The role of residual transpiration in poplar drought tolerance
Lise-Marie Billon, Philippe Vernay, Stéphane Herbette, Cochard, Adnane Hitmi

To cite this version:
Lise-Marie Billon, Philippe Vernay, Stéphane Herbette, Cochard, Adnane Hitmi. The role of residual transpiration in poplar drought tolerance. 3rd Xylem International Meeting, Sep 2017, Bordeaux, France. INRA, 2017, 3rd Xylem International Meeting. hal-02734132

HAL Id: hal-02734132
https://hal.inrae.fr/hal-02734132
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The role of residual transpiration in poplar drought tolerance

Billon Lise-Marie, Vernay Philippe, Herbette Stéphane, Cochard Hervé and Hitmi Adnane

UCA, INRA, PIAF, 63000 Clermont-Ferrand, France
✉ lise-marie.billon@etudiant.univ-bpclermont.fr

Introduction

Xylem cavitation is a major health issue causing tree mortality under drought conditions. Xylem intrinsic resistance to cavitation is now well documented but the timing of cavitation formation in situ is still difficult to predict. During drought, cavitation occurs after stomatal closure which suggests a key, but yet unexplored, role of plant residual transpiration. This study aimed at defining an experimental design to measure accurately plant residual transpiration and at showing how far it plays a role in the timing of cavitation formation in poplar.

Experimental design:

- 3-4 month-old poplar trees
- Watered
- Water-stressed
- Stem
- Leaf
- Whole plant
- Half defoliated plant
- Vulnerability curve
- Pressure-volume curve (P50)
- Gravimetric residual transpiration measurement
- Cavitation emergence study

Pressure-Volume (A) and Vulnerability (B) curves were obtained to estimate Ptlp and P50 values:

Residual transpiration estimated gravimetrically on well-watered (red) and water-stressed (yellow) poplars:

- Transpiration g/h
- Time (days)
- Days

Under our experimental conditions, residual transpiration represented about 1.25% of the total transpiration of control plants.

Timing of cavitation induction for control (yellow) and 50% defoliated poplars (grey):

- Days after half defoliation
- PLC (%)
- Water-stressed half-defoliated plants
- Water-stressed whole plants

Reducing plant residual transpiration by reducing plant leaf area after stomatal closure delayed significantly the induction of cavitation in the stems. Means with the same letters are not significantly different at 5% probability level (n=3).

Conclusion

Residual plant transpiration, remaining after stomatal closure during drought, can simply be estimated gravimetrically. Our work suggests that this trait plays a key role in the timing of cavitation induction during prolonged drought events, as demonstrated by our partial defoliation experiment. More information is needed on the intra and inter-specific variability of this trait and its structural and molecular basis if we are to better predict and model tree mortality under extreme drought conditions.