

PhytoCOTE project: Assessment of organic and inorganic contamination in vineyard soils

M. Pierdet ^{1,2}, M-H. Dévier ¹, J. Gaillard ¹, T. Robert ², L. Denaix ², H. Budzinski ¹ ¹EPOC UMR 5850 LPTC, 351 cours de la Libération, 33405 Talence;

²INRA UMR 1391 ISPA, 71 avenue Edouard Bourlaux, 33140 Villenave-d'Ornon

CONTEXT & SCIENTIFIC QUESTIONS

- Viticulture is one of the agricultural crops that uses the most important quantities of pesticides are organic (fungicides, herbicides, insecticides) and mineral (copper since 1882)
- These regular inputs may lead to a long-term contamination of ecosystems and thereby affect fauna and flora. Different processes in soils play a role in pesticide retention and transfer.
- Experimental watershed area of « Les Souches » in Marcillac (53 plots choosen)
- A complex wine-growing past with a very fragmented surface
- Important soil diversity (podzols, luvisols, redox peyrosols).
- Different practices over time

1 – What are the contaminant levels in watershed ? What is the relationship with the surrounding and the present and past wine-growning?

2 – How the contamination did incorporate in 27 soil profiles ?

How the copper contamination currently does incorporate in soil profiles ?

3 – How contaminant availability is evolving during the year ?

MATERIALS AND METHODS

- Sampling over the 0-15 cm horizon of 53 plots with important soil diversity
- Characterisation of soils (organic matter, Fe and Al oxyhydroxides, CEC, granulometry, pH)
- Total metal analysis (Cu, Zn, Cd, Pb)
- Priorisation of organic pesticides to monitor and analytical developments
- Contrasting situation identification depending on pedology and age of plots
- Sampling over one meter deep : made on october, 2017 over 14 plots
- Organic and mineral pesticide analyses each 15 centimeters
- Development of a drain water collector tool
- Installation of passive samplers inside the collector (DGT and POCIS)
- 4 plots chosen for monitoring
- Installation of humidity and temperature sensor on soils
- Installation of 2 soil water samplers per plot (1 on each side of 1 vine plant)
- Installation of 6 Diffusive Gradient in Thin films (DGT) per plot during 24 hours (3 on each side of 1 vine plant) each 15 days for 1 year.

Dosage of 205 molecules on 28 soil samples

- Recovery of soil solution each 15 days if humidity conditions allow it for 1 year
- Target organic et mineral pesticide analyses

RESULTS AND DISCUSSIONS

120

Organic pesticides	– February, 2017 Campaign over 28 plots				
Molecules number > LQ	64				
Recurrent molecules	Benalaxyl (26), Metalaxyl (26), Tebuconazole (26), Dimetomorph (25), Fludioxonil (21),Boscalid (21)				
	Metals – – February, 2017 Campaign over 53 plot				
	Cu Cd Zn Pb				

Median

Chronosequence

Plot C5

Correlation between copper concentration 250 and age of each plot

Minimum	5.2	6.2	0.02	9.4	8.2
Maximum	7.7	197.2	0.11	69.1	29.6

(mg/kg)

71.1

6.4

Important diversity of found molecules Molecules with different characteristics

(mg/kg)

0.05

(mg/kg)

29.2

(mg/kg)

14.3

- Fungicides are the most recurrent
- No relationship between site geography and copper contamination
- Correlation between copper contamination and age of the plot.
- Not a lot of copper transfer in-depth
- Mainly due to the plot age : the 100 years old plot has significant copper concentration up to 40 centimeters.
- First copper results on the drain water collector (13 march, 2018)

Plots	Plot age (years)	[Cu] total soil (mg/kg)	[Cu] total drain water (µg/l)
B1	4	20.7	22.5
G15	60	66.4	60.8
D10	> 60	94.2	68.3
E3	> 60	116.3	83.5

120

Some plots have run-off on the soil horizon 0-45 cm due to the slope

Perspectives :

- Monitoring of organic and minerals pesticides on the drain water for 1 year
- Installation of passive samplers (DGT, mini-POCIS and POCIS-T on the drain-water collector for one week for estimating the contaminant flows

Acknowledgements : This work is made as part of the PhytoCOTE project with the financial support of ANR as part of the investment program at the COTE Excellence Laboratory (ANR-10-labx-45), of the Nouvelle-Aquitaine region and of European Union (project CPER A2E). Europe is engaged in Nouvelle-Aquitaine with the region development European investments (FEDER).