What types of circular business models for creating value from agro-waste?
Mechthild Donner, Romane Gohier, Hugo de Vries

To cite this version:
Mechthild Donner, Romane Gohier, Hugo de Vries. What types of circular business models for creating value from agro-waste?. 7. International Conference on Sustainable Solid Waste Management, Jun 2019, Heraklion, Greece. hal-02734738

HAL Id: hal-02734738
https://hal.inrae.fr/hal-02734738
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
What types of circular business models for creating value from agro-waste?

Mechthild Donner, Romane Gohier, Hugo De Vries
Introduction

The circular economy has been defined as an industrial system that is restorative and regenerative by intention and by design (EMF, 2013).

Shifting from a linear to a circular economy requires a change at system level, involving all actors of value chains within diverse economic sectors. At the enterprise level, innovative circular business models are needed that require:
- reverse logistics
- a new vision of customer-supplier relationships
- new forms of organization and strategies at the cross-road of various value chains
Research objective

Objectives
Identify and characterise the different types of existing circular business models (CBM) for valorising agro-waste

Business model “the rationale of how an organization creates, delivers and captures value” (Osterwalder & Pigneur, 2011)

BM Canvas: used to analyse the activities, objectives, methods and resources of a firm that ensure its viability

Circular Business Model: BM Canvas + Business ecosystem level + Sustainability impact (Antikainen and Valkokari, 2016)
Methodology

33 case studies with semi-directive interviews

Criteria for selecting case studies:
- Companies which convert agricultural by-products into valuable products
- Individual and collective initiatives
- From different countries in Europe and others continents
- Focus on three chains: cereals, wine and manure

Identify the main characteristics of the business model according to the analytical framework
Agricultural co-operative

A co-operative is an autonomous association of persons united voluntarily to meet their common economic, social, and cultural needs and aspirations through a jointly owned and democratically-controlled enterprise. The co-operative starts to valorise by-product of its activity.

Support structure

A support structure devotes to support a new way of valorisation, aims to enable stakeholders to develop their activities.

Agropark

Spatial clusters of agro functions and the related economic activities, agropark brings together high-productivity plant-based production and processing along industrial lines.

Environmental biorefinery

Integrated bio-based industry, using by-products, residues and wastes as inputs and use a variety of technologies to produce chemicals, biofuels, food and feed ingredients, biomaterial and power.

Upcycling entrepreneurship

Innovative way of valorisation to convert low-value by-products into high-value materials.

Biogas plant

Bioenergy production from agronomic residue, biogas, heat and digestate.

Results: TYPES OF CBM IDENTIFIED
Example of an agricultural cooperative - Grap’Sud

Wine-making cooperative with 6 production units and 210 employees

By-products valorised per year:
- 125,000 tons of pomace
- 270,000 hl of lees
- 600,000 hl of grape must

- Large portfolio of value-added products issued from wine waste (B2B et B2C)

Characteristics of agricultural cooperatives:
- Specific for a production sector (cereals, wine, fruits, ...)
- Able to reach a critical size and to collect sufficient amounts of by-products
- Permits to establish a long-term strategy in order to serve the members’ interests
Example of a support structure - Agricarbone

Characteristics of support structures:

- No valorisation within its internal boundaries but enable to develop new valorisation pathways
- Coordination, promotion, networking, technological intelligence, bringing together of normally disconnected players
- Three sub-types: geographical, valorisation pathway, waste flow
- Difficulties to capture the value created and ensure the permanency of the initiative

• Creation of synergies between agricultural players and valorisation units
• Balance the commercial relationship
• More than 3000 tons of non-food agricultural biomass valorised in its first year
• Offer also soil quality studies to analyse the need in organic matter
Other types of CBM

Biogas plant (e.g.: Agroenergie Hohenlohe)
- Biogas unit management and optimisation
- Highly dependant on feed-in tariffs, need for diversification if tariffs decrease
- Need to involve stakeholders to improve acceptance (especially the neighbourhood)

Upcycling (e.g.: Biotrem)
- Global eco-design approach
- Initiated by the need to find a solution for a large quantity of waste, or by the deployment of a technological innovation
- Main challenges: scale-up and secure supplies

Agropark (e.g.: Food Valley of Bjuv)
- The cycles for water, minerals and gaseous compounds are closed and the use of fossil energy is minimised
- Innovative partnership
- Mutualisation of know-how in production and commercialization of agro-products

Biorafinery (e.g.: Pomacle Bazancourt)
- Biomass cascading use: in time, in function and in value
- Mutualisation and substitution synergies are developed
- The economic model benefits from economies of scale, diversification and local know-how.

• Global eco-design approach
• Initiated by the need to find a solution for a large quantity of waste, or by the deployment of a technological innovation
• Main challenges: scale-up and secure supplies
Conclusion and discussion

CBM typology

First proposition of typology in the agro-waste valorisation sector

Dynamic typology: possibility to evolve to another category according strategic orientation

The CBM are complementary and may work together to maximise the biomass cascading use

Management specificities

Intrinsic characteristics of agro-products impact the whole BM (securing supplies, storage, reverse logistics, infrastructure flexibility)

Traditional market constraints (e.g., chemistry markets)

Consumers perception of bio-based products remains under-explored

External factors

Climate change sensitivity

Low attractiveness in some rural areas (recruitments and investments)

Uncertain public policies evolution (e.g., biogas tariff)
THANK YOU FOR YOUR ATTENTION

ANY QUESTIONS?

Contact: romane.gohier@inra.fr
Acknowledgement: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 688338.