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We study the transcriptomic response of

sunflower to drought combined to the heterosis Test different methods on an artificial dataset with known network, expression

phenomenom across 180 gene expressions on levels and genotypes (DNA variant). Biological properties of this artificial dataset
’ must be closed to the properties of the real dataset.
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Our goal is to infer the gene regulatory network \ ’
Test of different inference methods
among those genes. However, because of the non- on artificial expression datasets
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different methods, to select the best inference s missings L false 2 missngs
method for our biological question. Best Results

SNP for each parental genotype are associated to a score O if it is like in XRQ-line or 1 if different. The

hybrids SNP are obtained by combining locus-per-locus SNP of their parents.

We created artificial hybrids associated to DNA variant on each measured gene. We considered one variant
For the homologues on A. thaliana per gene, those DNA variants are based on SNP of the real data.
of our 180 genes of interest, we

selected regulations described

: A. Selection of SNP on each B. K-medoid clustering C. Artifcial hybrids
between them in 3 databases. parental genotype Manhattan distance on the SNP data 1 DNA variant per gene
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of 137 genes linked by 364 edges Genotypes are classified in 2 groups
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Other Cluster - DNA variant score = 1
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The artificial dataset produced have the same biological properties as our real dataset. We can now test
different methods of network inference and test the accuracy of these methods by comparing networks inferred by the
algorithms to the artificial network. Network inference methods with the best results will be used on the experimental
dataset to answer our biological question.
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