

Mesures d'émissions indirectes de N2O - Méthodes directes et indirectes

Adeline Ayzac, Agnès Grossel, Christian Le Lay, Anunciacion Martinez, Josette Garnier, Catherine Hénault

▶ To cite this version:

Adeline Ayzac, Agnès Grossel, Christian Le Lay, Anunciacion Martinez, Josette Garnier, et al.. Mesures d'émissions indirectes de N2O - Méthodes directes et indirectes. J2M 2018 - 15. Journées de la Mesure et de la Métrologie, Oct 2018, Saint Pierre d'Oléron, France. hal-02735148

HAL Id: hal-02735148 https://hal.inrae.fr/hal-02735148

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MESURE D'EMISSIONS INDIRECTES

DE N₂O

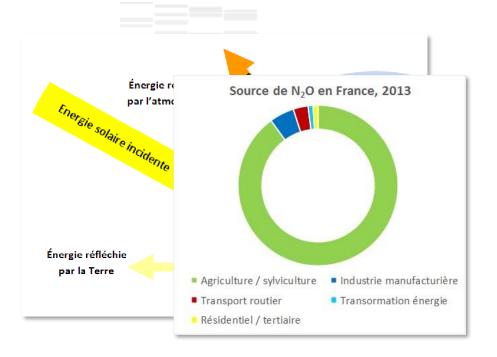
Méthodes directes et indirectes

Adeline AYZAC, Agnès GROSSEL, Christian LE LAY, Anunciacion MARTINEZ, Josette GARNIER, Catherine HENAULT

15èmes J2M, 8-11/10/2018

SOMMAIRE

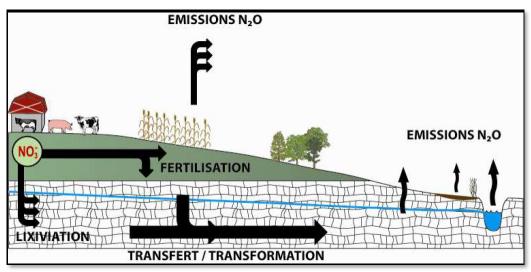
- Contexte
- **❖** Une méthode <u>indirecte</u> de mesure des émissions <u>indirectes</u> de N₂O
 - Principe de la méthode : dosage du N₂O dissous et estimation du flux par application d'un modèle de diffusion du gaz vers l'air
 - Evaluation par comparaison « inter laboratoires »
- Une méthode directe de mesure des émissions indirectes de N₂O
 - Principe de la méthode : mesure de l'accumulation du N₂O dans une chambre flottante couplée à un spectromètre laser infra-rouge (SPIRIT)
 - Evaluation par comparaison « inter méthodes »
- Conclusions
- Mise en application, perspectives



__01 __Contexte

Le N₂O, protoxyde d'azote

Un puissant gaz à effet de serre :


- un pouvoir de réchauffement global 298 fois supérieur à celui du CO₂
- le troisième gaz à effet de serre après le ${\rm CO_2}$ et le ${\rm CH_4}$ en France : les émissions de ${\rm N_2O}$ contribuent pour 10% à l'effet de serre anthropique $^{[1]}$
- une source principale en France : l'agriculture, responsable pour 89% des émissions de N₂O [1]

[1] Données CITEPA, inventaire format SECTEN 2015

Emissions directes et <u>indirectes</u> de N₂O

On distingue deux formes d'émissions de N₂O liées aux activités agricoles :

Production et transfert de N₂O à l'échelle d'un bassin versant

- **des émissions directes** : pertes de N₂O au niveau de la parcelle
- des émissions <u>indirectes</u>:

 pertes de N₂O au niveau des
 écosystèmes naturels, en particulier
 des cours d'eau, générées par des
 transferts d'azote depuis les
 surfaces agricoles (lessivage des
 nitrates, lixiviation du N₂O produit
 dans les sols ...)

Problématique

L'inventaire annuel des émissions de N₂O en France est effectué sur la base des méthodes de calcul de niveau 1 de l'IPCC.

- \triangleright N-N₂O = (apports N) * EF
- Facteur d'émission unique, défini à l'échelle mondiale, pas de prise en compte des spécificités du climat, des caractéristiques des sols, des pratiques culturales françaises ...
- > Incertitudes élevées sur les facteurs d'émission
 - émissions directes : 0,01 [0,003 0,03] [2]
 - émissions indirectes : 0,0075 [0,0005 0,025] [2]

Les émissions de N₂O, directes ou indirectes, sont les postes présentant les plus fortes incertitudes quantitatives.

[2] De Klein C. et al., 2006 - IPCC guidelines for National greenhouse gas inventories

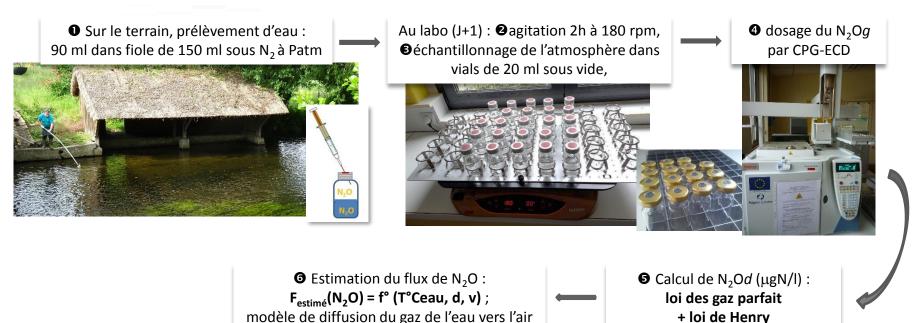
Projet HYDROGES « Composantes hydrologiques des émissions terrestres du N₂O »

Partenaires: INRA (UR SOLS), UPMC (METIS), IRSTEA (HBAN)

Financement: ADEME

Durée : 36 mois

- Améliorer les connaissances et la quantification des émissions indirectes de N₂O
 - Développement de deux méthodes de quantification des émissions indirectes


_02

Une méthode <u>indirecte</u> de mesure des émissions <u>indirectes</u> de N₂O

Par dosage du N₂O dissous

Principe : mise en équilibre eau/gaz dans une fiole, dosage du N_2O dissous par CPG-ECD et estimation du flux de N_2O par application d'un modèle de diffusion du gaz vers l'air

Par dosage du N₂O dissous

Modèle de diffusion du gaz de l'eau vers l'air [3]

$$F_{\text{estimé}}(N_2O) = K_{N_2O}^* ([N_2O]d - [N_2O]eq)$$

avec
$$K_{N_2O}$$
: vitesse transfert gazeux = 1,719 $\left[\frac{600}{\text{ScN2O}} * \frac{\text{v}}{\text{d}}\right]^{0.5}$ ave

Sc_{N2O} : nombre de Schmidt (dépendant de la

température de l'eau)

v : vitesse du courant

d: profondeur du cours d'eau

et
$$[N_2O]eq$$
: concentration

modèle de diffusion du gaz de l'eau vers l'air

T + 0.5038

T : température de l'eau

[3] Garnier et al., 2009

Evaluation par comparaison inter laboratoires

Ni méthode ni matériau de référence pour la mesure de N₂O dissous

> organisation d'essais comparatifs avec l'UMR METIS

METHODE UMR METIS

Prélèvement

Remplissage fiole 120 ml avec eau brute, ajout de HgCl₂ 6% pour stabilisation, sertissage sans bulle d'air

Analyse

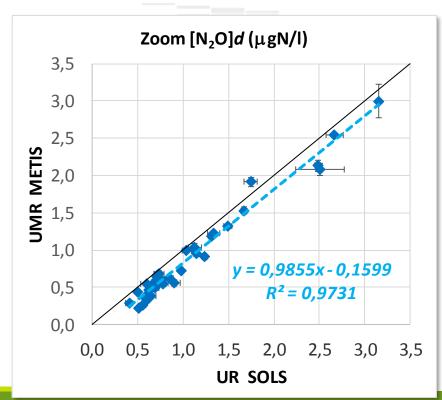
Différée, sur chromatographe en phase gazeuse

Désorption par courant Ar/CH₄

Piégeage + concentration sur tamis moléculaire

Analyse par

MISE EN OEUVRE


- ➤ Double échantillonnage par l'UR SOLS sur le site du Haut Loir selon protocoles respectifs
- ➤ Envoi des échantillons à l'UMR METIS par voie postale
- Analyse: chaque équipe applique sa propre méthode
- Partage des résultats

Evaluation par comparaison inter laboratoires

 \triangleright Sur la gamme [N₂O]d de 0 à 3 µgN/l

 \triangleright Pour des [N₂O] $d > 3 \mu gN/l$

Résultats divergents, biais

✓ Saturation de la méthode de l'UMR METIS ?

🐨 organiser des comparaisons de gaz étalon ?

➤ Caractéristiques de notre méthode (UR SOLS)

Fidélité moy. : 0,07 μgN/l

C.V. moy. = 5% (max 10%)

Analyse de blancs

$$P$$
 LD = 0,2 μ gN/l

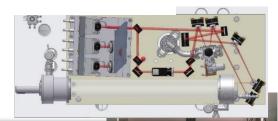
$$P LQ = 0.6 \mu g N/I$$

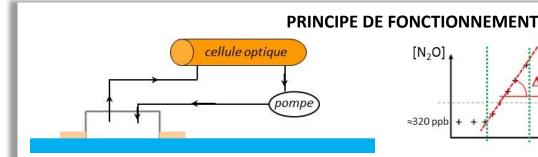
_02

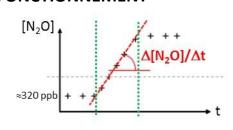
Une méthode <u>directe</u> de mesure des émissions <u>indirectes</u> de N₂O

Avec SPIRIT et chambre flottante

Principe: mesure de l'accumulation du N₂O dans une chambre flottante couplée à un spectromètre laser infra-rouge QCL, en système d'écoulement




Analyseur SPIRIT


<u>SP</u>ectromètre <u>I</u>nfra <u>R</u>ouge
<u>I</u>n situ <u>T</u>roposphérique

Avec SPIRIT et chambre flottante

Un laser un cascade quantique ($\approx 4.5 \mu m$) et une cellule à réflexion multiple (T.O. = 117 m)

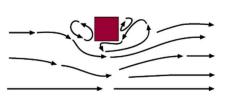
 $F: flux (g N-N_2O.ha^{-1}.j^{-1})$ cste : constante (= 2,908) P: pression atm (hPa) T: température (K) $\Delta [N_2O]/\Delta t$: taux accumulation (ppb.s⁻¹) h: hauteur chambre (cm)

 $F(N_2O) = cste * (P/T) * \Delta[N_2O]/\Delta t * h$

Performances instrumentales

Mesure du N₂O à 0,7 Hz Fidélité moy. = 0,15 ppb (sur air ou gaz de bouteille) Gamme de mesure de $[N_2O]$: 0,5 ppb à \approx 2 ppm

Analyseur SPIRIT SPectromètre Infra Rouge


Méthode avec chambre flottante

Acquisition sur 4 min

Calcul du flux par ajustement linéaire sur les 2 premières minutes

Evaluation par comparaison inter méthodes

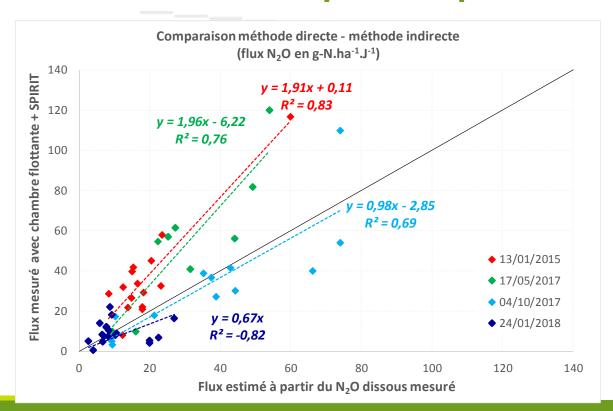
Le maintien de la chambre fixe sur un cours d'eau induit de la turbulence et une

augmentation de la diffusion du N₂O vers l'atmosphère. Y-a-t-il un biais sur la mesure de flux ?

 \rightarrow organisation d'essais comparatifs avec la méthode indirecte ($F_{estimé}(N_2O)=f^{\circ}(N_2O)$ dissous, $T^{\circ}Ceau$, d, v)

MISE EN ŒUVRE

- Mesure de flux simultanée au même point
 - par chambre flottante + SPIRIT
 - par prélèvement d'eau et dosage du N₂O dissous



>> 55 points de comparaison

Evaluation par comparaison inter méthodes

- > Analyse des données par date
- ➤ Corrélation

 Variabilité temporelle

 ✓ variabilité pour les flux faibles

 Mais 0,83 < r < 0,91

résultats pas indépendants

- ➤ Ecarts entre méthodes
 Pente # 1 à 2
 - biais jusqu'à 100%!

__03 Conclusions

Deux méthodes de quantification in situ des émissions indirectes de N₂O

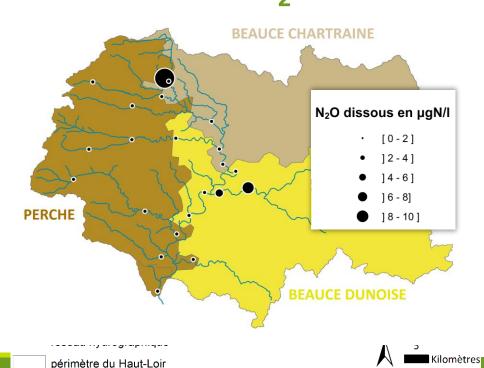
Méthode <u>indirecte</u> N₂O dissous

- ☐ Validation dosage N₂O dissous sur la gamme 0,6-3 μgN/l
- ☐ Jusqu'à 15 sites de mesure / jour / 2 personnes
- Avantage : facilité de mise en œuvre
- ☐ Contrainte : traitement des échantillons à J+1 au labo
- ☐ Performances Flux min. = 0,3 g N-N₂O.ha⁻¹.j⁻¹ Flux max. = 500 g N-N₂O.ha⁻¹.j⁻¹ Frreur sur le flux ≈ 12 à 18 %

Méthode <u>directe</u> SPIRIT + chambre flottante

- ☐ Biais jusqu'à 100% au regard de la méthode indirecte
- Jusqu sites sure / jour ersonr
- ☐ Avantage : rés¹ / immédiat
- ☐ Contrainte : t nicité de mise en œuvr lu SPIRIT + facilité d'accès terrain
- ☐ Performances

Flux min. = $0.6 \text{ g N-N}_2\text{O.ha}^{-1}.\text{j}^{-1}$ Flux max. = $2500 \text{ g N-N}_2\text{O.ha}^{-1}.\text{j}^{-1}$



04

Mise en application, perspectives

Acquisition de « références » locales d'émissions indirectes de N₂O

- ➤ Campagnes de mesures sur les eaux de surface sur le bassin du Haut Loir (Loir et affluents)
 - suivi mensuel sur 6 points
 - mesures saisonnières sur 22 points
- ➤ Dosage du N₂O dissous
- Mesure de variables explicatives Différentes formes d'azote dissous (NO₃⁻, NH₄⁺, NO₂⁻), COD, Ntot
- Mesure de caractéristiques du milieu
 pH, Eh, T°C eau, profondeur d'eau, vitesse
 du courant, T°C et HR% air

Base de données de mesures in situ d'émissions indirectes de N₂O

.020

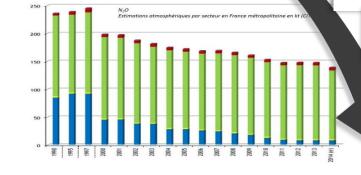
Avec pour objectifs de ...

Base de données d'émissions indirectes de N₂O

Proposer de nouvelles méthodes d'estimation des émissions

Niveau 1 : facteurs d'émissions

Valeurs contextualisées + incertitudes


Niveau 2 : modèles statistiques

Liens entre émissions et facteurs de contrôle

Niveau 3 : modèle mécaniste

Intégration dénitrification dans SENEQUE (METIS)

Réaliser des inventaires à l'échelle d'un bassin versant

Améliorer les méthodologies de comptabilité nationales et régionales

