ∫ +∞

0

P
[∥∥XT

∥∥ ⩾ ε
]
dε

⩽ 2

∫ +∞

0

exp

(
− ε2T 2

2V T + 2MεT/3

)
dε

= 2

∫ +∞

0

exp

(
− ε2T

2V + 2Mε/3

)
dε

⩽ 2

(
A+

∫ +∞

A

exp

(
− ε2T

2ε(V/A+M/3)

)
dε

)
= 2

(
A+

∫ +∞

A

exp

(
− εT

2(V/A+M/3)

)
dε

)
= 2

(
A+

[
− 2

T

(
V

A
+

M

3

)
exp

(
− εT

2(V/A+M/3)

)]+∞

A

)

⩽ 2A+
4

T

(
V

A
+

M

3

)
.

Choosing A =
√
2V/T gives:

E
[∥∥XT

∥∥] ⩽ 4
√
2

√
V

T
+

4M

3T
.

□
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