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Abstract
Heuristic is one of the important techniques designed to find quickly good feasible solutions
for hard integer programs. Most heuristics depend on a solution of the relaxed linear program.
Another approach, Lagrangian relaxation offers a number of important advantages over linear
programming [4], namely it is extremely fast for solving large problems. One of the Lagrangian
based heuristics is Wedelin’s heuristic [10], which works for the limited class of 0-1 integer
programs. It is designed for problems with a specific form (minx∈{0,1}n{cT x|Ax = b} with
coefficients of A in {0, 1} and b integral) which prevents its applicability on many problems.
Thus to tackle problems with more general structures, [1] presents a generalized Wedelin’s
heuristic for integer programming. The performance of this method depends crucially on the
choice of its numerous parameters (number of iterations, degree of approximation, history of
the preference matrix, and others). To adjust these parameters and learn which ones have
important influence on whether a solution is found and its quality, we conduct sensitivity
analysis combined with a metaheuristic. We choose the Morris method [8] to select parameters
providing a feasible/good solutions on a family of instances, and the genetic optimization
using derivatives (genoud) method [7] to find the best solution in limited time for a specific
instance. The Morris method consists in discretizing the input space for each parameter, then
performing a given number of One At a Time random designs (each input parameter is varied
while fixing the others). The repetition of these steps allows the estimation of elementary
effects for each parameter, and consequently the sensitivity indices [5]. genoud combines an
evolutionary algorithm method with a derivative based (quasi-Newton) method to solve difficult
optimization problems. These difficulties often arise when the objective function is a nonlinear
function of the continuous parameters and not globally concave having multiple local optima [7].

We have implemented a C++ parallel version of Wedelin’s heuristic based on [1]. The solver
called baryonyx1 has two execution modes: solver mode and optimizer mode. In the solver mode,
baryonyx runs once trying to satisfy all the constraints. In the optimizer mode, it runs in parallel
according to the number of processors, and tries to satisfy all the constraints and to optimize
the solution at each run, reporting the best solution found for all runs when it reaches its time
limit. Concerning parameters, Morris and genoud methods are implemented in R packages.
We use Morris package to find useful parameters. Once found, we fix other parameters and we
let genoud adjusts the useful ones in order to get the best solution within a given time limit.
We compare baryonyx with exact solver IBM ILOG cplex and with two local search methods:
a 4-flip neighborhood local search algorithm [9] and an hybrid mathematical programming
solver LocalSolver [2] which is a simulated annealing based on ejection chain moves specialized
for maintaining the feasibility of Boolean constraints and an efficient incremental evaluation
using a directed acyclic graph. The following Tables show that baryonyx is competitive with
the existing solvers on a Set Partitioning Problem (SPP) benchmark [3], but has difficulties on
a Mixed Fruit-Vegetable Crop Allocation Problem (MFVCAP) [6].

1https://github.com/quesnel/baryonyx



(600/3600 sec CPU time limit on 2.5GHz Intel XEON using 1 core, except 7200s Borndörfer)
SPP Instance Cplex12.6 LocalSolver3.1 Borndörfer Umetani baryonyx
v0415 (600s) 2,429,415 2,429,415 2,429,415 2,429,568 2,432,717
v0416 (600s) 2,725,602 2,728,391 2,725,602 2,726,156 2,730,390
v0417 (600s) 2,611,518 2,617,387 2,611,518 2,611,518 2,614,359
v0418 (600s) 2,845,425 2,846,265 2,845,425 2,845,425 2,848,692
v0419 (600s) 2,590,326 2,590,511 2,590,326 2,590,326 2,592,139
v0420 (600s) 1,696,889 1,696,889 1,696,889 1,696,889 1,697,954
v0421 (600s) 1,853,951 1,853,951 1,853,951 1,853,951 1,855,344
v1616 (600s) 1,006,460 1,051,749 1,006,460 1,007,402 1,019,799
v1617 (600s) 1,102,586 1,181,503 1,102,586 1,103,651 1,120,193
v1618 (600s) 1,153,871 1,221,162 1,154,458 1,155,986 1,172,519
v1619 (600s) 1,156,338 1,221,960 1,156,338 1,157,537 ∞
v1620 (600s) 1,140,604 1,230,809 1,140,604 1,141,976 1,155,197
v1621 (600s) 825,563 838,192 825,563 825,605 832,545
v1622 (600s) 793,445 805,346 793,445 793,708 801,029
t0415 (600s) 5,339,422 ∞ 5,590,096 5,572,626 5,404,140
t0416 (600s) 6,093,843 ∞ 6,130,271 6,088,264 6,093,843
t0417 (600s) 5,951,357 ∞ 6,043,157 6,024,760 5,953,029
t0418 (600s) 6,550,898 ∞ 6,550,898 6,446,019 6,447,571
t0419 (600s) 5,907,874 ∞ 5,916,956 5,910,913 5,910,913
t0420 (600s) 4,276,444 ∞ 4,276,444 ∞ 4,155,076
t0421 (600s) 4,290,809 ∞ 4,354,411 4,290,809 4,313,091
t1716 (3600s) 184,160 ∞ 161,636 165,972 157,442
t1717 (3600s) 200,300 ∞ 184,692 180,757 167,063
t1718 (3600s) 183,349 ∞ 162,992 174338 172,652
t1719 (3600s) 203,839 ∞ 187,677 184,354 179,400
t1720 (3600s) 179,283 ∞ 172,752 181,868 163,432
t1721 (3600s) 136,092 202,520 127,424 130,047 123,626
t1722 (3600s) 120,303 ∞ 122,472 114,508 118,242

(3600 sec CPU time limit on 2.5GHz Intel XEON using 10 cores)
MFVCAP Instance Cplex12.7 MIP/Benders Cplex12.7 BQP LocalSolver7.5 baryonyx

first solution best sol. first sol. best sol.
Equilibrate 50× 50 316,500 112,490 587,710 349,050 118,850 329,290
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