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Abstract

Physiologically-based toxicokinetic (PBTK) modete amportant tools foin vitro to in vivo

or inter-species extrapolations in health risk sssent of foodborne and non-foodborne
chemicals. Here we present a generic PBTK modelemented in the EuroMix toolbox,
MCRA 9 and predict internal kinetics of nine cheatéc(three endocrine disrupters, three
liver steatosis inducers, and three developmertdgicdants), in data-rich and data-poor
conditions, when increasingly complex levels of gmaetrization are applied. At the first
stage, only QSAR models were used to determinetautes-specific parameters, then some
parameter values were refined by estimates fronstanbe-specific or high-throughpin
vitro experiments. At the last stage, elimination orogbson parameters were calibrated
based on availablen vivo kinetic data. The results illustrate that paraipation plays a
capital role in the output of the PBTK model, asah change how chemicals are prioritized
based on internal concentration factors. In data-pituations, estimates can be far from
observed values. In many cases of chronic expothed?BTK model can be summarized by
an external to internal dose factor, and intergsecioncentration factors can be used to
perform interspecies extrapolation. We finally diss the implementation and use of the

model in the MCRA risk assessment platform.

Keywords: Physiologically-Based ToxicoKinetic (PBYknodel; risk assessment; mixtures;

probabilistic model.



1 INTRODUCTION

Human health risk assessment relies upon understpadd estimating how a given exposure
to xenobiotics can cause health hazards. Toxictkméridge the gap between exposure to
xenobiotics and internal concentrations that caoowlithealth hazards, by providing

predictions of compounds’ internal levels at targefans (i.e. where the toxic action occurs),

which is particularly relevant for those compoustiswing bioaccumulation potential.

Toxicokinetics can be modelled and predicted by sikilggically-Based Toxicokinetic
(PBTK) models. PBTK models represent the organismaaset of compartments linked
together by the bloodstream. Single-substance PBibKels predict the time-courses of the
chemical inside each compartment that result from or more user-defined exposures to a
given chemical. These models can be used to comiastics of substances within a
cumulative assessment group, which includes thetaobes for which an assessment of
combined exposures is warranted, and therefore fgptifying the drivers of internal
exposure or toxicity in a mixture. The use of kioenodeling in the higher tier of risk
assessment of multiple substances has been recectlynmended in order to improve hazard
identification and characterization [1]. Chemidakrassessment increasingly calls for PBTK
models when available [2-5], and, therefore, a nMeedools available to regulators and
stakeholders is also rising [6]. Over the past gyearany tools have been developed for
various applications including in a regulatory @xit[7]. For example, MERLIN-Expo
simulates the fate of substances in environmentems and in the human body [8,8itk

provides a generic PBPK model and a largé@tro database as an R package [10].

During the EuroMix project, a module for kinetic dads was developed and added to the
Monte Carlo Risk Assessment (MCRA) platform for wieal risk assessment [11,12].

MCRA uses probabilistic methods to address all sarefarisk assessment for combined
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exposures to multiple chemicals and can be used hard identification, hazard
characterization, exposure assessment and riskaatkaration [12]. The kinetic module
includes a generic PBTK model designed to be wetkd for a wide range of chemicals, for
which different parameterizations can be uploadsithgu data files. Kinetic models are
available for both humans and rats with the samgerlying structure but with species-
specific physiological parameters. In the toolb&ietic models can be used to convert
internal doses at the target organ (either in véxposure doses or rat internal doses) to
human external exposure doses and vice versaddbes conversion is used when performing

invitro toin vivo extrapolation (IVIVE) or animal to human extragada [12].

Building a PBTK model is challenging and requireshgring a considerable amount of data
which can be categorized in three groups, namglyh€¢ model structure, which refers to the
arrangement of tissues and organs included in tbdeim (ii) the biological system's data
(physiological, anatomical, biochemical data); ang@ii) chemical-specific data
(physicochemical). Chemical-specific data can béected from a variety of sources, using
default values,jn vivo measurementsn vitro cell-based assays, on silico predictions.
Previously, PBPK models have been parameterizegdbfast onin vivo data, within vitro
data added for various extrapolations between expesor species [13], but for many
substances, such as pesticides and contaminanisp data in humans and even in rats are
sparse or unavailable. Furthermore, use of nonanoata in PBPK modelling for risk
assessment is being encouraged with the aim teceednd eventually replace, animal testing
[13,14]. The amount of high-throughpubn vitro data available nowadays is rapidly
increasing, in particular regarding metabolism ahdmical binding [10]. PBTK models are
thus also increasingly used as screening toolsrédigi the potential for accumulation in

tissues by integrating high-throughpntitro data andn silico data [10].



Integration of PBTK models in a toolbox with suchr@ad spectrum as MCRA implies that
they will be used, and parameterized, by end-uss may not be specialists. Guidance on
the selection of appropriate parameters is sc&j;edfit can greatly affect the quality of the
model outcomes. This paper shows how increasinguatecof data can be used to refine
PBTK model predictions as in a tiered approach Hirf which level of accuracy to expect in
data-poor situations. We wish to draw attentiotheofact that the underlying model structure,
the default assumptions and the choice of usene@fparameters may have a large impact on
the outcome of the risk assessment, especially wWieekinetic module is used for structurally
and functionally diverse substances. In this papercompare various levels of refinement in
PBTK model parameterization, using QSAR modelsiandtro data. We illustrate how these
models can be used in cumulative risk assessmehtviiat can be expected in terms of
accuracy and uncertainty of the predictions. Fir&,examine a data-rich case, with valproic
acid, which can cause cranio-facial malformatiomdaetuses whose mothers are exposed.
Secondly, we extend the approach to eight othamadas with varying amounts of available
information on kinetics. These chemicals have bessociated with three adverse outcomes
in toxicological studies, i.e. steatosis (imazathjacloprid, and clothianidin), endocrine
effects (flutamide, linuron, and dienestrol), oamp-facial malformations (cyproconazole,

valproic acid, and triadimefon).

2 MATERIAL AND METHODS



2.1 PBTK model

2.1.1 Model description

The generic PBTK model implemented in MCRA is amlated version of a PBTK model
developed by INERIS and JRC in the framework of B¢ project COSMOS (part of the

SEURAT-1 cluster, http://www.cosmostox.eu/ [3,4The original (unpublished) model was

updated to improve the dermal absorption modelintpose correlations in the chemical
tissues’ affinities (i.e., tissue:blood partitiooetficients) , and to allow more time- and dose-
varying exposure patterns (Figure 1). The EuroMenegic PBTK model describes the
distribution of chemicals in venous and arteriadal, adipose tissues, poorly perfused tissues
(muscles), liver, richly perfused tissues (othecera), and skin. Each of those is described as
a compartment (homogeneous virtual volume) in whidtribution is instantaneous and
limited only by the incoming blood flow or rate ehtry in the compartment [18]. Exposure
can occur through the dermal route, ingestion baletion. The absorbed substances can be
excreted to urine, exhaled through the lung, or aimgized in the liver. External
compartments, including urine and gut lumen, attenmadelled. The model is coded as a set
of ordinary differential equations. There is onelsequation per time-dependent chemical
quantity of the model (so-called state variabld)e Thodel predicts, as a function of time, for
given oral, dermal and/or inhalation exposures gilntities in organs and the corresponding
concentrations as a function of time. The modelagqus are provided in Supplementary
Information (SI), section 1.1. The model, written@GNU MCSim [19], can be downloaded
from ZENODO with the DOI 10.5281/zenodo.3553690etbgr with an example of code for

running it under R [20].
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Figure 1: Schematic representation of the EuroMix gneric PBTK model implemented in the
MCRA platform.

2.1.2 Physiological parameter values

The PBTK model contains 14 physiological parametdis model known correlations
between parameter values, or to respect physiceti@nts in case of Monte Carlo sampling,
some of them are scaled prior to solving the difféial equations, using proportionality
constants, in particular for relative tissue volsnaad blood flows. Default mean values for
physiological scaling coefficients and unscaledapeaters for humans and rats (Table 1) have
been collected from the literature.

Table 1: Physiological parameter values used for thEuromix generic PBTK model



Parameter Symbol Units Human Rat

Value Ref Value Ref
Body mass (BM) BM kg 70 [21] 0.3 [22,23]
Relative tissue volumes (%
BM)
Fat scVFat - 20.9 [22,23] 7.3 [22,23]
Richly perfused scVRich - 10.5 [22,23] 10.0 [22,23]
Liver scVLiver - 2.4 [22,23] 3.5 [22,23]
Blood scVBlood - 6.8 [21] 6.8 [21]
Cardiac Output (CO) scFBlood  L/h/kg 4.8 [21] 18.8 [21]
Relative tissue blood flows
(% CO)
Fat scFFat - 4.6 [22,23] 0.54 [22,23]
Poorly perfused scFPoor - 13.4 [22,23] 10.0 [22,23]
Liver scFLiver - 25.9 [22,23] 16.0 [22,23]
Skin scFskin - 5.4 [22,23] 7.8 [22,23]
Alveolar ventilation rate Falv L/h 2220 [23] 6.35 [23]
Stratum corneum thickness Height sc  dm 0.0001 [24] 0.0001 [24]
Body skin surface area BSA dn? 190 [24] 3.64 [25]
Viable skin thickness Height vs dm 0.0122 [22,23] 0.0092 [22,23]

a

Here a default value is used. In MCRA, when penfog aggregate exposure assessment,
the BSA is scaled to the bodyweight using an alkoimscaling factor, it is not rescaled in
hazard calculations as in this application.

® Value obtained by dividing the skin volume by thaly surface area.

2.1.3 Parameterization of the substance-specific values

The PBTK model contains up to 14 substance-spegpdrameters (see list of parameters in
SlI, section 1.2, Table 1), as absorption ratestjtjpar coefficients, or hepatic clearances.
Metabolism was always modelled as first-order nathan Michaelis-Menten kinetics which
decreases the number of substance-specific panametd3. Chemical-specific parameters
can be obtained fromm vivo measurements, vitro measurements on silico predictions. All
parameters except those related to excretion caredbenatedin vitro. PBTK model
parameterization quality depends on the amount qumality of data available and the
parameterization process can be time-consumingeeltypes of parameterization, based on
in silico methods, and optionallyn vitro or in vivo data, were tested to study how the
parameter values could affect the predicted intero@ancentrations. Two types of

parameterizations (A and B) are obtained withoyt @libration or adjustments to fit vivo
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experimental data. This can be regardedabsinitio parameterization, although some
parameters obtained in the literature can have lesémated usingn vivo data. First, in
parameterization A, QSAR models were used to pretlic of the substance-specific
parameters. Default values were used for the rentpiparameters which related to oral
absorption: the intestinal absorption rate wasassitrarily to 1 ht* as inhttk [10,26] and the
absorbed fraction was set to 1 (maximizing absonjtiParameterization B makes use of
available high-throughput toxicokinetic data [1(,261d in vitro experiments carried out
specifically in the EuroMix projectn vitro hepatic clearance values were obtained in primary
hepatocytes, and, in cases where clearance couloerguantified, screening values obtained
from the literature in high-throughput assays w&sed.In vitro plasmatic unbound fractions
and blood to plasma ratios from the literature wals® used. In parameterization B, oral
absorption parameters are also set to default satilermal absorption defaulted to 0 except
for imazalil where the proposed value was basedhenmean QSAR estimates. Another
parameterization (C) is based on the calibratiorcertain PBTK model parameters with
availablein vivo kinetic data. The characteristics of these paranzetions are summarized

in Table 2.

Table 3, Table 4, and Table 5 list the values dsedutamide, linuron, dienestrol, imazalil,
thiacloprid, clothianidin, cyproconazole, triadimef and valproic acid for each
parameterization. Parameter values in rat are teghan Sl, section 2.

Table 2: Characteristics of the three different paameterizations used
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Partition Hepatic Unbound Renal Dermal and

coefficients clearance fraction elimination oral
absorption
Estimation invitro X X X
methods : :
available o only with model only with —only with
in vivo X . . X model model
calibration ) i . i
calibration calibration
A QSAR QSAR QSAR QSAR default
newinvitrodata .
Methods B QSAR or literature literature QSAR default
used QSAR or -
. new in vitro data ,. .
C literature or or literature or literature or calibrated default or
calibratedn . . default 1 ordefaultO calibrated
. calibratedn vivo
Vivo
A- QSAR models

Partition coefficients between blood and tissues lagtween air and blood, unbound fraction
in blood, dermal absorption rate, and renal elitimarate were estimated with the QSAR
models used in the Induschem tool [27], based er{ltiy) octanol:water partition coefficient,
volatility, and tissue compaosition. Hepatic clea@anvas estimated by using the whole-body
primary biotransformation rate constant (kM) moftelfish, as implemented in the BCFBAF
QSAR model by the USEPA. This model is based opvatuated database kM estimates in
fish for ~700 chemicals with satisfactory predietiperformance [28—-30]. The allometric
scaling from fish (10 gr, 15°C) to rat (200 gr, 8¥°or humans (70 kg, 37°C) and the

resulting estimate of rat and human hepatic clesrdéias not been validated

Substance-specific parameters obtained in humaparameterization A are reported in Table
3.

Table 3: Substance-specific parameters in parametzation A in humans

logPC

Substance PCAIr Fat Liver Poor Rich Skin Skin_sc b fu Ke CLH Kp_sc_vs

Flutamide 1.96E+09 2.127 0.822 0.632 0.072 0.632 .69D 0.06 4.29E-03 1.03 0.009
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Linuron 1.03E+08 2.116 0.794 0.609 0.093 0.609 99.6 0.082 5.92E-03 0.749 0.011

Dienestrol 8.35E+12 2.155 0.922 0.723 -0.538 0.723-0.699 5E-04 3.87E-05 421 0.366
Imazalil 4.96E+08 2.144 0.874 0.680 -0.018 0.680 .699 0.024 1.69E-03 0.0616 0.003
Thiacloprid 1.93E+09 1.927 0.507 0.362 0.124 0.362-0.699 0.399 2.87E-02 0.360 0.002
Clothianidin 4.83E+14 0.481 -0.201 -0.092  -0.066 .09 0.551 0.98 1.85E-01 0.496 3E-05

Cyproconazole  7.68E+08 2.081 0.720 0.543 0.124  30.54 -0.699 0.152 1.09E-02 0.015 0.003
Triadimefon 6.40E+09 2.058 0.679 0.508 0.130 0.508-0.699 0.194 1.40E-02 0.0127 0.003

VPA 1.47E+05 0.497 -0.194 -0.092  -0.066 -0.092 99.6 0.979 1.70E-01 0.0130 0.012

B- In vitro parameters measured in substance specific experiments

In vitro experiments were performed in order to refine paeameterization of the PBTK
model by better quantifying metabolism (see Sl tisec 3.1 for details).In vitro
measurements of metabolism in primary culturesumhdn and rat hepatocytes were obtained
for dienestrol (intrinsic clearance, Table 5 in,Sijuron, and imazalil (Vmax, Km, and

unbound fraction, Table 6, 7, and 8 in SI). Thelltssare summarized in Table 4.

Flutamide metabolism parameters were refined wglciic values obtained by [31-34]
usingin vitro hepatic cell line studies by in either rat cetlshuman cells, or both. Flutamide
is metabolized by three pathways, hydroxylation amgbrolysis into two different

metabolites, all three pathways described by Mikfidenten saturable kinetics. At
concentration levels below 1uM, the main metabplathway is hydroxylation (see section
3.2 in SI). Clearance was therefore estimated efydroxylation Vmax: Km ratio, assuming
that the internal concentrations were sufficiembhy compared to the Km for the kinetics to

be approximated as first-order (see summarinaitro data in section 3.3 of Sl).

Cyproconazole, thiacloprid, and clothianidin welsoaested but no kinetic constants could
be determined from than vitro experiments. The clearance values used for theinemg
substances were therefore obtained franiitro screening tests reported in the literature, in
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[35] (cyproconazole, thiacloprid, clothianidin, amatko triadimefon) and in [36] (valproic

acid).

Unbound fractions in plasma were based on the sicrgen vitro tests reported in [37]
(flutamide), by TNO and reported in R packdgtk [26] (valproic acid), and in [35] (other

substances).

Substance-specific parameters obtained in humampsrameterization B with screening or
more specifidn vitro tests are reported in Table 4. Other parameters tiee same values as
in parameterization A

Table 4: Substance-specific parameters in parametaation B for humans obtained with
screening or more specifién vitro tests. Other parameters have the same values as in
parameterization A.

in vitro CLH? Kp_sc_vs

Substance RBP [26] fub [26] CLH (L/hr) [26] (specific test) (dm/hr)
Flutamide 1.20 0.0376 (531, not used) 405 0
Linuron 1.93 0.11 (545, not used) 580 0
Dienestrol 1.00 1 (0, not used) 157 0
Imazalil 2.18 0.03 (0, not used) 310 0.01
Thiacloprid 1.23 0.29 34.8 0
Clothianidin 0.745 0.51 132 0
Cyproconazole 1.24 0.11 22.9 - 0
Triadimefon 7.24 0.11 369 0
Valproic acid 0.66 0.366 2.15E-05 0

Obtained with the Vmax/Km ratio or the intrinsieatance (see Sl, section 3.2)

C- Parameterscalibrated using in vivo data

In parameterization C, in the cases of flutamideurbn, dienestrol, thiacloprid and

clothianidin, the PBTK model structure was firstapted to each substance, using existing
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knowledge on kinetics from the literature. For dimaefon/triadimenol, an existing PBTK
model [38] was used without further adjustment. iraaizalil and valproic acid, the generic

model was used for calibration.

In a second step, the following PBTK model paramseteere calibrated to fin vivo data for
flutamide, valproic acid, imazalil, thiacloprid, édrtlothianidin: hepatic clearance (valproic
acid, imazalil in humans), skin diffusion coeffiotefraction absorbed by gut, oral absorption
rate, renal excretion rate, unbound fraction irodl@mazalil in humans), renal excretion rate
(flutamide), and renal excretion rate as total rdeee (clothianidin and thiacloprid). No
calibration was performed for cyproconazole, limyror dienestrol. Partition coefficients for
flutamide, thiacloprid and clothianidin were esttewusing the Area Under the Curve (AUC)
of in vivo data. Those for linuron and dienestrol were estohdoy QSAR methods. The
remaining parameters were set to default valuegdulitional values retrieved from the
literature, see the summary in Table 5 and secfiom Sl for details (references and
distributions of substance-specific parameter \ainehe original PBTK models which were
adapted to each case).

Table 5: Substance-specific parameters used in pareeterization C in human. PCAIr was set to
le+99

logPC
Substance Fat Liver  Poor Rich Skin Skin_fub Ke CLH Kp_sc vsFrac kGut RBP
Flutamide 0.444 0.746 0.746 0420 0.746 0.746 0.02.25 405 O 0.5 0.64 1.20
Linuron 1.91 0.65 0.65 0.43 0.65 0.65 1 762 575 0 1 1 1.93
Dienestrol 2.27 1.00 1.00 0.79 1.00 1.00 0.6 9483 2 0 1 1 1.00
Imazalil 3.6 0.7 -0.44 0.7 -0.44 -4.04 0.05 17 70 .00E-05 0.8 10 2.18
Thiacloprid 0.0899 0.415 0.415 0.223 0415 0415 1 227 O 0 1 1 1.23
Clothianidin -0.409 0.250 0.250 0.255 0.250 0.250 1 227 O 0 1 1 0.745

Cyproconazole 1.96 -0.92 -1.61 -0.92 -1.61 -3.57 0.07 0 234 01 099% 1 1.24

Triadimefon 2.06 1.09 0.65 0.65 0.65 0.65 1 921 00O 1 1 7.24
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Valproicacid -1.83 -3.1 -3.22 -2.85 -3.22 -1.39 140. 0 4 0.1 0.9962.88  0.66

2.1.4 Mode implementation in MCRA

The MCRA system for human health chemical risk sssent, version 9.0, is available at

https://mcra.rivm.nl. MCRA is a modular system &xposure, hazard and risk assessment,

where doses of multiple chemicals can be modeliesitlaer the external level (specifying an
exposure route) or the internal level (specifyintpaet organ). MCRA contains a module
Kinetic models, where various PBTK models have been linked irchsas the EuroMix
generic PBTK model described in this paper. TheoElix PBTK model can be run with any
parameter set: both human and animal models capédfied. Alternatively, if no kinetic
model is available, simple absorption factors ca&n dpecified to characterize the ratio
between internal and external doses. Given a PB0OHem several parameterizations of it can
be defined for different substances and biologgystems (e.g. rat, human). The parameter
values for each instance of a model are specifiathia files that have to be uploaded to the
MCRA platform. For the nine substances in this pagiee parameter data files are available
on the EuroMix data share. In MCRA runs with kinetiodels, the user specifies the internal
compartment that is of interest and the time petlwat the PBTK model should be run.
Internal doses for chronic risk are quantified by average internal dose as calculated by the
PBTK model past a user-specified start time pdimtaf/oid the build-up phase of a pseudo-
steady state). Internal doses for acute risk aemtified by the average internal peak level in
this same period. For exposure assessments, daibsere values as inputs are derived from
the dietary exposure module of MCRA or from extéynprovided exposure values for non-

dietary exposure [12,39]. For hazard characteonatithe input dose corresponds to e.g. the
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acceptable daily intake (ADI) or acute referenceed@ARfD), which is then provided as an

input to the PBTK model once per day.

The EuroMix generic PBTK model, version 6 (see s$iffdoi.org/10.5281/zenodo0.3553689)
was implemented as a set of ordinary differentiplations (ODE) written in C and compiled
into a dynamically linked library (DLL). The R paaye deSolve [40,41] is used to load the
DLL into R. Compiled code has the benefit of ine®@ simulation speed. This may be a
significant gain especially when the model is aggblimultiple times which is current practice
in MCRA. Through the use of a forcing function tirseries, external input variablase(the
administered doses) are fed into the model andstieer will interpolate between the

different timesteps. (Example code written in Ryvsilable on request).

2.1.5 Model calculations

Calculations were performed with MCRA 9.0, R vemsi®.6.1 [20], packages httk [26],

deSolve [40], EnvStats [42], sensitivity [43].

2.2 Model verification

The internal concentrations predicted by the PBTédet were compared i vivo data on
kinetics for each of the 9 chemicals. Area UnderGurve (AUC) and maximal concentration
(Cmax) of kinetics were also computed and comparéd vivo data.In vivo data on kinetics
was collected from the literature in humans ans faable 6 hereafter, Table 23 in section 6.1
in SI). Humanin vivo data on internal kinetics was only available fatdmide, valproic acid

and imazalil in blood, plasma or urine.

With parameterization C, where some parametersifgpdgo flutamide, valproic acid,
imazalil, thiacloprid, or clothianidin were calilbea to fitin vivo data, prediction quality is
assessed using data that served for calibratioraddiional data, used as validation datasets
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[44-51], when available. For imazalil, thiaclopaad clothianidin, no additional data was
available: quality of prediction could not be asseson data which had not been used to
calibrate the model. Quality of prediction for vaje acid and flutamide was assessed on all
data together and also on the additional data.

Table 6: Summary of availablein vivo data on kinetics. Details are provided in supplem&ary
information, section 6.1

Substance Number Organ/ Dosing Dose Duration Calibration Validati

of studies Tissue (hours) data on data

Human Rat

Flutamide 2 1 plasma  Oral, 250,500, 72 [52] [51]
single 750 mg/day [44]
(2), (human)

multiple 15 mg/kg
Q) (rat)l

Valproic acid 6 1 Serum  Oral 250- 110 [53] [45],
(3), (6), IV 1000 mg or [46],
plasma (6) 15 mg/kg [47],
5), Single  (human) 48],
blood (8), 10-600 mg [49]
(1) twice (rat)
@) [54] [50]
Triadimefon [/ - 1 plasma, IV 50 mg/kg 24 [38]
triadimenol liver, single
kidney,
brain,
fat
Imazalil 1 - Urine Oral 0.025 - 120 unpublished
(2) (1), 0.05 mg/kg data
Dermal (Faniband et
1) al.)
Thiacloprid* - 1 Organs, Oral 1 - 72 [55]
plasma, (4), IV 100 mg/kg (unpublished
excreta (1) data)
Single
4)
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multiple

(1)

Clothianidin* - 2 organs, Oral 2.5 - 168 [56]
plasma, Single 250 mg/kg (unpublished
excreta, (6), data),[57]

blood multiple

1)

Cyproconazole* - 1 Organs, Oral (3) 0.5 - 168 [56]
excreta IV (1) 130 mg/kg (unpublished
data)
Linuron - - --
Dienestrol - - =

*. Only measured as total radioactivity, not paraumbstance.

Data on flutamide and valproic acid were colleatethoth species. For imazalil, as data was
only found in humans, only the human parameteonatif the PBTK model was checked.
Conversely, for thiacloprid, clothianidin, cypro@aole, and triadimefon, data was only
available in rat, and so only the rat parametaonatvas checked. The data collected in rats
on thiacloprid, clothianidin, and cyproconazole weapressed as equivalents of administered
dose and not as levels of the parent substance,vess obtained using autoradiography.
Metabolism was the main elimination pathway foatthoprid and cyproconazole [55,56] and
occurs to a lower extent for clothianidin [56]. Bodeight was set to the value reported in the
studies if specified, or with a default 57 kg foomwen and 75 kg for male if gender was

specified, or to a default 70 kg.

Levels were often quantified in plasma rather tidwod, therefore blood concentrations
predicted by the PBTK model were converted to pkgmconcentrations when necessary,

using a default value of 1 in parameterization Al #me substance-specific blood to plasma
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ratio (RBP) [26] in parameterizations B and C (Sedble 4 and Table 5 for humans, and

section 2 of Sl for rats).
2.3 Using the PBTK model in cumulative risk assessment

In the absence of PBTK models or other kinetic rimfation, the default assumption in

MCRA is that the internal concentration at the ¢argrgan is equivalent to the daily exposure
per unit of bodyweight. This is defined as a kioetbsorption factor equal to 1. For chronic
risk assessments, the kinetic absorption factordeéined as the ratio of the mean

concentration at target organ divided by the megosure per unit of bodyweight and per
day. For acute risk assessments, the kinetic atsorfactor is defined as the ratio of the
maximum calculated concentration at target orgahiwia day (averaged over multiple days)

divided by the mean exposure per unit of bodyweagitt per day.

The assumption of a kinetic absorption factor eqadl is met in a variety of situations, for
example, with oral exposure, if the chemical isflgtabsorbed, uniformly distributed in the
body, and that, in acute exposures, it is not eltsd, or that in chronic risk assessment, it
does not accumulate. A variety of other scenarmgdcbe envisaged that result in a kinetic
absorption factor equal to 1, for example when #tsorbed fraction is lower but the
substance bioconcentrates at the target orgaris®@mdnen the substance has a high affinity
for the target organ but its elimination compensdbe that higher affinity. The availability of
a kinetic model allows risk assessors to refinedigfault assumption on the kinetic absorption

factor by using the predicted internal concentretio

The Euromix generic PBTK model implemented in MCR#ludes one term for non-
linearity, the Michaelis-Menten metabolism kinetidés this application to nine substances,
metabolism was modelled as first-order kineticedchnce) and therefore the model is linear:

the internal concentrations are proportional to ékeernal dose at steady state. The kinetic
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absorption factors and relative concentration fachetween substances can therefore be used
whatever the dose levels investigated, both foergpecies extrapolation and for inter-

chemical relative potency factors (RPFs).

Once the model performance with the various paranzetions had been checked against

vivo data, the impact of the various parameterizatiomscritical steps of cumulative risk

assessment was evaluated. Internal concentratiorss 40 kg human at steady state were
predicted under continuous exposure scenarios Witig/kg BW/day of each substance. A
continuous exposure scenario was used rather @inrdpeated exposure in order to avoid
sharp peaks in concentration levels. Steady state defined as being achieved when the
concentration at a given time was greater than 86%e concentration reached at twice this
time. When steady state was not achieved, the ationk were stopped at 2000 days in

humans. The predicted internal concentrations &eadyzed in the following ways:

1- The human blood concentrations were compared tsetlodtained in rat for use in
interspecies extrapolation.

2- Kinetic absorption factors at steady state were alculated. These factors allow
extrapolation of internal to external dose-resporgdationships and can be used to

compare kinetics inside each cumulative assessgneup.

It is important for risk assessment to take intooamt both uncertainty in model parameter
values and variability of those parameters in tleputation. In this work population
variability on physiological parameters was ignoiaat uncertainty on substance-specific
parameters was quantified. Commonly assumed umugrt@actors on partition coefficients,
transport rates and metabolic parameters are 3féalirs (e.g. [15-19]). When the PBTK
model was used to predict internal concentratid®000 Monte Carlo simulations were

performed in each exposure scenario, by simulatingertainty on partition coefficients
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(whilst maintaining proportionality amongst themoyal absorption rate, fraction absorbed,
hepatic clearance, elimination rate and unboundtitna in plasma. For more details, see
section 5.1 in SI. Furthermore, when uncertainbuad substance-specific parameter values
was not reported in the sources, the uncertainty madelled with the same distribution

whether the value was obtained from the literatureas a default value and is reported in Sl,

section 5.2.

3 RESULTS

3.1 Model evaluation

3.1.1 Adata-rich situation: valproic acid

Predicted valproic acid (VPA) concentrations inspt@ were compared to the data collected
from the literature (Figure 2 and Figure 3). ThelRBnodel for VPA had been calibrated on
data in obtained in rats by [54] and [32]. The saihse-specific parameters for valproic acid
are reported in Table 7. With parameterizationsm8l 8, although most predictions were
within a 10-fold factor of the observations, theddics did not match observed kinetics since
barely no decrease was observed during the studstioln. Parameterization C provided
overall better predictions in rats and in humareb(& 8): in humans, 72% of predictions were
within a 2-fold factor. When kinetics were summadzs the AUC or the Cmax (Table 9 and
Table 10), Parameterization C also provided beitedictions in particular in humans (where
a large number of individual curves were availabbex not in rats, where the concentrations
were slightly over predicted. The results show timmhumans both repeated and unique

exposures are well described by the model espgaidth parameterization C (Figure 3).
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With parameterizations A and B, due to low hepatiearances, VPA is predicted to
accumulate in the body, which is not observedvo.

Table 7: Rat and human PBTK parameters for valproicacid.

logPC

Parameters  Species  PCAir Fat Liver Poor Rich Skin n Sk
A Human 1.47E+05

0.497 -0.194 -0.092 -0.066 -0.092 -0.699
B Human 1E+99
C Human  1E+99 -1.83 -3.1 -3.22 -28 322 -1.39
A Rat 6.53E+04

0.057 -0.036 -0.201 -0.027 -0.201 -0.699
B Rat 1E+99
C Rat 1E+99 -1.83 -3.1 -322 -285 -322 -1.39
Parameters  Species  fub Ke CLH Kp_sc vs Frac kGut RBP
A Human  0.979 0.170 1.30E-02  0.012 1 1 1
B Human  0.366 7.5 2.15E-05 O 1 1 0.66
C Human 014 O 8.8 0.1 0.996 2.88 0.66
A Rat 0.979 0.00186 2.35E-04  0.035 1 1 1
B Rat 0.22 0.0786 1.09E-07 O 1 1 0.600
C Rat 014 O 0.4 0.1 0.996 0.3 0.600

Parameterization A and B are akin to a worst-caseaio regarding absorption. In the case
of acute exposure scenarios, though, the maxinralesdration is underestimated, which can
be problematic in a risk assessment context. Oxesdigtions in this deterministic solution

(nominal run) may be due to high levels of absorptiwhen uncertainty is added, the
absorbed fraction will often be lower which may ulesin more accurate predictions.

Furthermore, it must be noted that even in data-situations such as valproic acid, when a
substance-specific PBTK model is translated in® gleneric PBTK model, results can be

more uncertain than with the original model.
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Figure 2: Predicted vs. observed plasmatic, serunr dlood valproic acid (VPA) concentrations
in humans or rats. Symbols refer to the source stués. Black= parameterization A (QSAR),

red= parameterization B (QSAR+vitro), blue = parameerization C (vivo). Dotted lines denote
10-fold deviations.
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Figure 3: Predicted and observed plasma VPA concerations in humans, according to
parameterizations A (plain curve), B (dashed curve)and C (dotted curve). In [48], serum rather
than plasma concentrations were reported.

Table 8: Percentage of VPA concentration predictios within a 10- and 2-fold factor of the

observations
Species Parameterization

A B C
Human (10-fold difference) 96.7 99.6 100.0
Human (2-fold difference) 284 32.5 72.0
Rat (10-fold difference) 84.0 76.0 100
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Rat (2-fold difference) 52.0 60.0 40.0

Table 9: Percentage of VPA predicted AUC within a @- and 2-fold factor of the observed AUC

Species Parameterization
A B C
Human (20 simulations)  10-fold 100 100 100
difference
2-fold difference 15 55 75
Rat (3 simulations) 10-fold 100 67 100
difference
2-fold difference 0 33 33

Table 10: Percentage of VPA predicted Cmax within 40- and 2-fold factor of the observed
Cmax

Species Parameterization
A B C
Human (20 simulations)  10-fold difference 85 100 010
2-fold difference 10 20 85
Rat (3 simulations) 10-fold difference 100 100 100

2-fold difference 100 100 67
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3.1.2 Effect of parameterizations on the predictive performance of the generic PBTK model

The PBTK model predictions for the nine selectedenaicals, using the three
parameterizations, were compared toitheivo data on kinetics collected from the literature
(Table 6), obtained with oral or intravenous adstiation (section 6.2 in Sl for humans and
section 6.3 in Sl for rats). Concentrations in lloor plasma, liver, skin, and fat were
predicted with the model; summaries of the compasswith observations are provided in
Figure 4, Figure 5, and Table 11. With thiaclopiththianidin, and cyproconazole in rats,
data represented both parent substance and mé&tabaolbncentrations are therefore expected
to be underpredicted. For these substances, gedpbamparisons of predictions and
observations are provided (section 6.4 in Sl) betdeviation factors are not reported since

they can be misleading.

Ve
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Figure 4: Predicted vs. observed plasmatic concergtions (flutamide and VPA) or cumulated
amounts excreted in urine (Imazalil, pmol) in humais. Black = parameterization A (QSAR), red
= parameterization B (QSAR+vitro), blue = parameteization C (vivo).
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Figure 5: Predicted vs. observed concentrations irats for flutamide, triadimefon, and VPA
with parameterizations A, B, and C.

Table 11: Percentage of predictions within a 10-fdlfactor of the observations

Species Parameterization
A B C

Flutamide Human O 0 6.25
Imazalil Human O 0 100
Valproic acid Human 96.7 99.6 100
Flutamide Rat 0 0 100
Thiacloprid Rat 64.3 86.7 70.4
Clothianidin Rat 63.8 33.0 55.3
Cyproconazole Rat 17.9 21.4 14.3
Triadimefon Rat 0 0 15
Valproic acid Rat 84 76 100
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Quality of predictions was assessed by computiitdydeviations from observations over the
limit of quantification (Table 11). With the humalata and parameterization A or B, overall,
56 and 58% of the predictions were within a 10-féddtor; in both parameterizations,
predictions for flutamide, imazalil, and triadimafahere never within a 10-fold factor. With
parameterization C where some model parameters walibrated, overall 93% of the
predictions were within a factor 10 and for all stamces. In some cases, small changes in
parameterization provided significant improvemefis:. instance, predictions of the amount

of imazalil excreted in urine were improved by ea&sing the urinary elimination clearance.

With parameterization C, in the cases where vabdatlatasets where available, i.e. for
valproic acid in humans, and for flutamide and wailp acid in rats, all predictions were

within a 10-fold interval, including the validatioshatasets, which were generally less well
predicted in parameterizations A and B. For flu@enin humans, with parameterization C,
predictions quality was similar in both validatiamd calibration datasets: 2 out of 5 data

points in the validation dataset were within a alatinterval compared to 6.25% overall.

With the rat data - excluding radioactivity datparameterization A and B provided overall
similar but not very good predictions: respectiv8§% and 34% of the predictions were
within a 10-fold factor. With parameterization @% were within a 10-fold factor. The time-
course of plasmatic levels (including the AUC art tCmax) is better predicted in

parameterization C.

According to Figure 4 and Figure 5, flutamide cartcations in the dataset from Radwanski
et al. [52] (humans) and in Zuo et al. [44] (rat®re better predicted with parameterization B
than with parameterization A due ito vitro hepatic clearances which were over 2 orders of
magnitude higher than the QSAR estimates. A seitgitanalysis of blood concentrations

after repeated ingestion of flutamide every 8 howwsfirmed the importance of hepatic
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clearance, by showing that with parameterizatioh&jatic clearance, unbound fraction in
blood and, to a lesser extent, absorbed fractiae g far the most influent parameters (see
Sl section 8). Predicted triadimefon concentrationsats with parameterization B were not
significantly improved compared to parameterizatidn although thein vitro hepatic
clearance was also higher than the QSAR estimaan @within vitro clearance estimates, the

internal concentrations were overestimated for Isathstances.

3.2 Comparison of concentrations in blood between spexs and between substances

The impact of the parameterization on relative eotr@tion factors between human and rat,
and between substances was evaluated using coasirexposure scenarios. Predictions for
continuous 100-day oral administration of 1 mg/ly/dbf each substance are shown in

section 7 in supplementary information.

Steady-state, here defined as 95% of the maximadigied value, was not always achieved
after 100 days of continuous exposure (see Tablent?Figures 1 to 6 in Section 7 in Sl).
Parameterization A does not achieve steady-stage av 2000 days (over five years) for
dienestrol, imazalil, cyproconazole, and triadinmefo

Table 12: Substances for which steady state is nathieved after 100 days or 2000 days
continuous exposure in humans

100 days 2000 days

A QSAR only flutamide, linuron, dienestrol, dienestrol, imazalil,
imazalil, cyproconazole,
thiacloprid, triadimefon
cyproconazole, triadimefon

B QSAR + in vitro valproic acid -

C in vivo - -

In particular in humans, with increasing paramegdion complexity, the predictions varied
more widely from one substance to another (Figyréngparticular, with parameterization A,

elimination and metabolism were relatively small &l substances. Predictions in human at
29



2000 days were generally higher than in rat at Xys (except for linuron in
parameterization B and C and Triadimefon in paranwdtion B), although in humans in

parameterization A, some substance concentratiatsbt reached steady-state.

Human, 2000 days Rat, 100 days

100 1000

—— Flutamide
-&- Linuron
-~+- Dienestrol
-%- Imazalil
Thiacloprid
-7~ Clothianidin
—8— Cyproconazole
=% - Triadimefon
-¥- VPA

0.1 1 10
|

Blood concentration (mg/L)

0.01
|

Parameterization Parameterization

Figure 6: Predicted steady-state arterial concentrgon after exposure to 1mg/d/kg in humans
and rats for each parameterization

The concentrations predicted at steady-state watlameterization B were generally lower
than those obtained with parameterization A, dutaster metabolism in the former. The
vitro hepatic clearances were indeed larger than thetsmated with QSAR models except
for valproic acid. With parameterization C, preddtinternal concentrations were lower still
in particular for flutamide. The various vitro tests were mostly in agreement with each
other: the clearance values obtained were withiactor 2 of the values obtained from the
literature for linuron [35] and flutamide [37]. Fonazalil in rats, the value was 4-fold lower
than the value from the literature [35]. Using eachnce value rather than Michaelis Menten
kinetics appears to be an acceptable approximafonlinuron and imazalil: hepatic
concentrations predicted in the various exposueaatos were indeed lower than the value

of Km.
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The uncertainty around the predicted relative cotregons in human blood following a

chronic 2000 day-exposure of the nine chemicalsrigghg to three cumulative assessment

groups is represented in Figure 7, according tahhee different parameterizations. In both

humans and rats, the parameterization had mostcingpapredicted flutamide and dienestrol

levels in blood; it had the least impact on thigcid and valproic acid. No relationship could

be drawn between the amount of data available hadektent to which parameterization

affected predictions. In all cumulative assessmgmups, the overall level of arterial

concentrations varied, as well as the concentratioih substances relative to each other

(Figure 7).
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Figure 7: Predicted arterial blood concentrations éer 2000 days continuous exposure to
1mg/kg/day in humans in each cumulative assessmegroup using parameterizations A, B and
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3.3 Kinetic absorption factors

The kinetic absorption factor values represented-igure 8 were obtained using liver
concentrations over 100 days of continuous exposSifith parameterization A, they are
mainly greater than 1. With parameterization B @ndhey are mainly smaller than 1 in the

flutamide-linuron-dienestrol group, and variable tlee two other groups.
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Figure 8: Kinetic absorption factors in humans resiting from a 2000-day continuous exposure
in each cumulative assessment group using parameieations A, B and C, calculated as a ratio
of the mean hepatic concentration over 100 days avihe daily exposure per unit bodyweight. A
value of 1 implies the hepatic concentration equllirates with the daily dose per unit body
weight.
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4 DISCUSSION

In the present paper, varioals initio parameterizations of the EuroMix generic PBTK mode
included in the MCRA platform were tested on ninbstances belonging to three cumulative
assessment groups. This paper illustrates how éwel lof knowledge used in the
parametrization of PBPK models can affect theidpmteve capabilities. We also showed the
impact on the parametrization on model outputs usedhemical risk assessment. In the
current implementation in MCRA, the PBTK model farmans translates an external human
exposure to an internal exposure and vice versa. Kiinetic model includes three major
exposure routes in order to model dermal, oral, iahdlation exposures and can, therefore,
be applied to a variety of chemicals and exposocemaios. The model can also be used to
determine to which extent each exposure route ibanés to the kinetics of a single chemical
in each compartment and model kinetics of binamytunes with metabolic interactions. In the
hazard characterization part in MCRA, the firstrgsiof departure from animal studies are
translated to a human internal concentration edgmiaising an interspecies factor rather than

the animal PBTK model.

Detailed modelling requires detailed data whichaos always available. Intestinal absorption
rates, fraction absorbed, and elimination ratetheeispecifically as hepatic clearances, or
more generally as elimination from blood, were wft@missing. Asin silico or in vitro
estimates of absorption were not available, defaalues were often used for the two
intestinal absorption parameters although thereeviglence that, in particular in non-
pharmaceutical substances, the observed absorbetibfr may be smaller than our default
value of 1 and that intestinal absorption rate eany significantly between substances [58].

The estimate of metabolic clearance using ab if@i8AR) predictions is notably uncertain
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as it involves multiple assumptions, that a) fidole body clearance is mainly due to hepatic
clearance, b) the fish hepatic clearance is arcatidin of (similar) rat and/or human hepatic
metabolization, and c) that this can even be emtetpd quantitatively (applying allometric

scaling). One obvious way to improve on the gen&@&AR model estimations is to use a

similar model specific for human whole body cle@efb9] which has only recently become

publicly available in a software implementation @8NS package, http://www.qgsar.it/).
Metabolic clearances were in some cases undergstimaen based on in vitro data, either
due to limitations of the in vitro assays or beeaosetabolism may occur at sites other than
the liver. Metabolic clearances were in some casekerestimated when based ionvitro
data, either due to limitations of thevitro assays or because metabolism may occur at sites

other than the liver.

The quality of prediction with the various parammizi@ions was variable. In parameterization
C, a small number of parameters (most often: untddraction, renal excretion rate, absorbed
fraction and intestinal absorption rate, dependinghe substance) were calibrated tarfit
vivo data for flutamide, clothianidin, imazalil and pedic acid. The results witin vivo
parametrization were, as expected, in better ageremwith the data than thab initio
parameterizations. In the data-rich case of vatpaoid, most predictions were within a 2-fold
factor of the observations, which is generally cdeed adequate [2]. Estimates of oral
absorption and total clearance parameters wereurargrtain and could be improved if input

frominvivo data was available.

Use of worst-case default values for absorbedifmadtl) and metabolism and elimination
may lead to overestimation of internal concentregjan particular under chronic exposure
scenarios. The worst-case intestinal absorptioe k@uld depend on each chemicals’

toxicokinetic and toxicodynamic characteristics andhe type of exposure scenario (acute or
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chronic): high intestinal absorption rates resnltshort duration peak concentrations if the
chemical is rapidly eliminated. In this case, utamiety and variability on the absorption rate
translate into uncertainty on the peak internakeotrations which are used in acute exposure
risk assessment. On the other hand, low valuebswrption rate are unrealistic in this PBTK
model since they would lead to accumulation in gvith our PBTK model, a value of 1 hr
appears to be already relatively high, since seitgit analysis showed that blood
concentrations after repeated exposure to flutammigerameterization BkGut=1 hr') were
not sensitive to variations in intestinal absonptiate. The default value for absorption rate in
the httk package has been changed in more recent versanslfh* to an even higher value
of 2.18 hi*. With our model, when using default values for abelism and elimination,
inaccuracies in predictions are likely to occur emahronic exposure scenarios with
chemicals which are predicted to accumulate, dueviometabolism or poor elimination and
accumulation of prediction errors over time. Furnthere, default values carry a large amount
of uncertainty. When PBTK model parameters areinbthwithab initio approaches, such as
with QSAR models, rather than from default valubs, uncertainty on parameter values can

be quantified and propagated in the PBTK modeliptieas.

Overall, the use of default values illustrates hosk assessment tools must compromise
between data availability and model complexity 07,6calibrating parameters is time-
consuming, and requires large amountgofivo data for the model to be predictive in dose-
to-dose extrapolation. Under the perspective o¥iging PBTK models for a large number of
substances in lower-tier calculatiorady initio models that rely upon existing databases or
simple QSAR models are more feasible. Their usangeasingly encouraged; many
databases of physico-chemical parameters iandtro-determined ADME properties are
available and have been recently described [61}ta Oeom several sources could be

combined in a meta-analysis before being used jast im PBTK parameterization. This
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approach can also provide indications on the uaitgyt and variability of the parameters.
Recent examples of application show how htt& package can be used to analyisesitro

toxicity databases [62]. On the other hand, it isoaus for higher-tier calculations if more
complex models are also available. For cypermethion example, precise simulations
require diffusion-limited models [63], which is @roplexification of all the flow-limited

model implemented in MCRA: simpler models will ingpkacrifices on precision and
accuracy of the predictions. More complex kinetiodels can be specified and linked to

MCRA.

The PBTK model can be used to compare bioaccurouladind kinetics of substances
belonging to the same cumulative assessment gideniving relative concentration factors
required choosing the tissue of interest and thiiengsed to summarize the kinetics of each
substance in that tissue. In the present papeetigtiwere summarized by a steady-state
concentration level in the case of continuous expass but, in the case of single or repeated
boluses, relative internal concentration factors alao be derived on the basis of other kinetic
metrics. The most commonly used kinetic metricgdlation to adverse effects are peak
concentration, mean daily amount, steady-stateesuration, or Area Under the Curve
(AUC) of the parent compound or one of its metabslin blood or target tissue [64,65].
Short-term effects are generally characterized &gkpor mean concentration in blood or
target tissue [66], whereas longer-term effects tnbe predictable by cumulative measures
of dose in tissues, as in MCRA. Attention is drawrthe fact that, in the case of chemicals
that accumulate under chronic exposure scenan@sgestimation of internal concentrations
which can occur with the use of default values.cbmulative risk assessment, these
inaccuracies can build up to substantial overestomaf the risk. Furthermore, depending on
the compound, metrics can be more appropriate velsémated using unbound rather than

total concentrations [67]. All these metrics carcbmputed in MCRA.
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In the present paper, relative concentration fachmtween substances were estimated based
on blood concentration levels, because blood isngrortant biomarker of exposure and
because blood level predictions are the least tainein vivo data on kinetics in humans
were often only available in this compartment. KHeéne model was linear, therefore relative
concentration factors based on steady-state caatienis are independent of the dose levels.
In turn, these factors can allow conversion ofrimé relative potency factors (RPFs) between
substances obtained froim vitro data into external RPFs in humans by translatiigrnal
concentrations into external doses. An exampleraviged in [12]. Furthermore, internal
interspecies (as opposed to within-species) raapetency factors (RPFs) can also be

estimated by multiplying the external interspedd-s by the kinetic absorption factor.

In practice, within the context of cumulative riaksessment, realistic exposures are rarely
constant, which means that internal concentratiluetuate, and steady state is not achieved.
When substances exhibit differences in internaétas, their internal concentration ratio will
also be time-dependent, even if they are presdaheienvironment or food at a constant ratio.
In this case, the internal RPFs (within-species aptiveen species) cannot be directly
converted into an external RPF because internatesuration factors determined at steady
state are no longer valid. This is of particulan@ern when at least one of the chemicals is
absorbed and eliminated rapidly. Indeed, in casarofacute simultaneous exposure for
example, if the response at the cell level is imiated the difference in time of peak
concentration may imply that once one chemical le@shed the tissue, the other may no
longer be present. In this case, predicting th@aese based on an addition of both peak
concentrations could be a very conservative approatich would overestimate the risk
under the assumption of absence of any toxicodynameraction, and may call for a more

sophisticated use of the PBTK model.
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IVIVE integrates kinetic modelling into a larger ajoof extrapolating the magnitude of

effects. Using the internal kinetics, responsesniiatures, i.e. toxicodynamics, can be
predicted, provided the dose-response relationshipach substance in a cumulative risk
assessment group can be accurately modelled. Howng relies on several assumptions
such as (i) dose additivity, (ii) absence of anyycaver effect [68], and (iii) relevance of the

metric chosen to summarize internal kinetics towdtte dose-response relationship. (i) As
mentioned in the previous paragraph, dose-additiviny be a simplistic approach when
steady-state is not achieved, because of the #Htions in relative concentrations of the
various compounds. (ii) Carry-over effects from arfeemical to another occur when one
substance has a lasting effect on the responsketother chemical, although it has been
cleared from the target tissue. (iii) The metricoskn to represent the kinetics can be
determinant on whether the response has time torotinfortunately, data on dose-time-

relationships is rarely available, and thereformmarizing the predicted time-course of the
concentration at the target organ is a conveniemplgication. Adverse Outcome Pathways

(AOPs) often include an implicit time-scale whichpg&nds on the level (molecular, cellular,
tissue, or whole-body) at which each key event {0,70]. In the perspective of modeling

quantitative AOPs, PBTK models can provide an mdedose to be related to the molecular

initiating event.

5 CONCLUSION

The generic PBTK model developed has been implezdantthe MCRA platform to be used
in cumulative risk assessment. The model can coreetiernal exposure to organ-level
exposure and can quantitatively extrapolat®itro exposures ton vivo, as in the QIVIVE

module of MCRA. The PBTK model implemented is gemeegarding the substance and in
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many cases will not take into account some physiemical or biological specificities of

substances. The model can however be used in datasguations, so that calculations can
be done for large numbers of chemicals. When usadae than a screening tool, accurate
predictions call for a large amount of data andceteonnsuming adjustments of the model to fit

the data.

When associated witin vitro dose-response data, the PBTK model can providereit
interspecies or inter-chemical potency factorstaady state, which is relevant for chronic
risk assessment. Uncertainty factors can howevedabge, covering several orders of

magnitude.
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8 FIGURE LEGENDS

Figure 1: Schematic representation of the EuroMiragic PBTK model implemented in the

MCRA platform.

Figure 2: Predicted vs. observed plasmatic, serumblood valproic acid (VPA)
concentrations in humans or rats. Symbols refer the source studies. Black=
parameterization A (QSAR), red= parameterizatiofB®AR+vitro), blue = parameterization

C (vivo).

Figure 3: Predicted and observed plasma VPA coraforts in humans, according to
parameterizations A (plain curve), B (dashed cyraed C (dotted curve). In [48], serum

rather than plasma concentrations were reported.

Figure 4: Predicted vs. observed plasmatic conatatrs (flutamide and VPA) or cumulated
amounts excreted in urine (Imazalil, pmol) in husmaBlack = parameterization A (QSAR),

red = parameterization B (QSAR+vitro), blue = pagtenization C (vivo).

Figure 5: Predicted vs. observed concentrationsts for flutamide, triadimefon, and VPA

with parameterizations A, B, and C.

Figure 6: Predicted steady-state arterial conceotrafter exposure to 1mg/d/kg in humans

and rats for each parameterization

Figure 7: Predicted arterial blood concentratioftera2000 days continuous exposure to
1mg/kg/day in humans in each cumulative assessgrenp using parameterizations A, B

and C.

Figure 8: Kinetic absorption factors in humans hasg from a 2000-day continuous

exposure in each cumulative assessment group panagneterizations A, B and C, calculated
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as a ratio of the mean hepatic concentration 008rdays over the daily exposure per unit
bodyweight. A value of 1 implies the hepatic corication equilibrates with the daily dose

per unit body weight.
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9 TABLE LEGENDS

Table 1: Physiological parameter values used feBtromix generic PBTK model
Table 2: Characteristics of the three differenapagterizations used
Table 3: Substance-specific parameters in pararpaten A in humans

Table 4: Substance-specific parameters in parampaten B for humans obtained with
screening or more specifim vitro tests. Other parameters have the same values as in

parameterization A.

Table 5. Substance-specific parameters used inmedeaization C in human. PCAIir was set

to 1e+99

Table 6: Summary of availabie vivo data on kinetics. Details are provided in suppletiesy

information, section 6.1
Table 7: Rat and human PBTK parameters for valpoid.

Table 8: Percentage of VPA concentration predistiaithin a 10- and 2-fold factor of the

observations

Table 9: Percentage of VPA predicted AUC withinGa and 2-fold factor of the observed

AUC

Table 10: Percentage of VPA predicted Cmax withitDaand 2-fold factor of the observed

Cmax
Table 11: Percentage of predictions within a 1@faktor of the observations

Table 12: Substances for which steady state isanbieved after 100 days or 2000 days

continuous exposure in humans
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