

CV chondrites: More than one parent body

J. Gattacceca, L. Bonal, C. Sonzogni, J. Longerey

▶ To cite this version:

J. Gattacceca, L. Bonal, C. Sonzogni, J. Longerey. CV chondrites: More than one parent body. Earth and Planetary Science Letters, 2020, 54, pp.116467. 10.1016/j.epsl.2020.116467. hal-02734079

HAL Id: hal-02734079 https://hal.inrae.fr/hal-02734079v1

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	CV chondrites: more than one parent body
2	J. Gattacceca ¹ , L. Bonal ² , C. Sonzogni ¹ , J. Longerey ¹ .
3	
4	¹ CNRS, Aix Marseille Univ, IRD, Coll France, INRAE, CEREGE, Aix-en-Provence, France
5	² Institut de Planétologie et d'Astrophysique de Grenoble, Université Grenoble Alpes, CNRS
6	CNES, 38000 Grenoble, France
7	
8	Corresponding author: gattacceca@cerege.fr
9	
10	
11	Abstract

12 CV chondrites are one of the most studied group of carbonaceous chondrites. Based on a 13 number of mineralogical features, they have been divided into three sub-groups: CV_{0xA}, CV_{OxB}, and CV_{Red}. These sub-groups are classically interpreted as coming from a single 14 15 parent body, with a common protolith affected by significant parent body fluid-assisted 16 metasomatism occurring at different temperatures and/or redox conditions. In this work, we studied a set of 53 CV chondrites. We classified them into the three sub-groups, measured 17 their apparent chondrule sizes and their matrix modal abundance. We measured the triple 18 19 oxygen isotopic composition for 17 of them. The distributions of chondrule size and matrix 20 abundances in CV_{OxA} and CV_{OxB} cannot be statistically distinguished. Conversely, CV_{Red} and 21 CV_{Ox} have distinct distributions. These two robust and simple petrographic indicators 22 combined with the previous knowledge of the peak metamorphic temperatures experienced by these meteorites show that CV_{Ox} and CV_{Red} originate from two distinct parent bodies. On the 23 24 other hand, CV_{OxA} and CV_{OxB} likely originate from the same parent body, with CV_{OxA} 25 representing deeper, more metamorphosed levels. For clarification of the chondrite classification scheme, in which one group should ultimately represent a single parent body, we propose to divide the CV group into two proper groups (and not subgroups as is the current scheme), keeping the names CV_{Red} and CV_{Ox} . These two groups can be readily separated by estimating the average nickel content of their sulfides.

30

31 **1. Introduction**

32 Most meteorites come from the main asteroid belt. They are extracted from asteroids by impact under the form of meteoroids (~ centimeter- to meter-sized objects), that orbit in the 33 34 interplanetary space for typically a few Myr before colliding with the Earth (e.g., Eugster et al., 2006; Gravnik and Brown, 2018). The 60000 meteorites registered to date by the 35 36 Meteoritical Society are classified into groups (e.g., Weisberg et al., 2006). The general idea 37 behind grouping is that meteorites from a group derive from the same primary parent body 38 (senso Greenwood et al. (2020), i.e., the source body from which the meteorite ultimately 39 derived), in most cases an asteroid. This is strictly applicable to chondrites, the classification 40 for achondrites being a little less coherent. For instance, meteorites originating from asteroid 41 Vesta are separated into three groups (eucrites, diogenites, howardites) and meteorites 42 originating from Mars are separated into several groups as well (shergottites, nakhlites, ...). However, even for chondrites, it is not established that all meteorites within a group come 43 44 from a single parent body, although this would be the ultimate objective of the classification scheme. CM chondrites, for instance, have been proposed to come from multiple parent 45 46 bodies (e.g., Lee et al. 2019), but there has been no success in separating them into coherent sub-groups originating from distinct parent bodies. 47

The current classification scheme contains 50 groups (Weisberg et al., 2006). In addition, there are a number of ungrouped meteorites that derive from parent bodies that are not represented by these groups. This number can be roughly estimated to be a maximum of 50 51 distinct parent bodies for ungrouped iron meteorites, and a maximum of 50 for ungrouped chondrites, based on the Meteoritical Bulletin Database. The total number of asteroids 52 represented in the global meteorite collection is thus about 150 at most. A similar estimate of 53 54 \sim 110 asteroids was reached based on consideration of oxygen isotopes (Greenwood et al., 55 2017). A more recent estimate, also based on consideration of oxygen isotopes, places the 56 number of parent bodies between 95 and 148 (Greenwood et al., 2020). In this total, the 57 number of chondrite parent bodies is estimated to be approximately 15 to 20, with an 58 additional 11 to 17 parent bodies to account for ungrouped chondrites (Greenwood et al., 59 2020). Whatever the exact number of parent bodies represented in the global meteorite 60 collection, it is almost negligible compared to the number of asteroids in the main belt, over 61 one million asteroids larger than 1 km (Burbine et al., 2002). This suggests at first sight that meteorites are not representative at all of the asteroid population. However, asteroids were 62 63 formed as bodies $> \sim 35$ km (Delbo et al., 2017). The smaller asteroids in the present-day 64 asteroid belt belong to dynamical families and thus represent fragments of a small number 65 (several dozens) of shattered planetesimals (Delbo et al., 2017). In addition to these 66 fragments, the asteroid belt contains a small number (about a hundred) of pristine 67 planetesimals with a diameter above ~35 km (Delbo et al., 2017). Therefore, with about 150 68 groups, meteorites may provide a rather exhaustive sampling of the planetesimals (shattered 69 and pristine) that are present today in the asteroid belt. This justifies paying particular care to 70 the grouping of meteorites into groups that actually originate from distinct primary parent 71 bodies, especially for chondrites that are distributed within only 15 groups. Deciphering the 72 parent body history, in terms of accretion (timing and physico-chemical environment) and 73 evolution (thermal metamorphism and possible differentiation, aqueous alteration, and shock 74 histories), also requires that the classification scheme efficiently separates groups of 75 meteorites that were formed on different parent bodies.

76 CV chondrites are a fairly abundant type of carbonaceous chondrites with 525 meteorites 77 registered by the Meteoritical Society to date (21% of the total number of carbonaceous chondrites). They are classically interpreted as coming from a single parent body (e.g., Krot et 78 al, 1995). They have been divided into reduced (CV_{Red}) and oxidized (CV_{Ox}) sub-groups, 79 80 based on a number of mineralogical features, the Ni content of sulfides and the abundance of 81 Fe,Ni metal (McSween, 1977). The oxidized sub-group has been further divided into Allende-82 (CV_{OxA}) and Bali- (CV_{OxB}) like sub-groups, based on a combination of chemical and 83 petrographic criteria (e.g., Krot et al., 1998; Bonal et al., 2020). Although an in-depth 84 discussion of relations between CK and CV chondrites is beyond the scope of this paper, we 85 note that it had also been proposed that CK chondrites may come from a more thermally metamorphosed (deeper) part of the same CV parent body based on compositional and 86 oxygen isotope evidence (e.g., Wasson et al., 2013; Greenwood et al., 2010). On these bases, 87 88 it was proposed to make CK chondrites a new sub-group of CV chondrites named CV_{OxK} 89 (Greenwood et al., 2010). However, this interpretation has been later challenged by the 90 different magnetite composition (Dunn et al., 2016) and the different chromium isotopic 91 composition between CV and CK (Yin and Sanborn, 2019).

The present-day paradigm is that all CV chondrites come from a single parent asteroid, with a common protolith affected by significant parent body fluid-assisted metasomatism occurring at different temperatures and/or redox conditions (Krot et al., 1995; Ganino and Libourel, 2017). In this work we will argue that although CV_{OxA} and CV_{OxB} are likely to originate from a single parent body, CV_{Ox} and CV_{Red} originate from two distinct parent bodies.

98

99 2. Material and methods

100 We investigated a suite of 53 CV chondrites. The main dataset is composed of 30 101 meteorites (7 falls and 23 finds, mostly from Antarctica) whose thermal metamorphism and 102 aqueous alteration history, matrix abundances, modal metal abundances, and subclassification into CV_{OxA}, CV_{OxB}, and CV_{Red} have been characterized previously (Bonal et al., 103 104 2020). This dataset was completed by 23 meteorites from hot deserts, mostly from Northwest 105 Africa (NWA meteorites). For this new set of meteorites, we determined the sub-group (OxA, 106 OxB or Red) by combining proxies (mostly the average Ni content of sulfides, the Fe,Ni 107 metal abundance, and magnetic parameters) that have been shown to allow for a clear 108 separation of the three sub-groups (Bonal et al., 2020). We also estimated the modal 109 abundance of fine-grained matrix. We then estimated the apparent chondrule diameters for all 110 53 meteorites. For a subset of samples, we measured the bulk oxygen isotopic composition by 111 laser fluorination coupled with isotope-ratio mass spectrometry.

The chemical compositions of sulfides and Fe,Ni metal were determined using either a Cameca SX100 electron microprobe at CAMPARIS facility (15 kV accelerating voltage, 10 nA current), or a Hitachi S3000-N Scanning Electron Microscope equipped with a Bruker X-ray Energy Dispersive Spectrometer at CEREGE. Both natural and synthetic standards were used for calibration.

117 Magnetic susceptibility (χ) was measured at CEREGE, using a MFK1 apparatus from 118 Agico in an AC field of 200 A.m⁻¹ (peak field) and frequency 976 Hz. For easiness, it is 119 expressed in the following as log χ , with χ in 10⁻⁹ m³/kg.

120 Chondrule apparent diameters were determined from mosaic images obtained by reflected 121 and/or transmitted light microscopy on thin and/or thick polished sections using a Leica 122 DM2500P microscope. Intact chondrules were outlined manually. Igneous chondrule rims, 123 that are abundant in CV chondrites (Rubin, 1984), were included in the chondrule outline 124 since they are obviously a pre-accretionary feature. The chondrule outlines were processed

125 using imageJ software and fitted with ellipses to extract chondrule apparent diameters. Most 126 chondrules are not spheres but ellipsoids, giving an ellipse rather than a circle when observed in section. The maximum and minimum axes of the ellipses, noted a and b, were determined 127 to estimate the aspect ratio of the chondrule. Chondrule apparent diameter was computed as 128 129 $\sqrt{a.b.}$, which is the diameter of the circle with equivalent surface to the observed chondrule. 130 This method is slightly different from the simple averaging of a and b that is used classically 131 in the literature (e.g., Nelson and Rubin, 2002) and provide systematically higher diameter 132 estimates. However, the difference between the two methods is negligible (less than 1% for 133 the typical aspect ratios observed in CV chondrules), so our results can be safely compared 134 with literature data. Because chondrules are igneous fragments with almost no initial porosity, their volume will not change upon deformation. Our method therefore provides a more 135 reliable estimate of the initial diameter of the initially spherical chondrules. 136

Modal metal abundances were determined by reflected light optical microscopy on polished sections by point-counting using a x500 magnification and a step size of 100 μ m. The modal abundances of fine-grained matrix were determined by reflected and transmitted light optical microscopy on polished and thin sections by point-counting using a x200 magnification and a step size of 100 μ m. The 95% confidence intervals around the modal abundances were computed after Howarth (1998).

Measurements of oxygen isotopic compositions of 1.5 mg aliquots of bulk gently powdered CV meteorites were carried out at the Stable Isotopes Laboratory of CEREGE using laser fluorination coupled with isotope ratio mass spectrometry (IRMS) (see e.g., Alexandre et al., 2006; Suavet et al., 2010 for more details about the analytical procedure). The initial sample mass was 112 mg on average to ensure that measured aliquot is representative of the bulk meteorite. The three oxygen isotopic compositions were measured with a dual-inlet mass spectrometer ThermoScientific Delta V plus. The oxygen isotope

results are expressed in % versus the international reference standard V-SMOW: $\delta^{18}O =$ 150 $[({}^{18}O/{}^{16}O)_{sample}/({}^{18}O/{}^{16}O)_{V-SMOW}-1] \times 1000$ and $\delta^{17}O = [({}^{17}O/{}^{16}O)_{sample}/({}^{17}O/{}^{16}O)_{V-SMOW}-1]$ 151 1]×1000. The δ^{18} O and δ^{17} O values of the reference gas were calibrated with measurements of 152 NBS28 standard (δ^{18} O=9.60‰, Gröning, 2004). The δ^{17} O value of the NBS28 standard is 153 taken as $\delta^{17}O = 4.992\%$, to ensure $\Delta^{17}O = 0\%$, where $\Delta^{17}O = \delta^{17}O - 0.52 \times \delta^{18}O$. The 154 measurements were corrected on a daily basis using 1.5 mg quartz internal laboratory 155 156 standard "Boulangé" (Alexandre et al., 2006; Suavet et al., 2010). During the analyzing 157 period, the analytical uncertainties derived from repeated measurement (n = 16) of this internal laboratory standard are 0.08 ‰, 0.14 ‰, 0.013 ‰ for δ^{17} O, δ^{18} O and Δ^{17} O, 158 159 respectively.

A number of datasets were compared using the Kolmogorov-Smirnov (K-S) statistical test for two populations performed using Holliday (2017). The K-S test is used to tests the null hypothesis that the two data sets are from the same distribution. It provides a p value that must be compared to the *a priori* level of significance (α). If p> α , the null hypothesis cannot be rejected. If p< α , the null hypothesis is rejected. The significance level α has a specific meaning: it is the probably of rejecting the null hypothesis when it is true. α is classically set at 0.05, and we use this value in this work.

167

168 **3. Results**

169 All meteorites could be readily classified into one of the three sub-groups (Ox_A , Ox_B , Red), 170 based mostly on the Ni content in sulfides and their magnetic susceptibility (Table 1, 171 Figure 1). Unlike for fresh Antarctic meteorites and falls, the modal metal abundance in hot 172 desert meteorites is not a reliable proxy for the separation into the three subgroups because 173 metal is extensively altered into oxides and oxyhydroxides through terrestrial weathering 174 during the residence of the meteorites in hot deserts. Magnetic susceptibility remains

175 nevertheless a reliable proxy to separate CV_{OxA} from CV_{OxB}. Indeed, although terrestrial 176 weathering of metal-bearing meteorites does result in a decrease of magnetic susceptibility (e.g., Rochette et al., 2003), it does not affect magnetite which is the main ferromagnetic 177 178 mineral in CV_{Ox} . Therefore, the cut-off value at log χ =3.9-4 for separation of CV_{OxA} from CV_{OxB} remains valid. On the contrary, the susceptibility of hot desert CV_{Red} is lower on 179 180 average than that measured for falls and Antarctic CV_{Red} , with log χ =4.12 ± 0.45 (n=10) 181 against 4.36 \pm 0.22 (n=5) for Antarctic CV_{Red} and 4.52 \pm 0.22 (n=3) for CV_{Red} falls (Rochette 182 et al., 2008; Bonal et al,. 2020). But CV_{Red} are easily distinguished from CV_{Ox} based on the 183 average Ni content of sulfides.

The 23 CV3 chondrites from hot deserts separate into 4 CV_{OxA} , 9 CV_{OxB} , 10 CV_{Red} . Together with the 30 meteorites studied in Bonal et al. (2020), the dataset comprises 14 CV_{OxA} , 20 CV_{OxB} , 19 CV_{Red} . The number of CV_{OxB} goes down to 18 when considering the pairing of Antarctic meteorites proposed by Bonal et al. (2020).

188 A total of 2806 chondrule apparent diameters were measured (Table 1). We did not attempt 189 any correction to calculate a true (3D) size distribution from the 2D apparent size because it 190 has been shown that many correction models yield erroneous values and should not be applied 191 to chondrule size distributions (Metzler, 2018). Average values for the three sub-groups are 192 given in Table 2. Although the chondrule diameters of all CV chondrites are usually pooled 193 together to indicate an approximate mean apparent diameter of 900 µm (Friedrich 2015), our 194 data show that CV chondrites actually have an average diameter of 801 μ m (n=2806). 195 Moreover, CV_{Red} meteorites have, on average, larger chondrules than CV_{Ox} meteorites 196 (860 µm versus 768 µm). The size distributions of the sub-groups were compared using the 197 K-S test (Table 3, Figure 2). The hypothesis that the chondrule size distributions of CV_{OxA} 198 and CV_{OxB} are different cannot be rejected (p = 0.056 > α = 0.05), whereas the chondrule size distributions of CV_{Red} and CV_{Ox} are different (p = 6.78x10⁻¹⁰ < α = 0.05). 199

Matrix modal abundances are also different between CV_{Ox} and CV_{Red} meteorites with average values 52.3 vol. % and 40.3 vol. %, respectively (Table 2). Their distributions were compared using the K-S test (Table 3). With p=1.23x10⁻⁴, the matrix abundance distributions of CV_{Red} and CV_{Ox} are different. Conversely, the distributions of matrix abundances in CV_{OxA} and CV_{OxB} cannot be distinguished at the 5% significance level (p = 0.295 > α = 0.05).

Oxygen isotopes were measured in this study for 17 CV chondrites (Table 4). Literature 205 206 data are available for another 56 CV chondrites (Table 5, Figure 3), but most of these 207 chondrites are not subclassified into CV_{Red} and CV_{Ox}. It has been noted earlier that CV 208 chondrite can have heterogeneous oxygen isotopic composition (Greenwood et al., 2010). 209 This is attributable to the small mass analyzed (usually in the mg range), combined with the 210 size of their petrographic components: chondrules, calcium-aluminum inclusions (CAIs) and 211 matrix lumps can be mm-sized and have widely variable oxygen isotopic composition 212 (Clayton and Mayeda, 1999). In this study, we started from as large as possible bulk samples 213 before analyzing a 1.5 mg aliquot. To reduce this homogeneity issue, when multiple analyses 214 are available from the literature and our analyses, we use the average value (Table 5). 215 Combining our new data and literature data, oxygen isotopic composition is available for 7 CV_{OxA}, 10 CV_{OxB}, 4 CV_{Ox}, and 16 CV_{Red}. In a three-isotope plot, the data are distributed 216 217 along a line with slope 0.94 (Clayton, 1993), called the carbonaceous chondrite anhydrous mineral (CCAM) line. Therefore, the discussion can be limited to either δ^{18} O or δ^{17} O. The 218 distributions of δ^{18} O for the three sub-groups were tested using the K-S test. Again, the 219 220 hypothesis that CV_{Red} and CV_{Ox} have identical distributions can be rejected at the 5% significance level (p = $6.0 \times 10^{-5} < \alpha = 0.05$), whereas CV_{OxA} and CV_{OxB} distribution cannot be 221 222 distinguished at the same significance level (p = $0.117 > \alpha = 0.05$). This latter observation 223 contradicts previous observations that CV_{OxB} have a heavier oxygen isotopic than CV_{OxA} 224 (Clayton and Mayeda, 1999; Greenwood, 2010), which was interpreted as more extensive 225 aqueous alteration in CV_{OxB} than in CV_{OxA} . We attribute this discrepancy to the more limited 226 dataset used in previous studies.

227

228 **4. Discussion**

229 The distribution of matrix abundances and chondrule apparent diameters are identical for 230 CV_{OxA} and CV_{OxB} chondrites but significantly different between CV_{Ox} and CV_{Red} chondrites. 231 Regarding chondrule apparent diameter, it is noteworthy that chondrules are usually not 232 spherical but ellipsoidal. This flattening, also observed at microscopic scale (Bland et al., 233 2011) is likely due to hypervelocity impacts (e.g., Gattacceca et al., 2005). However, the 234 larger apparent chondrule diameters of CV_{Red} compared to CV_{Ox} cannot be attributed to the 235 effect of chondrule flattening. First, CV_{Red} chondrules are only slightly more flattened than CV_{Ox} chondrules, with average aspect ratio 1.33 and 1.27, respectively (Table 2). Second, we 236 estimated the effect of the flattening of spherical chondrules into oblate ellipsoids on the 237 238 average apparent surface of the chondrules in polished sections (Supplementary figure S1). 239 This was done using an analytical solution for the intersection of plane and ellipsoids (Klein, 240 2012). The effect is a decrease of the apparent surface for increasing flattening. The effect is 241 small (about 0.5% average apparent diameter decrease for an aspect ratio of 1.35), and more 242 importantly it is the opposite of what is observed: CV_{Red} are slightly more flattened on 243 average than CV_{Ox}, but they have larger chondrules. The difference in chondrule size 244 distribution between CV_{Ox} and CV_{Red} is therefore a primary feature from the time of 245 accretion, and is not related to secondary parent body processes (shock).

Regarding matrix abundance, it is noteworthy than hypervelocity impacts will reduce matrix porosity (e.g., Bland et al., 2011; Rubin, 2012) and reduce its modal abundance compared to chondrules that have sub-null initial porosity. However, although it often assumed that CV_{Red} are more shocked than CV_{Ox} on average based on a very limited number of unusually shocked CV_{Red} (mostly Leoville and Efremovka), it has been shown recently that this is not the case. Indeed, shock stages for CV_{Ox} and CV_{Red} have essentially the same distribution (Bonal et al., 2020). This is confirmed here by the almost identical chondrule apparent aspect ratio for CV_{Red} and CV_{Ox} (Tables 1 and 2). Therefore, the difference in matrix abundance distribution between CV_{Ox} and CV_{Red} is also a primary feature from the time of accretion.

256 These two robust petrographic indicators (chondrule size and matrix abundance) can be 257 interpreted in two different ways: CV_{Ox} and CV_{Red} originate from different stratigraphic 258 position within a single parent body, or from two distinct parent bodies. Different 259 stratigraphic positions in an asteroid with "onion-shell" structure would imply contrasted 260 metamorphic temperatures with the deeper group being metamorphosed to higher 261 temperatures. This is not observed, as both CV_{Ox} and CV_{Red} meteorites span the whole range 262 of type 3 metamorphic subtypes (Bonal et al., 2020). Therefore, CV_{Ox} and CV_{Red} meteorites 263 must originate from two different parent bodies. The existence of CV_{Ox} clasts in Vigarano 264 CV_{Red} regolith breccia (Krot et al., 2000), often used as an evidence for a single parent body 265 is not a decisive argument as xenolithic clasts from different meteorite groups are found in a 266 number of meteorites. About 5% of impacts in the main asteroid belt should occur at velocities that are below the estimated survivable impact velocity for stony meteorites (Bottke 267 268 et al., 1994; Bland, 2001), so that chondritic xenoliths are expected in chondrites, especially 269 for chondrites from the same clan that are interpreted to come from parent bodies located at similar heliocentric distances. For instance, several ordinary chondrites contain cm-size clasts 270 271 from another ordinary chondrite group (e.g., Gattacceca et al., 2017).

272 CV_{OxA} and CV_{OxB} cannot be distinguished in terms of chondrule size and matrix 273 abundance. As such they may well originate from the same parent body. It was recently 274 evidenced that CV_{OxA} are systematically more metamorphosed than CV_{OxB} , with a continuum 275 spanning all the petrographic subtypes 3.0 to \geq 3.7 (Bonal et al., 2020). Such a distribution of 276 metamorphic grades is very unlikely to be casual and strongly suggests that indeed, CV_{OxA} represent deeper level than CV_{0xB} in a single and thermally stratified parent body. A potential 277 counter-argument is that experimental data show that dehydration by heating of a 278 279 phyllosilicate-bearing rock should result in a shift towards heavier oxygen isotopic 280 composition (Mayeda and Clayton, 1998). Such a trend is not seen in the oxygen isotopic 281 distributions of CV_{OxA} and CV_{OxB}, that cannot be distinguished by the K-S test. However, 282 CV_{Ox} chondrites are complex rocks with only a minor fraction of phyllosilicates, a few wt.% 283 at most (Bonal et al., 2020), so that the effect of dehydration of phyllosilicates during thermal 284 metamorphism would not be significant compared to the natural inhomogeneity of oxygen 285 isotopic composition of CV chondrites discussed above.

286 The difference between CV_{Red} and CV_{Ox} in terms of oxygen isotopic composition may be a 287 primary feature acquired at the time of accretion, or a secondary parent body feature. A parent 288 body origin can be tested by assuming an original identical oxygen isotopic composition later 289 modified by aqueous alteration and/or thermal metamorphism. We tested the correlation between δ^{18} O and quantitative proxies describing aqueous alteration and thermal 290 291 metamorphism (Figure 4). For aqueous alteration we use the total mass loss between 200 and 292 900 °C during thermogravimetric analyses (TGA) that increases with increasing hydration of 293 the meteorite. For thermal metamorphism, we use the Raman spectral parameter FWHM_D that 294 decreases with increasing peak metamorphic temperature. The TGA and Raman parameters are from Bonal et al. (2020). We see no correlation between δ^{18} O and TGA parameters 295 (R²=0.007), suggesting no straightforward influence of aqueous alteration on the oxygen 296 isotopic composition of CV chondrites. There is a correlation between $\delta^{18}O$ and the Raman 297 spectroscopy parameter FWHM_D (R^2 =0.27, Figure 4). Such a correlation suggests that higher 298 299 metamorphic temperatures result in heavier oxygen isotope compositions. This can be 300 accounted for by the effects of metamorphic heating, such as recrystallization or dehydration, that would result in an increase of δ^{18} O by mass fractionation. But the observed correlation is 301 faint ($R^2=0.27$), and it does not hold at all if we consider CV_{OxA} and CV_{OxB} subgroups. 302 Eventually, we find no robust correlation between the peak metamorphic temperature or the 303 304 degree of aqueous alteration, and the oxygen isotopic composition of CV chondrites: no 305 global parent body processes is able to account for the observed distribution of oxygen 306 isotopic compositions in CV_{Ox} and CV_{Red} chondrites. Therefore, the difference in isotopic 307 composition between CV_{Red} and CV_{Ox} is more likely controlled by subtle differences in the 308 abundances of petrographic components (matrix, chondrules, CAIs for instance), or by 309 accretion at slightly different distances from the Sun implying reservoirs with slightly 310 different oxygen isotopic compositions.

311 Cosmic ray exposure (CRE) ages, that represent the transit time of a meteorite (under the 312 form of a meteoroid) from the asteroid belt to the Earth are another useful proxy in the 313 discussion about whether different meteorites may originate from a single parent body. 314 Similar CRE ages may indicate provenance from the same parent body affected by a major 315 disruption event. However, the dataset of CRE ages for CV chondrites is limited to 4, 5, and 3 316 ages available for CV_{0xA}, CV_{0xB} and CV_{Red}, respectively (Schere and Schultz, 2000). The 317 three sub-groups span broadly the same time interval of CRE ages between 1.7 and 28.1 Ma, 318 with average CRE ages 16.0 \pm 7.8 Ma (n=4) for CV_{OxA}, 11.0 \pm 9.4 Ma (n=5) for CV_{OxB}, 13.2 319 \pm 9.1 Ma (n=9) for all CV_{0x}, and 8.6 \pm 2.2 Ma (n=3) for CV_{Red}. Because of the limited 320 dataset, CRE ages cannot be used to discuss the hypothesis of a single or multiple parent 321 bodies for CV chondrite sub-groups.

We have demonstrated that CV_{Red} and CV_{Ox} meteorites come from two distinct parent bodies. Because the ultimate goal in chondrite classification is that a chondrite group represents one parent body, CV_{Red} and CV_{Ox} should be separated into two proper groups. 325 Chondrite groups are classically, but not systematically, named after the first fall of the group. Strictly speaking, the CV appellation, that comes from Vigarano CV_{Red} fall, should be 326 applicable only to CV_{Red} chondrites, and an alternative name should be defined for CV_{Ox} 327 chondrites. Such a name could be CA for the iconic Allende meteorite, because all other CV_{Ox} 328 329 fall names (except Grosnaja) initiate with letters already in use for other meteorite groups. 330 However, because there are already thousands of scientific publications about Allende and 331 other CV_{Ox} meteorites calling them CV, it very likely that such an appellation would 332 encounter strong resistance from the meteorite community. Therefore, the best names for 333 these two separate meteorite groups are probably simply CV_{Ox} and CV_{Red}, where the 334 reference to Vigarano remain somewhat valid since this meteorite contains material from both 335 associated parent bodies. We hope that from now on, CV chondrites will be required to be declared to the Meteoritical Society as CV_{Ox} or CV_{Red}, and not only as CV. On the other hand, 336 337 the distinction between CV_{OxA} and CV_{OxB} is only related to thermal metamorphic intensity 338 and could be overlooked in the classification scheme.

On a practical point of view, the easiest and most robust way to separate CV_{Red} and CV_{Ox} is to estimate the average Ni content of sulfides. Indeed, in contrast to metal abundance or magnetic parameters, this indicator is not much affected by terrestrial weathering. Analyses of a random selection of about 10 to 20 sulfide grains is enough to decide between CV_{Red} and CV_{Ox} and can be performed routinely during classification work using either an electron microprobe or a scanning electron microscope equipped with an energy dispersive spectrometer.

346

347 **5.** Conclusions

348 The comparison of chondrule size distribution, matrix abundances, metamorphic history 349 (and marginally oxygen isotopic composition) of the three sub-groups of CV chondrites indicate that CV_{Red} and CV_{Ox} originate from distinct parent bodies. In view of the many petrographic, compositional and isotopic similarities between CV_{Ox} and CV_{Red} , these two parent bodies may have however formed at roughly the same heliocentric distance and time.

353 On the other hand, CV_{OxA} and CV_{OxB} likely originate from the same parent body, with 354 CV_{OxA} representing deeper, more metamorphosed levels of the original asteroid with onion-355 shell structure. This new view must be considered in future works about the formation and 356 evolution of these two parent bodies, as results (existing and to come) must be interpreted in 357 two separate frameworks.

For clarification of the chondrite classification scheme, in which one group should represent a parent body, we propose to break the CV group into two proper groups (and not subgroups as is the current scheme), keeping the names CV_{Red} and CV_{Ox} . These two groups can be readily separated by estimating the average nickel content of their sulfides.

362

363 Acknowledgements

We thank two anonymous reviewers for their constructive comments. We thank Yoann Quesnel for coding the computation of the effect of flattening on chondrule apparent diameters. We thank Jeff Grossman for useful discussion about meteorite nomenclature.

368 Figure captions

Figure 1: Ni content of sulfides versus magnetic susceptibility for the CV chondrites studied in this work. Light blue= CV_{OxA} , deep blue= CV_{OxB} , red = CV_{Red} . Circles are for hot desert meteorites (this study), squares are for Antarctic meteorites and falls (Bonal et al., 2020).

372

373 Figure 2: Cumulative percentile plots for apparent chondrule size, matrix abundance and

374 δ^{18} O. Light blue = CV_{OxA}, deep blue=CV_{OxB}, black=CV_{Ox}, red=CV_{Red}.

375

Figure 3: Oxygen isotopic composition of CV chondrites. The CCAM line is from Clayton(1993).

378

Figure 4: Oxygen isotopic composition versus (a) the total mass loss as measured by TGA between 200 and 900 °C, (b) the Raman spectral parameter FWHM_D. The TGA parameters reflects the present-day hydration state of the samples, while the Raman parameters the experienced peak metamorphic temperature. Light blue = CV_{OxA} , deep blue= CV_{OxB} , red= CV_{Red} .

384

Supplementary figure S1: Effect of flattening on the average apparent diameters of chondrules. This graph shows the ratio of the average equivalent diameters (i.e., diameter of the disk with equivalent surface) of the of the intersection of ellipsoids with planes of random orientation as a function of the aspect ratio of these ellipsoids. To simulate the case of chondrules flattening by impacts, the case considered here is for oblate ellipsoids that have identical long and intermediate axis. The initial diameter considered here for normalizing the ellipsoid diameter assumes volume conservation during flattening.

392

Table captions

394 Table 1. CV chondrites physical, petrological and geochemical properties

Metal abundance: *tr* indicate that traces of metal have been observed. No polished section was
available for GRA 06101. References: R2008= Rochette et al. (2008), B2020 = Bonal et al.
(2020).

398

400

401 Table 3: Kolmogorov-Smirnov test results.

402 N is the number of meteorites in the considered population. The hypothesis that the two

403 distributions are identical can be rejected if $p > \alpha$. If $p < \alpha$, this hypothesis cannot be rejected.

404 α is the significance level of the K-S test and is taken as 0.05 in this study.

405

406 Table 4: CV3 oxygen isotopic compositions measured in this study.

407

Table 5: summary of CV3 oxygen isotopic compositions. References: C&M1999= Clayton
and Mayeda, 1999; G2010= Greenwood, 2010; MDB= Meteoritical Society Meteorite
Database (https://www.lpi.usra.edu/meteor/).

411

412 **References**

Alexandre, A., Basile-Doelsch, I., Sonzogni, C., Sylvestre, F., Parron, C., Meunier, J.-D.,
Colin, F., 2006. Oxygen isotope analyses of fine silica grains using laser-extraction
technique: Comparison with oxygen isotope data obtained from ion microprobe
analyses and application to quartzite and silcrete cement investigation. Geochim.
Cosmochim. Acta 70, 2827–2835.

Bland, P. A., 2001. Quantification of meteorite infall rates from accumulations in deserts, and
meteorite accumulations on Mars. In Accretion of extraterrestrial matter throughout
Earth's history, edited by Peucker-Ehrenbrink B. and Schmitz B. New York: Kluwer
Academic/Plenum Publishers. pp. 267–303.

Bland, P.A., Howard, L.E., Prior, D.J., Wheeler, J., Hough, R.M., Dyl, K.A., 2011. Earliest
rock fabric formed in the Solar System preserved in a chondrule rim. Nature Geoscience
424 4, 244-247.

- Bonal, L., Gattacceca, J., Garenne, A., Eschrig, J., Rochette, P., Krämer Ruggiu, L., 2020.
 Water and heat: new constraints on the evolution of the CV chondrite parent body.
 Geochim. Cosmochim. Acta, 276, 363-383.
- Bottke, W. F. Jr., Nolan, M. C., Greenberg, R., Kolvoord, R. A., 1994. Velocity distributions
 among colliding asteroids. Icarus 107, 255-268.
- 430 Burbine, T.H., McCoy, T.J., Meibom, A., Gladman, B., Keil, K., 2002. Meteoriticparent
- bodies: their number and identification. In: Bottke, W.F., Cellino, A., Paolicchi, P.,
 Binzel, R.P. (Eds.), Asteroids III. University of Arizona Press, Tucson, pp. 653–667.
- Clayton, R. N., 1993. Oxygen isotopes in meteorites. Ann. Rev. Earth Planet. Sci. 21, 115149.
- 435 Clayton, R.N., Mayeda, T.K., 1999. Oxygen isotope studies of carbonaceous chondrites.
 436 Geochim. Cosmochim. Acta 63, 2089–2104.
- 437 Delbo, M., Walsh, K., Avdellidou, C., Morbidelli, A., 2017. Identification of a primordial
 438 asteroid family constrains the original planetesimal population. Science 357, 1026439 1029.
- Dunn, T. L., Gross, J., Ivanova, M. A., Runyon, S. E., Bruck, A. M., 2016. Magnetite in the
 unequilibrated CK chondrites: Implications for metamorphism and new insights into the
 relationship between the CV and CK chondrites. Meteoritics Planet. Sci. 51, 1701-1720.
- Eugster, O., Herzog, G.F., Marti, K., Caffee, M.W., 2006. Irradiation records, cosmic-ray
 exposure ages, and transfer times of meteorites, in Meteorites and the Early Solar
 System II, pp. 829-851.
- Friedrich, J. M., Weisberg, M. K., Ebel, D. S., Biltz, A. E., Corbett, B. M., Iotzov, I. V.,
 Khan, W. S., Wolman, M. D., 2015. Chondrule size and related physical properties: A
 compilation and evaluation of current data across all meteorite groups. Chemie der Erde
 75, 419-443.

- 450 Ganino, C., Libourel, G., 2017. Reduced and unstratified crust in CV chondrite parent body.
 451 Nature Communications 8, 261.
- 452 Gattacceca, J., Krzesinska, A.M., Marrocchi, Y., Meier, M.M., Bourot-Denise, M., Lenssen,
- R., 2017. Young asteroid mixing revealed in ordinary chondrites: the case of NWA
 5764, a polymict LL breccia with L clasts. Meteoritics Planet. Sci. 52, 2289-2304.
- 455 Gattacceca, J., Rochette, P., Denise, M., Consolmagno, G., Folco, L., 2005. An impact origin
- 456 for the foliation of ordinary chondrites. Earth Planet. Sci. Lett. 234, 351-368.
- 457 Gravnik, M., Brown, P., 2018. Identification of meteorite source regions in the Solar System.
 458 Icarus 311, 271-287.
- Greenwood, R.C., Franchi, I.A., Kearsley, A.T., Alard, O., 2010. The relationship between
 CK and CV chondrites. Geochim. Cosmochim. Acta 74, 1684-1705.
- 461 Greenwood, R.C., Burbine, T.H., Miller, M.F., Franchi, I.A., 2017. Melting and
 462 differentiation of early-formed asteroids: The perspective from high precision oxygen
 463 isotope studies. Chemie der Erde Geochemistry 77,1-43.
- Greenwood, R.C., Burbine, T.H., Franchi, I.A., 2020. Linking asteroids and meteorites to the
 primordial planetesimal population. Geochim. Cosmochim. Acta, doi:
 https://doi.org/10.1016/j.gca.2020.02.004
- 467 Gröning, M., 2004. Chapter 40 International Stable Isotope Reference Materials. In
 468 Handbook of Stable Isotope Analytical Techniques. pp. 874–906.
- 469 Holliday, I.E., 2017. Kolmogorov-Smirnov Test (v1.0.4) in Free Statistics Software (v1.2.1),
- 470 Office for Research Development and Education, URL
 471 https://www.wessa.net/rwasp_Reddy-Moores%20K-S%20Test.wasp/
- Howarth, R.J., 1998. Improved estimators of uncertainty in proportions, point-counting, and
 pass-fail test results. American J. Sci. 298, 594-607.

- Klein, P.P., 2012. On the ellipsoid and plane intersection equation. Applied Mathematics 3,
 1634-1640.
- Krot, A.N., Scott, E.R.D., Zolensky, M.E., 1995. Mineralogical and chemical modification of
 components in CV3 chondrites: Nebular or asteroidal processing? Meteoritics 30, 748775.
- Krot, A.N., Petaev, M.I., Scott, E.R.D., Choi, B.-G., Zolensky, M.E., Keil, K., 1998.
 Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration.
 Meteoritics Planet. Sci. 33, 1065-1085.
- 482 Krot, A.N., Meibom, A., Keil, K., 2000. A clast of Bali-like oxidized CV material in the
- 483 reduced CV chondrite breccia Vigarano. Meteoritics Planet. Sci. 35, 817-825.
- 484 Lee, M.R., Cohen, B.E., King, A.J., Greenwood, R.C., 2019. The diversity of CM
 485 carbonaceous chondrite parent bodies explored using Lewis Cliff 85311. Geochim.
 486 Cosmochim. Acta 264, 224-244.
- 487 McSween, H.Y., 1977. Petrographic variations among carbonaceous chondrites of the
 488 Vigarano type. Geochim. Cosmochim. Acta 41, 1777-1790.
- 489 Mayeda, T.K., Clayton, R.N., 1998. Oxygen isotope effects in serpentine dehydration. Lunar
 490 Planet. Sci. Conf. 29, abstract #1405.
- 491 Metzler, K., 2018. From 2D to 3D chondrule size data: Some empirical ground truths.
 492 Meteoritics Planet. Sci 53, 489-1499.
- 493 Nelson, V.E., Rubin, A., 2002. Size-frequency distributions of chondrules and chondrule
- 494 fragments in LL3 chondrites: Implications for parent-body fragmentation of chondrules.
 495 Meteoritics Planet. Sci. 37, 1361-1376.
- 496 Rochette, P., Sagnotti, L., Bourot-Denise, M., Consolmagno, G., Folco, L., Gattacceca, J.,
- 497 Osete, M. L., Pesonen, L., 2003. Magnetic Classification of stony meteorites: 1.
- 498 Ordinary chondrites. Meteoritics Planet. Sci. 38, 251-258.

- Rochette, P., Gattacceca, J., Bonal, L., Bourot-Denise, M., Chevrier, V., Clerc, J.-P.,
 Consolmagno, G., Folco, L., Gounelle, M., Kohout, T., Pesonen, L., Quirico, E.,
 Sagnotti, L., Skripnik, A., 2008. Magnetic Classification of Stony Meteorites: 2. NonOrdinary Chondrites. Meteoritics Planet. Sci. 43, 959-980.
- Rubin, A. E., 1984. Coarse-grained chondrule rims in type 3 chondrites. Geochim.
 Cosmochim. Acta 48, 1779-1789.
- Rubin, A. E. 2012. Collisional facilitation of aqueous alteration of CM and CV carbonaceous
 chondrites. Geochim. Cosmochim. Acta 90, 181-194.
- 507 Scherer, P., Schultz, L., 2000. Noble gas record, collisional history, and pairing of CV, CO,
 508 CK, and other carbonaceous chondrites. Meteorit. Planet. Sci. 35, 145-153.
- 509 Suavet, C., Alexandre, A., Franchi, I. A., Gattacceca, J., Sonzogni, C., Greenwood, R. C.,
- Folco, L., Rochette, P., 2010. Identification of the parent bodies of micrometeorites with
 high-precision oxygen isotope ratios. Earth Planet. Sci. Lett. 293, 313-320.
- 512 Wasson, J. T., Isa, J., Rubin, A. E., 2013. Compositional and petrographic similarities of CV
- and CK chondrites: A single group with variations in textures and volatile
 concentrations attributable to impact heating, crushing and oxidation. Geochim.
 Cosmochim. Acta 108, 45-62.
- 516 Weisberg, M. K., McCoy, T. J., Krot, A. N., 2006. Systematics and evaluation of meteorite
- 517 classification. In Meteorites and the Early Solar System II, edited by Lauretta, Dante S.
- 518 and Sween Jr, H. Y., pp. 19-52.
- 519 Yin, Q.-Z., Sanborn, M.E., 2019. An update on disconnecting CV and CK chondrites parents
 520 bodies and more. 50th Lunar Planet. Sci. Conf., abstract #3023.

Figure 2 Click here to download Figure:1Fig2-cumulative plots.pdf

Table 1 Click here to download Table: Table 1-CV properties.xlsx

matrix				Ni wt% in sulfides Ni wt% in me				etal	Metal abundance				Magnetic susceptibility			Chondrule apparent diameter					
			95%	95%									95%							average	
	ahundanaa	surface cm2	confidence	confidence			-			-		95% confidence	e confidence		leaV	*******			-	aspect	
CVOxA	abundance	/ n	lower bound	upper bound	average	s.a.	n	average	s.d.	n	V01%	lower bound	upper bound	n rer	logx	reterece	average	s.d.	n	ratio	s.d.
AL H81003	54%	0.32			13.2	7.5	20	67.2	4.8	10	0.15%	0.14%	0.67%	676 B2020	3.68	R2008	423	217	5		
ALH84028	52%	1.72			8.07	10.66	20	66.3	1.1	4	1.01%	0.49%	0.75%	1192 B2020	3.92	R2008	772	356	102	1.3	0.24
Allende	50%	6.27			11.4	11.5	21	57.1	23	26	0.20%	0.16%	0.37%	1572 McS1977	3.62	R2008	765	406	134	1.18	0.13
Axtell	44%	1.95			11.7	9.8	7	67.5	1.4	2	0.00%	0.00%	1.11%	630 B2020	3.14	R2008	984	484	43	1.15	0.11
GRA06101															3.82	B2020					
GRA06130	50%	0.49			7.08	8.7	20	67.9	0.2	10	0.73%	0.46%	0.86%	818 B2020	3.77	B2020	801	442	21	1.25	0.16
LAP02206	45%	0.72			7.99	9.8	45	69.7	0.23	10	1.15%	0.47%	0.66%	1563 B2020	3.69	R2008	905	487	33	1.29	0.24
MIL07002	42%	1.00			3.93	6.1	20	66.5		1	0.54%	0.29%	0.48%	1664 B2020	3.79	B2020	846	445	57	1.29	0.21
MIL07671	46%	0.74			5.81	7.1	20	66.5	0.13	2	0.80%	0.43%	0.71%	1124 B2020	3.84	B2020	867	497	39	1.33	0.26
MIL091010	46%	1.21			3.89	6.7	20	67.8	0.5	15	0.28%	0.22%	0.53%	1084 B2020	3.48	B2020	1037	466	26	1.14	0.13
NWA 11087	46%	606	42%	50%	17.7	7.6	15	69.65		1	0.00%	0.00%	1.75%	400 this study	3.43	this study	772	310	50	1.2	0.12
NWA 11545	64%	631	60%	68%	13.8	10	3	70.4	3.4	3	0.00%	0.00%	1.40%	500 this study	3.51	this study	/18	498	44	1.23	0.14
NWA 11589	52%	529	48%	57%	10.1	9.5	21	69.2	0.6	20	1.00%	0.40%	2.05%	701 this study	3.91	this study	735	498	50	1.19	0.11
NWA 12553	65%	455	61%	70%	15.2	8.4	15	68.2	0.4	5	0.10%	0.00%	0.57%	973 this study	3.38	this study	772	402	70	1.22	0.16
QUE94688	62%	0.76			3.78	5.37	22				0.09%	0.08%	0.40%	1143 B2020	3.07	K2008	924	405	25	1.32	0.25
CVOxB																					
AI H85006	48%	1.19			28.4	1.8	10				0.09%	0.09%	0.41%	1113 B2020	4.52	R2008	722	354	72	1.28	0.19
Bali	50%	3.35			16.6	5.9	20	16	14	2	0.00%	0.00%	0.33%	2103 McSween19	7 4.26	R2008	735	415	154	1.27	0.21
Catalina 300	53%	417	48%	58%	19.1	7.6	15				tr	0.00%	1.75%	400 this study	4.39	this study	756	500	87	1.3	0.2
Grosnaja	70%	1.52			17.5	8.2	15				0.00%	0.00%	0.37%	1885 McSween19	7 3.97	R2008	690	324	29	1.26	0.14
Kaba	53%	0.94			10.6	8.5	19	3.7	1.2	6	0.00%	0.00%	0.45%	1561 McSween19	7 4.85	R2008	715	309	40	1.19	0.12
LAR06317	60%	1.00			20.9	15.7	20				0.17%	0.17%	0.56%	1000 B2020	4.37	B2020	773	433	28	1.27	0.25
LAR06867	53%	0.70			17.3	10.1	20				0.19%	0.17%	0.47%	1102 B2020	3.95	B2020	707	362	25	1.22	0.13
MCY05219	54%	0.73			13.6	10.0	20				0.00%	0.00%	0.99%	704 B2020	4.33	B2020	665	220	18	1.2	0.17
MET00430/MET00761/MET01074	44%	2.29			15.1	7.6	20				0.00%	0.00%	0.77%	906 B2020	4.63	R2008	714	403	146	1.39	0.34
Mokoia	43%	0.34			13.6	6.6	18				0.00%	0.00%	0.46%	1510 McSween19	7 4.6	R2008	797	370	10	1.32	0.21
NWA 10162	58%	885	55%	62%	22.5	3.6	10				tr	0.00%	1.25%	561 this study	4.3	this study	746	450	79	1.35	0.21
NWA 10777	56%	390	51%	61%	20.1	5.5	15				tr	0.00%	1.40%	500 this study	4.4	this study	823	502	74	1.23	0.18
NWA 11533	45%	482	41%	50%	20.7	5.7	15				tr	0.00%	1.75%	400 this study	4.57	this study	864	453	94	1.24	0.16
NWA 11541	53%	502	49%	58%	17.0	0.7		55.9	1.6	3	tr	0.00%	1.47%	475 this study	4.03	this study	/8/	442	41	1.21	0.16
NWA 11546	58%	3//	53%	53%	20.4	8	14	54.0	25.5	14	0.18%	0.00%	1.00%	554 this study	4.41	this study	682	383	53	1.29	0.24
NWA 12409	47%	1 20	4276	31%	20.7	1.9	15	54.9	23.5	14	0.21%	0.00%	1.75%	400 this study	4.59	this study	921	220	21	1.44	0.50
Ramlat as Sahmah 531	51%	658	47%	55%	15.8	7.8	10	64.4	22.9	7	0.31/0 tr	0.00%	1.13%	465 this study	4.10	this study	594	444	50	1.43	0.10
Namar as Samman 551	51/6	050	4775	5570	13.0	7.0	10	04.4	22.5	'	ci -	0.0070	1.5070	405 (1155000)		this study	334		50	1.24	0.11
CVRed																					
Bukhara	39%	1.45			0.05	0.2	10	27.7	20.3	25	2.23%	0.95%	1.37%	716 B2020	4.37	R2008	872	562	37	1.19	0.14
Efremovka	19%	1.18			0.00	0.0	15	1.6	2.5	30	4.60%	0.97%	1.14%	1611 McSween19	7 4.83	R2008	819	427	48	1.42	0.18
GR095652	37%	0.75			0.05	0.1	10	27.1	19.6	10	3.12%	0.99%	1.28%	995 B2020	4.23	R2008	920	394	40	1.28	0.25
Leoville	32%	2.42			0.40	1.1	15	10.1	12.9	30	1.80%	0.59%	0.73%	1718 McSween19	7 4.53	R2008	1081	377	73	1.56	0.37
MIL07277	45%	0.90			0.07	0.2	30	20.7	18.2	25	4.10%	1.40%	1.85%	634 B2020	4.65	B2020	1149	665	19	1.54	0.32
NWA 11537	39%	497	35%	44%	0	0	10				0.20%	0.01%	1.11%	501 this study	4.72	this study	838	444	32	1.24	0.14
NWA 11543	46%	380	40%	51%	0.1	0.2	10				0.18%	0.00%	0.99%	560 this study	4.41	this study	696	475	86	1.21	0.15
NWA 12523	51%	453	46%	55%	0.1	0.2	7	35.9	1.7	15	1.86%	1.05%	3.05%	805 this study	3.81	this study	800	448	78	1.36	0.26
NWA 12554	47%	640	43%	51%	0.1	0.3	10				tr	0.00%	0.61%	1138 this study	3.15	this study	886	420	57	1.24	0.18
NWA 8331	44%	728	40%	48%	0.52	1.26	14	63.7	0.9	15	0.86%	0.43%	1.53%	1282 this study	4.36	this study	/81	522	169	1.42	0.26
NWA 6445	42%	511	3/70	40%	0.5	1.1	ź				0.45%	0.05%	1.35%	462 this study	4.04	this study	1007	599	24	1.52	0.17
NWA 9491	30%	555	3476	4270	0.1	0.1	5 10				0.56%	0.05%	1.50%	602 this study	3.63	this study	976	400	24	1.5	0.21
NWA 9492	4376	237	43%	D1470	0	0.1	10				0.50%	0.10%	1.43%	569 this study	3.02	this study	8/0	450	62	1.21	0.10
011697185	4776 AA%	0.90	4376	3170	0.15	03	10	26.3	18.0	15	3.05%	1 13%	1.27%	721 B2020	4.15	R2009	1052	345	12	1.5	0.22
RBT04143	34%	1.47			2.60	7.1	43	20.3	19	28	1.66%	0.67%	0.95%	1087 B2020	4.01	B2020	917	345	56	1.44	0.13
RBT04302	38%	0.92			0.00	0.0	10	27.1	16.3	15	2.07%	0.82%	1.14%	920 B2020	4.45	B2020	952	711	24	1.26	0.16
Sueilila 003	38%	599	34%	42%	1.2	4.3	15	65	0.5	11	0.87%	0.35%	1.78%	807 this study	4.29	this study	748	397	52	1.25	0.21
Vigarano	35%	2.85			0.54	2.9	15	21.1	18.3	27	1.29%	0.43%	0.68%	2631 B2020+McSv	4.36	R2008	862	441	57	1.2	0.14

Table 5Click here to download Table: Table 5-oxygen isotopes summary with170.xlsx

CV3 0xA Allende 1.71 -2.56 -3.45 4 C&M1999, G2010, this study Axtell 1.52 -2.56 -3.35 2 C&M1999, G2010, this study ALH 84028 0.54 -3.71 -3.99 3 C&M1999, G2010, this study ALH 81003 1.80 -3.09 -4.03 3 G2010, this study GRA 06101 0.84 -3.69 -4.13 1 this study LAP 02206 4.01 -0.59 -2.68 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study NWA 11589 -1.20 -5.36 -4.73 1 G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 McKoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219
Allende 1.71 -2.56 -3.45 4 C&M1999, G2010, this study Axtell 1.52 -2.56 -3.35 2 C&M1999, G2010, this study ALH 84028 0.54 -3.71 -3.99 3 G2010, this study ALH 81003 1.80 -3.09 -4.03 3 G2010, this study GRA 06101 0.84 -3.69 -4.13 1 this study LAP 02206 4.01 -0.59 -2.68 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study ALH 85006 0.17 -3.82 -3.91 1 G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 McKoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 <t< th=""></t<>
Axtell 1.52 -2.56 -3.35 2 C&M1999, G2010, this study ALH 84028 0.54 -3.71 -3.99 3 C&M1999, G2010, this study ALH 81003 1.80 -3.09 -4.03 3 G2010, this study GRA 06101 0.84 -3.69 -4.13 1 this study LAP 02206 4.01 -0.59 -2.68 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study ALH 85006 0.17 -3.82 -3.91 1 G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 MCY 05219 2.66 -2.31 -3.70 1 this study NWA 11533 3.83 -1.07 -3.
ALH 84028 0.54 -3.71 -3.99 3 C&M1999, G2010, this study ALH 81003 1.80 -3.09 -4.03 3 G2010, this study GRA 06101 0.84 -3.69 -4.13 1 this study LAP 02206 4.01 -0.59 -2.68 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study CV3 OxB - - -4.73 1 this study Bali 3.40 -1.13 -2.89 2 C&M1999, G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 Kaba 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 <td< td=""></td<>
ALH 81003 1.80 -3.09 -4.03 3 G2010, this study GRA 06101 0.84 -3.69 -4.13 1 this study LAP 02206 4.01 -0.59 -2.68 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study CV3 oxB E Bali 3.40 -1.13 -2.89 2 C&M1999, G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study
GRA 06101 0.84 -3.69 -4.13 1 this study LAP 02206 4.01 -0.59 -2.68 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study CV3 oxB Bali 3.40 -1.13 -2.89 2 C&M1999, G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 6746 0.84
LAP 02206 4.01 -0.59 -2.68 1 this study NWA 11589 -1.20 -5.36 -4.73 1 this study CV3 0xB Bali 3.40 -1.13 -2.89 2 C&M1999, G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 6746 0.84
NWA 11589 -1.20 -5.36 -4.73 1 this study CV3 0xB 3.40 -1.13 -2.89 2 C&M1999, G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 6746 0.84 -3.90 -4.34 MDB
CV3 OxB Bali 3.40 -1.13 -2.89 2 C&M1999, G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 6746 0.84 -3.90 -4.34 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red -4.42 -4.46 2 C&M1999, G2010 <
CV3 OxB Bali 3.40 -1.13 -2.89 2 C&M1999, G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB Del Hore
Bali 3.40 -1.13 -2.89 2 C&M1999, G2010 ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 6746 0.84 -3.90 -4.34 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red 2 C&M1999, G2010
ALH 85006 0.17 -3.82 -3.91 1 G2010 Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red 2 C&M1999, G2010 2 C&M1999, G2010
Grosnaja 3.08 -1.62 -3.22 1 G2010 Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red - - - - - Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
Kaba 1.87 -2.50 -3.47 1 G2010 LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red - - - - - Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
LAR 06317 0.01 -3.74 -3.75 2 this study Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 7110 3.94 -1.01 -3.06 MDB MDB NWA 7110 3.94 -1.01 -3.81 MDB MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB MDB CV3 Red 0.08 -4.42 -4.46
Mokoia 3.04 -1.38 -2.96 2 C&M1999, G2010 MCY 05219 2.66 -2.31 -3.70 1 this study MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 7110 3.94 -1.01 -3.06 MDB MDB NWA 7110 3.94 -1.01 -3.06 MDB MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB MDB CV3 Red 2 C&M1999, G2010 2 <t< td=""></t<>
MCY 05219 2.66 -2.31 -3.70 1 this study MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study CV3 Ox FRO 97002 2.45 -2.16 -3.43 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
MET 00761 2.16 -2.45 -3.57 1 this study NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study CV3 Ox - - - - - FRO 97002 2.45 -2.16 -3.43 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red - - - - - Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
NWA 11533 3.83 -1.07 -3.06 1 this study NWA 11546 1.66 -2.52 -3.38 1 this study CV3 Ox FRO 97002 2.45 -2.16 -3.43 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
NWA 11546 1.66 -2.52 -3.38 1 this study CV3 Ox FRO 97002 2.45 -2.16 -3.43 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
CV3 Ox FRO 97002 2.45 -2.16 -3.43 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
CV3 Ox FRO 97002 2.45 -2.16 -3.43 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
FRO 97002 2.45 -2.16 -3.43 MDB NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
NWA 6746 0.84 -3.90 -4.34 MDB NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010 D March 0.09 4.97 4.97 2 two sets
NWA 7110 3.94 -1.01 -3.06 MDB Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010 Delivery 0.09 4.87 4.87 2 itime in the
Khawr al Fazra 005 1.77 -2.89 -3.81 MDB CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010 Delivery 0.09 4.97 4.97 2 two sets
CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
CV3 Red Arch 0.08 -4.42 -4.46 2 C&M1999, G2010
Kuknara UUU -4X/ -4X/ / this study
Efremovka $-1.83 - 5.51 - 4.55 - 2 - C&M1999 G2010$
GR095652 -3.42 -6.91 -5.13 1 G2010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
MII 07277 0 72 -3 94 -4 31 1 this study
NWA 8331 -0.78 -4.60 -4.20 4 MDB
NWA 12523 $-0.33 -4.60 -4.43 -1$ this study
OUE 93429 -3 32 -7 00 -5 27 1 C&M1999
OUE 97186 1 71 -2 74 -3 63 1 this study
RBT0 4143 -0.42 -4.30 -4.08 1 this study
BBT0 4302 -0.51 -4.30 -4.03 1 this study
DaG 1063 -0.48 -4.32 -4.07 1 MDB
NWA 2044 -1.92 -5.41 -4.41 2 MDB

Table 4 Click here to download Table: Table 4-oxygen isotopes CEREGE with170.xlsx

				initial sample	
meteorite	d18O □	d 17O □	D170 🗆	mass (mg)	n
CVOxA					
Allende	1.828	-2.650	-3.601	84	1
ALH 84028	3.022	-1.623	-3.194	9	1
GRA 06101	0.841	-3.692	-4.129	52	1
LAP 02206	4.013	-0.590	-2.677	46	1
NWA11589	1.550	-2.748	-3.554	250	1
CVOxB					
LAR 06317	0.010	-3.743	-3.748	50	2
MCY 05219	2.661	-2.312	-3.696	36	1
MET 00761	2.155	-2.445	-3.566	25	1
NWA 11533	3.830	-1.065	-3.057	161	1
NWA 11546	1.658	-2.522	-3.384	604	1
CVRed					
Bukhara	-0.004	-4.872	-4.870	10	2
MIL 07277	0.720	-3.937	-4.311	69	1
NWA 8331	-0.775	-4.600	-4.197	205	4
NWA 12523	-0.326	-4.595	-4.425	256	1
QUE 97186	1.707	-2.741	-3.629	18	1
RBT 04143	-0.421	-4.295	-4.076	20	1
RBT 04302	-0.509	-4.298	-4.033	13	1

Table 3 Click here to download Table: Table 3-Ks Test.xlsx

n CVOx	n CVRed	р
32	19	1.23E-04
21	16	6.00E-05
1792	1015	6.78E-10
n CVOxA	n CVOxB	р
14	18	2.95E-01
7	10	1.17E-01
706	1086	5.60E-02
	n CVOx 32 21 1792 n CVOxA 14 7 706	n CVOx n CVRed 32 19 21 16 1792 1015 n CVOxA n CVOxB 14 18 7 10 706 1086

Table 2Click here to download Table: Table 2-CV average properties.pdf

	matrix abundance Ni content in sulfide		ulfides	Metal abundance				Magnetic susceptibility			Chondrule apparent diameter			Chondrule aspect ratio			
	vol%	sd	n	wt%	s.d.	n	vol%	sd	n	logX	sd	n	μm	s.d.	n	average	s.d.
CVOxA	51,3%	7 <i>,</i> 4%	14	9 <i>,</i> 55	4,31	14	0,43	0,41	14	3,60	0,26	15	796	426	705	1,225	0,062
CVOxB	53,2%	6,7%	18	18,04	3 <i>,</i> 96	18	0,09	0,11	11	4,38	0,23	18	749	427	1086	1,296	0,073
CVOx	52,3%	7,0%	32	14,32	5 <i>,</i> 89	32	0,28	0,36	25	4,03	0,46	33	768	428	1791	1,265	0,062
CVRed	40,3%	7,1%	19	0,34	0,61	19	1,64	1,32	18	4,27	0,39	19	860	477	1015	1,332	0,066

Figure S1 Click here to download Supplementary material for online publication only: Figure S1-elipsoids flattening.pdf