

Genome-wide association study of a diverse grapevine panel to uncover the genetic architecture of numerous traits of interest

Timothée Flutre, Roberto Bacilieri, Gilles Berger, Yves Bertrand, Jean-Michel Boursiquot, Agota Fodor, Thierry Lacombe, Valerie Laucou, Amandine Launay, Loïc Le Cunff, et al.

▶ To cite this version:

Timothée Flutre, Roberto Bacilieri, Gilles Berger, Yves Bertrand, Jean-Michel Boursiquot, et al.. Genome-wide association study of a diverse grapevine panel to uncover the genetic architecture of numerous traits of interest. 12. International Conference on Grapevine Breeding and Genetics, Jul 2018, Bordeaux, France. hal-02734488

HAL Id: hal-02734488 https://hal.inrae.fr/hal-02734488

Submitted on 2 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Grapevine Breeding and Genetics - 17/07/2018

Genome-wide association study of a diverse grapevine panel to uncover the genetic architecture of numerous traits of interest

T. Flutre, R. Bacilieri, G. Berger, Y. Bertrand,
J-M Boursiquot, A. Fodor, T. Lacombe, V. Laucou, A. Launay,
L. Le Cunff, C. Romieu, P. This, J-P. Péros, A. Doligez

AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Multiple changes and challenges

ARPEGE model

Major questions to biologists:

- 1. how to phenotype the eco-physiological processes of interest?
- 2. what are their genetic architectures?
- 3. how to incorporate them into breeding programs?

Multiple changes and challenges

ARPEGE model

Major questions to biologists:

- 1. how to phenotype the eco-physiological processes of interest?
- 2. what are their genetic architectures?
- 3. how to incorporate them into breeding programs?

Diversity panel of Vitis vinifera L. from Domaine de Vassal

Beside bi-parental populations \Rightarrow 279 cultivars (weak structure)

Nicolas et al. (2016)

Flutre et al.

Field layout at Domaine du Chapitre

2009: overgraft on Marselan (control)

- 5 complete randomized blocks
- each genotype has 1 replicate per block

 \bigodot 2009 AND, Tele Atlas, Google

Intense phenotyping effort

2010-2012

- Traits: mean berry weight; mean bunch weight, length and compactness; pruning weight and number of woody shoots; malate, tartrate, shikimate; δ¹³C
- Additional covariates: vigour, sanitary status
- No irrigation

2014-2015

- Traits: mean berry weight; δ¹³C; β-damascenone and pDMS; polyphenols (Pinasseau *et al.*, 2017)
- Treatment: with or without irrigation

Intense phenotyping effort

2010-2012

- Traits: mean berry weight; mean bunch weight, length and compactness; pruning weight and number of woody shoots; malate, tartrate, shikimate; δ¹³C
- Additional covariates: vigour, sanitary status
- No irrigation

2014-2015

- Traits: mean berry weight; δ¹³C; β-damascenone and pDMS; polyphenols (Pinasseau *et al.*, 2017)
- Treatment: with or without irrigation

\Rightarrow Focus on mean berry weight (2010-2012)

Mean berry weight: exploratory analysis of phenotypes

Control genotype (Marselan) per block and year

GWAS of grapevine

Mean berry weight: exploratory analysis of phenotypes

Panel per block and year

GWAS of grapevine

Mean berry weight: exploratory analysis of phenotypes

Missing data in 2011

Dual genotyping

- GrapeReSeq microarray (Illumina): 12k SNPs after QC
- ► GBS with ApeKI enzyme (Keygene): 120k SNPs after QC
- Combined: 90k SNPs with LD < 0.9 and MAF > 0.01

Dual genotyping

- GrapeReSeq microarray (Illumina): 12k SNPs after QC
- GBS with ApeKI enzyme (Keygene): 120k SNPs after QC
- Combined: 90k SNPs with LD < 0.9 and MAF > 0.01

11k SNPs

90k SNPs

⇒ **Densification** required to tag all/most causal polymorphisms

Kinship matrix from SNPs (additive genetic relationships)

Statistical analysis of phenotypic data

$$m{y} = Xm{eta} + Zm{g} + \epsilon$$
 with $m{g} \sim \mathcal{N}(m{0}, \sigma_{m{g}}^2 \, \mathsf{Id})$; $\epsilon \sim \mathcal{N}(m{0}, \sigma^2 \, \mathsf{Id})$

- y: phenotypic observations
- β: effects of known factors, modeled as "fixed"
- g: total genotypic values, modeled as "random"
- $\blacktriangleright \epsilon$: errors

•
$$H^2 = \frac{\sigma_g^2}{\sigma_g^2 + (\sigma^2/\#rep)}$$
: broad-sense heritability (of means)

Statistical analysis of phenotypic data

$$m{y} = Xm{eta} + Zm{g} + m{\epsilon}$$
 with $m{g} \sim \mathcal{N}(m{0},\sigma_g^2\, \mathsf{Id});m{\epsilon} \sim \mathcal{N}(m{0},\sigma^2\, \mathsf{Id})$

- y: phenotypic observations
- β: effects of known factors, modeled as "fixed"
- g: total genotypic values, modeled as "random"
- \blacktriangleright ϵ : errors

•
$$H^2 = \frac{\sigma_g^2}{\sigma_g^2 + (\sigma^2/\#rep)}$$
: broad-sense heritability (of means)

$$m{y} = m{X}m{eta} + m{Z}\,m{a} + m{\epsilon'}$$
 with $m{a} \sim \mathcal{N}(m{0}, \sigma_{m{a}}^2\,m{A}); m{\epsilon} \sim \mathcal{N}(m{0}, \sigma'^2\,m{ld})$

A: kinship matrix of additive genetic relationships
 a: additive genotypic values (a.k.a. breeding values)
 h² = σ²_g + (σ²/#rep): narrow-sense heritability (of means)

GWAS of grapevine

Estimation of heritabilities

 H^2 : higher, better $\rightarrow g$ well approximated by its BLUP h^2 : higher, better $\rightarrow \sigma_a^2$ large enough for selection purposes

Statistical analysis of genotypic values

SNP-by-SNP: ad hoc

$$\mathsf{BLUP}(\boldsymbol{g}) = \boldsymbol{1} \mu + \, \boldsymbol{m}_{\!\!\!\!\rho} \, \boldsymbol{\beta}_{\!\!\!\!\rho} \, + \, \boldsymbol{u} \, + \boldsymbol{\epsilon}$$

► β_p : effect of the p^{th} SNP \rightarrow test if $\beta_p = 0$

• **u**: polygenic effect with kinship matrix $K \propto MM^T$

Statistical analysis of genotypic values

SNP-by-SNP: ad hoc

► β_p : effect of the p^{th} SNP \rightarrow test if $\beta_p = 0$

• **u**: polygenic effect with kinship matrix $K \propto MM^T$

Multi-SNP: explicit modelling of the genetic architecture

$$\mathsf{BLUP}(\boldsymbol{g}) = \boldsymbol{1}\mu + \boldsymbol{M}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Statistical analysis of genotypic values

SNP-by-SNP: ad hoc

► β_p : effect of the p^{th} SNP \rightarrow test if $\beta_p = 0$

• **u**: polygenic effect with kinship matrix $K \propto MM^T$

Multi-SNP: explicit modelling of the genetic architecture

$$\mathsf{BLUP}(\boldsymbol{g}) = \mathbf{1}\mu + M\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- fully polygenic: all $\beta_p \neq 0$
- major QTLs only: few $\beta_p \neq 0$ and all others = 0
- hybrid: all $\beta_p \neq 0$ and few $\tilde{\beta}_p \neq 0$

Estimation of hybrid genetic architectures

PVE: proportion of variance of total genotypic values explained by the polygenic component *and* the major QTL effects

 \blacktriangleright higher \rightarrow better to predict genotyping values

PGE: proportion of PVE explained *only* by major QTL effects

 \blacktriangleright higher \rightarrow better to identify candidate genes

Estimation of hybrid genetic architectures

PVE: proportion of variance of total genotypic values explained by the polygenic component *and* the major QTL effects

 \blacktriangleright higher ightarrow better to predict genotyping values

PGE: proportion of PVE explained *only* by major QTL effects

SNP-by-SNP with 11k SNPs

\Rightarrow genotyping not dense enough

SNP-by-SNP with 90k SNPs

\Rightarrow dense enough to find two significant SNPs

Multi-SNP (major QTLs only) with 90k SNPs

 \Rightarrow more power to find six SNPs tagging putative QTLs

Focus on the selected SNPs

need to define QTLs around selected SNPs

Mean berry weight: selected SNPs

SNP genotypes (MAF=0.163)

 $\Pr(\widehat{\beta_p \neq 0}) = 1 : \widehat{\mathsf{PVE}}_p = 0.094 : \widehat{\beta}_p = -0.213 : \mathsf{Cl}_{95\%} = [-0.263, -0.163]$ location: coding of Vitvi17g00537, (-)-isopiperitenol/(-)-carveol dehydrogenase, mitochondrial

GWAS of grapevine

Mean berry weight: selected SNPs

SNP #2 at \approx 29.9 Mb on chr14

SNP genotypes (MAF=0.249)

GWAS of grapevine

Prospects with the panel

Phenotyping:

- improved phenotyping of berry physiology (poster 49); tolerance to pathogens (poster 57)
- phenotyping in multiple sites and greenhouses to study GxE

Genotyping:

- capture-based sequencing of GBS-defined SNPs
- search for traces of selection

Modeling:

- genomic prediction to speed-up selection (poster 82)
- multi-pop/-trait statistical analysis (ongoing work)

Take-home message

With **dense** genotyping and **multi-SNP** models, the **diversity panel** of *V. vinifera* L. from INRA Montpellier allows estimating the **genetic architecture** of numerous traits of interest, to help design efficient **breeding** strategies.

- diversity panel: virus-free and available
- data and reproducible analyzes: available upon publication
- contact: Agnès Doligez (agnes.doligez@inra.fr)

Acknowledgments

- DAAV team from the UMR AGAP
- Vassal-Montpellier grapevine biological resources center
- SouthGreen bioinformatics platform (notably B. Pitollat)
- AGAP genotyping platform (notably P. Mournet)
- GenoToul sequencing center
- ▶ all contributors to free/open softwares used in this work
- funding bodies: INRA, Montpellier SupAgro, IFV, ANR, CASDAR, EU