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Asymptotic Observers and Integer Programming for Functional
Classification of a Microbial Community in a Chemostat.

Pablo Ugalde-Salas1, Jérôme Harmand2 and Elie Desmond-Le Quéméner 3

Abstract— From genetic sequencing, dry biomass, and
metabolites measurements, the assignment of functions to the
species present in chemostat experiments was solved by merging
chemostat modelling and quadratic mixed integer program-
ming. The method was tested on a nitrification bioprocess where
two functions are known to drive the system. Sensitivity of the
method, its advantages, and limitations are discussed.

I. INTRODUCTION

The objective of this manuscript is to present an opti-
mization method based on mixed integer programming and
invariants of chemostat dynamical models for the functional
classification of microorganisms in bioprocess. One of the
first attempts to implement an optimization procedure can
be found in Dumont et al. [1].

Measurements based on genetic material have become
standard practice in ecological engineered systems (e.g.
wastewater treatments plants) [2]. However using this mea-
surements for prediction and control is still at a very early
stage. To face such challenges linking functionality to the
different members of the community is an important initial
task to be tackled [3], [4]. Comparisons of such measure-
ments to current databases often fall short, since the coverage
of existing species is very limited compared to reality. The
motivation is therefore to develop tools for incorporating
these new measurements in engineering models.

II. MATERIALS AND METHODS

Variables used throughout the article are summarized in
Table I. The following conventions are used: Let n ∈N then
[n] := {1, . . . ,n}, R+ := {t ≥ 0|t ∈ R}.

A. Experimental Conditions

The optimization method is applied to data coming from
a chemostat experiment. A chemostat is an experimental
device used to study microbial growth where a reactor
continuously receives a solution containing nutrients for
proper microbial development [5]. The reactor has the same
inlet and outlet flow, thus a constant volume is maintained
inside the reactor.

Two reactors, A and B, were operated continuously for
approximately 500 days with variable dilution rate and
substrate input. They were inoculated with wastewater sludge
and a dilution composed of ammonium and a synthetic
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mineral medium was used; as a consequence a nitrification
process took place. Oxygen injection was maximized so
there was no oxygen limitation, and pH was regulated and
maintained around 7.

TABLE I: Notation used throughout the article.

Symbol Description
s1(t) Concentration ([g/l]) of ammonium in time.
s2(t) Concentration ([g/l]) of nitrite in time.
s3(t) Concentration ([g/l]) of nitrate in time.
s(t) Vector containing s1(t),s2(t),s3(t).
xi(t) Concentration ([g/l]) of OTU i in time.
x(t) Vector containing x1(t), . . . ,xn(t).
D(t) Dilution Rate ([1/day]) in time.
sin(t) Concentration ([g/l]) of input ammonium in time.
sobs

1 (t) Measured concentration ([g/l]) of ammonium in time.
sobs

2 (t) Measured concentration ([g/l]) of nitrite in time.
xobs

i (t) Measured concentration ([g/l]) of OTU i in time.
z1(t) Reaction invariant of the dynamical system treated.
z2(t) Reaction invariant of the dynamical system treated.
x̂G1 (t) Observer of the sum of the biomass of OTU in G1.
x̂G2 (t) Observer of the sum of the biomass of OTU in G2.

Samples of the total dry biomass, concentrations of ammo-
nium (NH4

+), nitrite (NO2
– ), and nitrate (NO3

– ), were taken
at specific times. Microbial diversity was analyzed using
single strand conformation polymorphism (SSCP) at specific
times: 44 different Operational Taxonomic Unit (OTU) were
identified in total, with most of them being present in both.
More details on the experimental conditions can be found in
the author’s original article [6].

B. Stoichiometry and Functional Groups

For this article a cascade (bio)reaction process is consid-
ered. Suppose n different OTU are present in the chemo-
stat. The cascade reaction refers to the situation where a
group of microorganisms (G1 ⊂ [n]) consumes a substrate
s1 and produces s2 and biomass, while another group of
microorganisms (G2 ⊂ [n]) consumes s2 and produces s3
and biomass. G1 and G2 are called functional groups. The
situation is described as simplified reactions (R1) and (R2).
The reactions are simplified in the sense that they do not
attempt to represent a balanced chemical reaction, rather it
represents the direction of the bioprocess and the propor-
tions (stoichiometric coefficients) of different consumed and
formed compounds of interest.

s1
µi(s,x)−→ s2 + yiMx ∀i ∈ G1 (R1)

s2
µi(s,x)−→ s3 + yiMx ∀i ∈ G2 (R2)



The terms yi are known as yields, it represents the num-
ber of moles of biomass produced per mole of substrate
consumed. However in this work the unit grams of dry
biomass per gram of substrate is used for yields. The term
Mx represents a molecule of biomass and several expressions
can be found in the literature (e.g. CH1.613O0.557N0.158 [7]).
Furthermore, for each i ∈ [n], OTU i is characterized by its
process rate (also known as growth function or kinetics)
µi(s,x), where the first variable s represents a vector con-
taining the concentration of (s1,s2,s3). The second variable
x represents the vector containing the concentration of all
OTU.

From an evolutionary perspective there is reason to think
that each OTU may have its own yield and growth function.

From biological knowledge it is sometimes known that
two different OTU can not belong to the same functional
group, that is G1 ∩G2 = /0. This is the case of nitrification
process [8]. The group G1 is known as ammonia oxidizer
Bacteria (AOB), which turn ammonia (s1) into nitrite (s2),
the group G2 is known as nitrite oxidizer Bacteria (NOB)
which turns nitrite into nitrate (s3).

C. Mass-Balanced model

The cascade reaction is modelled as a substrate-coupled
dynamical model.

The chemostat has a dilution rate of D and an input of
ammonium concentration sin, both of which are operating
parameters that can change in time, that is D=D(t) and sin =
sin(t), however for alleviating notation the time dependence
is dropped. For more details in chemostat modelling the
reader may refer to [9].

Denoting each OTU concentration by xi, ammonium by
s1, nitrite by s2, nitrate by s3, and considering reactions
(R1), and (R2) the mass balanced model can be formally
expressed:

ẋi =(µi(s,x)−D)xi ∀i ∈ G1 (1)
ẋi =(µi(s,x)−D)xi ∀i ∈ G2 (2)

ṡ1 =(sin− s1)D− ∑
i∈G1

1
yi

µi(s,x)xi (3)

ṡ2 =− s2D+ ∑
i∈G1

1
yi

µi(s,x)xi− ∑
i∈G2

1
yi

µi(s,x)xi (4)

ṡ3 =− s3D+ ∑
i∈G1

1
yi

µi(s,x)xi (5)

At this point we can formally state the problem. Let us
assume that we know the measurements of the abundance
of n OTU xobs

i (t) i ∈ [n], sobs
1 (t), sobs

2 (t), and sobs
3 (t) in a

chemostat where sin and D(t) are known. Find two disjoint
subsets G1, G2 ⊂ [n], such that the norm of the difference of
the observations and the solution of the system (x,s) given

by equations (1), (2), (3), (4), and (5) is minimized, that is

min ∑
i∈G1

‖xi− xobs
i ‖2 + ∑

i∈G2

‖xi− xobs
i ‖2

+‖s1− sobs
1 ‖2 +‖s2− sobs

2 ‖2 +‖s3− sobs
3 ‖2

s.t G1, G2 ⊂ [n]
G1∩G2 = /0
(x,s) solution of (1), (2), (3), (4), (5)

(6)

The problem lies on (i) not knowing the growth rates and
(ii) testing all the possible combinations and simulating is
computationally expensive.

D. Asymptotic Observer

If we knew a priori both sets G1 and G2 and the growth
rates µi(x,s), then we could directly compare the measure-
ments and the dynamical system given by equations (1), (2),
(3), (4), and (5). However we do not know neither the sets
nor the kinetics.

To solve this problem a classic invariant of such types of
model are derived. These are called also reaction invariants
[10]. They allow the construction of asymptotic observers
[11], which are observers in the sense that, whatever the
initial conditions are, they converge to a manifold which
only depends on the yields and some state variables, thus
circumventing the knowledge of process rate; this has been
done for general biochemical reactors (equations (49) to (56))
in [11]. The price to pay for such observers is that the
convergence rate to the manifold depends on the operating
conditions.

Define z1 := ∑
i∈G1

1
yi

xi + s1 and compute ż1 using equations

(1) and (3):

ż1 = ∑
i∈G1

1
yi

ẋi + ṡ1 (7)

= ∑
i∈G1

1
yi
(µi(s,x)−D)xi +(sin− s1)D− ∑

i∈G1

1
yi

µi(s,x)xi

(8)

=−D

(
∑

i∈G1

1
yi

xi + s1− sin

)
(9)

=−D(t)(z1− sin(t)) (10)

Analogously another invariant can be derived that allows
linking the biomass of G2 and substrates. Define z2 :=
∑

i∈G2

1
yi

xi + s1 + s2 and compute ż2 using equations (2), (3),

and(4):



ż2 = ∑
i∈G2

1
yi

ẋi + ṡ1 + ṡ2 (11)

= ∑
i∈G2

1
yi
(µi(s2,x)−D)xi +(sin− s1)D (12)

− ∑
i∈G1

1
yi

µi(s1,x)xi− s2D+ ∑
i∈G1

1
yi

µi(s1,x)xi

− ∑
i∈G2

1
yi

µi(s2,x)xi (13)

=−D

(
∑

i∈G2

1
yi

xi + s1 + s2− sin

)
(14)

=−D(t)(z2− sin(t)) (15)

Note that z1 and z2 satisfy the same dynamics, which does
not depend in µi. Invariants z1 and z2 can be shown to be
stable [11].

A simulation of the differential equation (10) using the
dilution rate and input ammonium of the experiment can
be seen in Fig. 1, it suggests that the solutions approach
rapidly to a similar curve independently of the initial point.
Since at the beginning of the experiment minimal biomass

is present one assumes z1(0) = ∑
i∈G1

1
yi

xi(0)+ s1(0)≈ s1(t1).

Analogously z2(0) = ∑
i∈G2

1
yi

xi(0) + s1(0) + s2(0) ≈ s1(t1) +

s2(t1).

Fig. 1: Invariant evolution for Reactor A with three different
initial points.

The observers are defined as x̂G1 := z1−s1 and x̂G2 := z2−
s1−s2, each one of them converges to ∑

i∈G1

1
yi

xi and ∑
i∈G2

1
yi

xi,

respectively. A simulation of the observers trajectory can be
seen from figure 2 where s1 and s2 were taken as sobs

1 and
sobs

2 , respectively.

Fig. 2: Observer evolution for Reactor A using the measure-
ments of s1 and s2.

E. Mixed Integer Program

A mixed integer program is presented in order to classify
each OTU as AOB, NOB, or not determined by using
observers x̂G1 and x̂G2 as inputs. The objective function is to
minimize the error defined as the difference of the observers
and ∑

i∈G j

1
yi

xi for j ∈ {1,2} . Let n be the number of different

OTU identified, m the number of measurements, and t j the
time stamp of measurement j ∈ [m] . The variables to decide
the classification are:

Variables:

• a ∈ {0,1}n: ai = 1 if OTU i is classified as AOB, 0
otherwise.

• b ∈ {0,1}n: bi = 1 if OTU i is classified as NOB, 0
otherwise.

• kA ∈ Rn
+: kA

i > 0 if OTU i is classified as AOB, 0
otherwise. If kA

i > 0 then kA
i = y−1

i .
• kB ∈ Rn

+: kB
i > 0 if OTU i is classified as NOB, 0

otherwise. If kB
i > 0 then kB

i = y−1
i .

• ε ∈Rm
+ : ε j error associated to classification of AOB in

measurement j.
• η ∈ Rm

+ : η j error associated to classification of NOB
in measurement j.

Parameters of the optimization problem are divided
in data as presented in table I, and meta-parameters:
yA

re f ,y
B
re f ,δ ,ma,Ma,mb,Mb, meaning that these parameters

come from prior knowledge to the experiment. All together
they give bounds for the variables kB and kA.

Parameters of the Problem

• W ∈ Mn×m(R+) : Wi j = xi(t j). Column j contain the
concentration of each OTU at timestamp t j.

• s1(t j) ∈ R+ ∀ j ∈ [m] as defined in table I.
• s2(t j) ∈ R+ ∀ j ∈ [m] :as defined in table I.
• x̂G1(t j) ∈ R+ ∀ j ∈ [m] : Observer evaluated at times-

tamps.



• x̂G2(t j) ∈ R+ ∀ j ∈ [m] : Observer evaluated at times-
tamps.

• yA
re f ,y

B
re f ∈R+ : Literature reference value for yields of

AOB and NOB, respectively.
• δ ∈ (0,1): fraction allowed to deviate from the reference

yields.
• mA,MA ∈ R+: lower and upper bounds for kA

i , respec-

tively. mA :=
1

(1+δ )yA
re f

, MA :=
1

(1−δ )yA
re f

.

• mB,MB ∈ R+: lower and upper bounds for kB
i , respec-

tively. mB :=
1

(1+δ )yB
re f

, MB :=
1

(1−δ )yB
re f

.

In the numerical experiences, the reference yield for AOB
is yA

re f = 0.147 [gr odm/grNH4
+], and for the NOB is yB

re f =
0.042 [gr odm/grNO2

– ] where odm stands for organic dry
matter [8].

Based on the former discussion the following constraints
are imposed. The notation W• j is used to represent the j-th
column of matrix W .

Constraints:
• AOB mass error classification: The difference between

x̂G1 and the assigned mass at each measurement is
bounded by ε .

−ε j ≤W>• j k
A− x̂G1(t j)≤ ε j ∀ j ∈ [m]. (16)

• NOB mass error classification: The difference between
x̂G2 and the assigned mass at each measurement is
bounded by η .

−η j ≤W>• j k
B− x̂G2(t j)≤ η j ∀ j ∈ [m] (17)

• Each species can be classified in only one functional
group:

ai +bi ≤ 1 ∀i ∈ [n] (18)

• Linking constraint (Big-M Constraints): Activation of
kA

i or kB
i when ai or bi is active, respectively:

mAai ≤ kA
i ≤MAai ∀i ∈ [n] (19)

mBbi ≤ kB
i ≤MBbi ∀i ∈ [n] (20)

• Objective Function: The minimum of the norms of
vector ε and η .

‖ε‖2 +‖η‖2 =
m

∑
j=1

(η2
j + ε

2
j ) (21)

The problem to be solved is:

min
m

∑
j=1

(η2
j + ε

2
j )

s.t. (16), (17), (18), (19), (20)
ε,η ,∈ Rm

+

a,b ∈ {0,1}n

kA,kB ∈ Rn
+

(MIQP)

The problem (MIQP) falls in the category of mixed integer
quadratic programming, and it can be properly described in
terms of the number of OTU (n) and the number of functional

groups (r), and the number of observations (m). Note that
since if one considers one observer per functional group, the
number of variables is calculated as 2×n×r+2×m×r. The
number of restrictions is calculated as 2×m× r+3×n× r.
This shows that the number of restrictions and variables grow
linearly with the number of OTU (for fixed r).

III. RESULTS AND DISCUSSION

In all cases here presented the computing time was less
than a second with zero optimality gap. The solver GUROBI
was used within a Matlab interface. The computer was
equipped with 8gb of RAM memory and Intel core i3-7100U
CPU 2,40 GHz .

By varying δ the classification changes for certain OTU.
The method always classifies 35 OTU in the same guild,
which represent 87 % of the total biomass found. While 9
of them changed of class by varying the allowed bounds.
Not all of the present OTU were participating in the nitri-
fication process. This can be explained by the presence of
heterotrophs which are feeding on decayed cell material and
or predators.

The obtained yields were plotted for the case δ = 0.3 in
figure 3. One can see that the classification usually assigns
the minimum or maximum yield.

Fig. 3: Obtained Yields for Reactor A

The study shows that the bounds imposed on the inverse
of the yields (kA,kB) deserve some attention, since they can
change the classification of some OTU. A more precise quan-
tification of the possible variability within a guild escapes the
authors’ knowledge. In the literature a measurement error of
30 % is usually found, therefore δ = 0.3 was taken in order
to compare both reactors.

The results for the comparison of both reactors can be
seen in Table II, were one notes that 3 OTU were assigned
to a different functional group (highlighted in dark grey); it
is very unlikely from a biological point of view that they
had changed their function in each chemostat, implying that
the classification can be tricked in certain cases. 15 OTU
were assigned to a functional group in one case, but to



TABLE II: Comparison of Both Reactors and results of previous work.

A 1 under an AOB and NOB columns represent classification in the functional group, 0 means not classified in the functional group. Rows
highlighted in light grey show OTU that changed from either AOB or NOB in one reactor to none in the other one. Rows highlighted in
dark grey show OTU that changed from either AOB or NOB in one reactor to NOB or AOB, respectively, in the other one. Highlighted
in light blue the cases where the classification changed from either AOB or NOB in one work to none in the other. Higlighted in blue the
cases where classification changed from either AOB or NOB in one work to NOB or AOB in the other work, respectively. Time present
in bold means it was close to clones identified in a database. ND stands for non demonstrated nitrifying capacity.

.

Reactor A Reactor B
Functional
Assignment

Functional
Assignment

OTU
Relative Species
Abundance (%) This

Work
Previous

Work

Relative Species
Abundance (%) This

Work
Previous

Work
Time

Present
(%) Mean Max AOB NOB AOB NOB

TimePresent
(%) Mean Max AOB NOB AOB NOB

1 20 0 2 1 0 1 0 9 0 3 1 0 1 0
2 31 1 6 1 0 0 1 20 0 2 1 0 0 0
3 15 0 3 0 0 0 0 3 0 3 0 0 0 0
4 0 0 0 0 0 0 0 16 0 5 1 0 1 0
5 57 1 11 0 1 0 1 81 NOB 4 27 0 1 0 1
6 32 1 15 0 1 0 1 25 1 7 0 0 0 1
7 14 0 4 0 0 1 0 24 1 5 1 0 0 0
8 71 3 18 1 0 1 0 17 0 11 0 0 1 0
9 24 NOB 1 6 0 0 0 0 36 1 8 0 0 0 1
10 19 1 9 0 0 1 0 16 0 5 1 0 0 1
11 12 ND 0 13 0 0 1 0 10 0 7 0 0 0 0
12 19 1 8 1 0 1 0 6 0 9 1 0 1 0
13 31 1 12 0 0 0 1 88 2 8 0 1 0 1
14 36 ND 1 9 1 0 0 0 20 1 9 1 0 0 1
15 38 1 12 1 0 0 1 41 1 8 1 0 0 1
16 44 1 4 0 0 0 0 83 2 6 0 0 0 1
17 36 1 4 0 1 0 1 30 1 8 0 1 0 1
18 35 1 10 0 1 0 1 0 0 0 0 0 0 1
19 11 ND 0 4 0 1 0 1 20 0 3 0 0 0 0
20 19 0 3 1 0 0 1 31 1 5 1 0 1 0
21 41 1 6 0 1 0 1 18 0 4 0 1 0 0
22 15 0 2 0 1 0 1 31 1 7 0 1 0 1
23 73 ND 2 8 0 0 1 0 76 2 8 0 0 1 0
24 23 1 4 0 1 1 0 23 0 5 1 0 0 1
25 64 ND 2 11 1 0 1 0 89 3 18 1 0 1 0
26 34 1 5 1 0 0 1 17 0 4 1 0 1 0
27 18 1 12 1 0 0 1 40 3 23 1 0 0 0
28 41 1 7 0 0 1 0 28 1 13 0 0 1 0
29 45 ND 2 6 1 0 1 0 15 0 5 0 0 1 0
30 16 1 11 0 1 0 1 76 ND 2 10 1 0 0 1
31 23 1 5 1 0 0 1 20 1 13 1 0 0 1
32 60 2 18 1 0 0 1 58 1 6 0 1 0 1
33 50 2 36 1 0 1 0 95 4 49 1 0 1 0
34 17 1 16 0 1 0 0 0 0 0 0 0 0 0
35 100 ND 10 41 1 0 1 0 100 ND 12 38 1 0 1 0
36 50 3 26 1 0 1 0 96 5 28 0 0 1 0
37 100 ND 6 37 0 0 1 0 39 2 10 0 0 1 0
38 100 AOB 38 77 1 0 1 0 100 AOB 35 65 1 0 1 0
39 30 1 13 1 0 1 0 42 2 20 0 0 0 0
40 0 0 0 0 0 0 0 57 2 11 0 1 0 1
41 25 1 5 0 0 0 0 11 1 28 0 0 1 0
42 17 1 13 0 1 0 0 9 0 12 0 0 1 0
43 93 5 30 0 0 1 0 93 5 29 1 0 0 0
44 11 1 21 1 0 1 0 0 0 0 0 0 0 0



none in the other (highlighted in light grey); which can be
explained by their low abundance and presence time in the
reactors where they were not assigned to any guild. Finally
26 OTU were assigned to the same guild (highlighted in
white), representing a mean abundance of 74 % and 76 %
of the total biomass of reactors A and B, respectively. The
mean abundance corresponding to AOB in reactors A and B
was of 71 and 69 % and of the total biomass, respectively.
while the abundance of the NOB community in reactors A
and B was 9 and 11 % of the total biomass, respectively.

The method used in the work of Dumont et al.[1], con-
sisted in generating the total AOB and NOB biomass from
an observer. Then they randomly picked 10 OTU and tested
all the possible assignments to find the one that best fitted
the generated AOB and NOB biomasses. They repeated this
process 10000 times and finally assigned probabilities to each
OTU to be classified as either AOB, NOB or not determined.
It took three days of computing time.

Comparison from the classification obtained from the
previous work can be seen from table II as well. In Reactor A
19 OTU were classified differently, representing 27 % of the
total biomass; 7 out of 19 OTU (highlighted in blue) changed
functional group while the others (highlighted in light blue)
had no functional group assigned in one of the works. In
Reactor B, 23 OTU were classified differently, representing
32 % of the total biomass; 5 out of 23 OTU (highlighted in
blue) changed functional group while the others (highlighted
in light blue) had no functional group assigned in one of
the works. The change in functional group (highlighted in
blue) was systematically from AOB with the method here
presented, to NOB from the previous work. Another point
worth noting is that 7 and 9 false positives (assignment as
AOB or NOB when database assigned ND) can be seen from
this work and previous work, respectively. This suggests that
one should consider modelling for heterotrophs, or taking out
the rows corresponding to the ND from the mass Matrix W of
problem (MIQP). The disagreement from the methods may
be explained, partially, from the low relative abundances of
the OTU which should create difficulties in any method.

Testing the effectiveness of the method would require
chemostat experiments with a completely characterized in-
oculum. However some a priori advantages of the method
here presented are highlighted: (1) Allows a deviation from a
reference yield accounting for variability within a microbial
community, (2) the only user-defined parameter (δ ) is sug-
gested from experimental error (3) all OTU can be compared
at the same time, and (4) low computing time.

IV. CONCLUSIONS AND PERSPECTIVES

The classification problem of assigning a functional group
to the different microorganisms present in bioreactors was
solved from an asymptotic observer that bypasses the choice
of the growth function and mixed integer programming.

The extension of the method to other types of bioprocess
is currently under development by considering the general
invariants described in [11] and biological knowledge for
the different functional groups interacting in the process. The

complexity of (MIQP) offers, at least theoretically, chances
that the problem is solvable for a big number of OTU, if the
number of functional groups remain low.

The use of mixed integer programming seems more suit-
able as an engine for classification than testing combinations;
it inherently handles the combinatorial nature of the task.
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