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Abstract 

Physiologically-based toxicokinetic (PBTK) models are important tools for in vitro to in vivo 

or inter-species extrapolations in health risk assessment of foodborne and non-foodborne 

chemicals. Here we present a generic PBTK model implemented in the EuroMix toolbox, 

MCRA 9 and predict internal kinetics of nine chemicals (three endocrine disrupters, three 

liver steatosis inducers, and three developmental toxicants), in data-rich and data-poor 

conditions, when increasingly complex levels of parametrization are applied. At the first 

stage, only QSAR models were used to determine substance-specific parameters, then some 

parameter values were refined by estimates from substance-specific or high-throughput in 

vitro experiments. At the last stage, elimination or absorption parameters were calibrated 

based on available in vivo kinetic data. The results illustrate that parametrization plays a 

capital role in the output of the PBTK model, as it can change how chemicals are prioritized 

based on internal concentration factors. In data-poor situations, estimates can be far from 

observed values. In many cases of chronic exposure, the PBTK model can be summarized by 

an external to internal dose factor, and interspecies concentration factors can be used to 

perform interspecies extrapolation. We finally discuss the implementation and use of the 

model in the MCRA risk assessment platform. 

Keywords: Physiologically-Based ToxicoKinetic (PBTK) model; risk assessment; mixtures; 

probabilistic model. 
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1 INTRODUCTION 

Human health risk assessment relies upon understanding and estimating how a given exposure 

to xenobiotics can cause health hazards. Toxicokinetics bridge the gap between exposure to 

xenobiotics and internal concentrations that condition health hazards, by providing 

predictions of compounds’ internal levels at target organs (i.e. where the toxic action occurs), 

which is particularly relevant for those compounds showing bioaccumulation potential.  

Toxicokinetics can be modelled and predicted by Physiologically-Based Toxicokinetic 

(PBTK) models. PBTK models represent the organism as a set of compartments linked 

together by the bloodstream. Single-substance PBTK models predict the time-courses of the 

chemical inside each compartment that result from one or more user-defined exposures to a 

given chemical. These models can be used to compare kinetics of substances within a 

cumulative assessment group, which includes the substances for which an assessment of 

combined exposures is warranted, and therefore help identifying the drivers of internal 

exposure or toxicity in a mixture. The use of kinetic modeling in the higher tier of risk 

assessment of multiple substances has been recently recommended in order to improve hazard 

identification and characterization [1]. Chemical risk assessment increasingly calls for PBTK 

models when available [2–5], and, therefore, a need for tools available to regulators and 

stakeholders is also rising [6]. Over the past years, many tools have been developed for 

various applications including in a regulatory context [7]. For example, MERLIN-Expo 

simulates the fate of substances in environmental systems and in the human body [8,9]; httk 

provides a generic PBPK model and a large in vitro database as an R package [10].  

During the EuroMix project, a module for kinetic models was developed and added to the 

Monte Carlo Risk Assessment (MCRA) platform for chemical risk assessment [11,12]. 

MCRA uses probabilistic methods to address all areas of risk assessment for combined 
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exposures to multiple chemicals and can be used for hazard identification, hazard 

characterization, exposure assessment and risk characterization [12]. The kinetic module 

includes a generic PBTK model designed to be well-suited for a wide range of chemicals, for 

which different parameterizations can be uploaded using data files. Kinetic models are 

available for both humans and rats with the same underlying structure but with species-

specific physiological parameters. In the toolbox, kinetic models can be used to convert 

internal doses at the target organ (either in vitro exposure doses or rat internal doses) to 

human external exposure doses and vice versa. This dose conversion is used when performing 

in vitro to in vivo extrapolation (IVIVE) or animal to human extrapolation [12]. 

Building a PBTK model is challenging and requires gathering a considerable amount of data 

which can be categorized in three groups, namely, (i) the model structure, which refers to the 

arrangement of tissues and organs included in the model; (ii) the biological system's data 

(physiological, anatomical, biochemical data); and (iii) chemical-specific data 

(physicochemical). Chemical-specific data can be collected from a variety of sources, using 

default values, in vivo measurements, in vitro cell-based assays, or in silico predictions. 

Previously, PBPK models have been parameterized based first on in vivo data, with in vitro 

data added for various extrapolations between exposures or species [13], but for many 

substances, such as pesticides and contaminants, in vivo data in humans and even in rats are 

sparse or unavailable. Furthermore, use of non-animal data in PBPK modelling for risk 

assessment is being encouraged with the aim to reduce, and eventually replace, animal testing 

[13,14]. The amount of high-throughput in vitro data available nowadays is rapidly 

increasing, in particular regarding metabolism and chemical binding [10]. PBTK models are 

thus also increasingly used as screening tools to predict the potential for accumulation in 

tissues by integrating high-throughput in vitro data and in silico data [10].  
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Integration of PBTK models in a toolbox with such a broad spectrum as MCRA implies that 

they will be used, and parameterized, by end-users who may not be specialists. Guidance on 

the selection of appropriate parameters is scarce [6], but can greatly affect the quality of the 

model outcomes. This paper shows how increasing amounts of data can be used to refine 

PBTK model predictions as in a tiered approach [15] and which level of accuracy to expect in 

data-poor situations. We wish to draw attention to the fact that the underlying model structure, 

the default assumptions and the choice of user-defined parameters may have a large impact on 

the outcome of the risk assessment, especially when the kinetic module is used for structurally 

and functionally diverse substances. In this paper, we compare various levels of refinement in 

PBTK model parameterization, using QSAR models and in vitro data. We illustrate how these 

models can be used in cumulative risk assessment and what can be expected in terms of 

accuracy and uncertainty of the predictions. First, we examine a data-rich case, with valproic 

acid, which can cause cranio-facial malformations in foetuses whose mothers are exposed. 

Secondly, we extend the approach to eight other chemicals with varying amounts of available 

information on kinetics. These chemicals have been associated with three adverse outcomes 

in toxicological studies, i.e. steatosis (imazalil, thiacloprid, and clothianidin), endocrine 

effects (flutamide, linuron, and dienestrol), or cranio-facial malformations (cyproconazole, 

valproic acid, and triadimefon).  

 

2 MATERIAL AND METHODS 
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2.1 PBTK model 

2.1.1 Model description 

The generic PBTK model implemented in MCRA is an updated version of  a PBTK model 

developed by INERIS and JRC in the framework of the EU project COSMOS (part of the 

SEURAT-1 cluster, http://www.cosmostox.eu/ [3,4]). The original (unpublished) model was 

updated to improve the dermal absorption model, to impose correlations in the chemical 

tissues’ affinities (i.e., tissue:blood partition coefficients) , and to allow more time- and dose-

varying exposure patterns (Figure 1). The EuroMix generic PBTK model describes the 

distribution of chemicals in venous and arterial blood, adipose tissues, poorly perfused tissues 

(muscles), liver, richly perfused tissues (other viscera), and skin. Each of those is described as 

a compartment (homogeneous virtual volume) in which distribution is instantaneous and 

limited only by the incoming blood flow or rate of entry in the compartment [18]. Exposure 

can occur through the dermal route, ingestion or inhalation. The absorbed substances can be 

excreted to urine, exhaled through the lung, or metabolized in the liver. External 

compartments, including urine and gut lumen, are not modelled. The model is coded as a set 

of ordinary differential equations. There is one such equation per time-dependent chemical 

quantity of the model (so-called state variable). The model predicts, as a function of time, for 

given oral, dermal and/or inhalation exposures, the quantities in organs and the corresponding 

concentrations as a function of time. The model equations are provided in Supplementary 

Information (SI), section 1.1. The model, written in GNU MCSim [19], can be downloaded 

from ZENODO with the DOI 10.5281/zenodo.3553690 together with an example of code for 

running it under R [20]. 
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Figure 1: Schematic representation of the EuroMix generic PBTK model implemented in the 
MCRA platform. 

2.1.2 Physiological parameter values 

The PBTK model contains 14 physiological parameters. To model known correlations 

between parameter values, or to respect physical constraints in case of Monte Carlo sampling, 

some of them are scaled prior to solving the differential equations, using proportionality 

constants, in particular for relative tissue volumes and blood flows. Default mean values for 

physiological scaling coefficients and unscaled parameters for humans and rats (Table 1) have 

been collected from the literature. 

Table 1: Physiological parameter values used for the Euromix generic PBTK model  
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a Here a default value is used. In MCRA, when performing aggregate exposure assessment, 
the BSA is scaled to the bodyweight using an allometric scaling factor, it is not rescaled in 
hazard calculations as in this application. 

b Value obtained by dividing the skin volume by the body surface area. 

2.1.3 Parameterization of the substance-specific values 

The PBTK model contains up to 14 substance-specific parameters (see list of parameters in 

SI, section 1.2, Table 1), as absorption rates, partition coefficients, or hepatic clearances. 

Metabolism was always modelled as first-order rather than Michaelis-Menten kinetics which 

decreases the number of substance-specific parameters to 13. Chemical-specific parameters 

can be obtained from in vivo measurements, in vitro measurements or in silico predictions. All 

parameters except those related to excretion can be estimated in vitro. PBTK model 

parameterization quality depends on the amount and quality of data available and the 

parameterization process can be time-consuming. Three types of parameterization, based on 

in silico methods, and optionally in vitro or in vivo data, were tested to study how the 

parameter values could affect the predicted internal concentrations. Two types of 

parameterizations (A and B) are obtained without any calibration or adjustments to fit in vivo 

Parameter Symbol Units Human Rat 
   Value Ref Value Ref 
Body mass (BM) BM kg 70 [21] 0.3 [22,23] 
Relative tissue volumes (% 
BM) 

      

Fat scVFat - 20.9 [22,23] 7.3 [22,23] 

Richly perfused scVRich - 10.5 [22,23] 10.0 [22,23] 

Liver scVLiver - 2.4 [22,23] 3.5 [22,23] 

Blood scVBlood - 6.8 [21] 6.8 [21] 

Cardiac Output (CO) scFBlood L/h/kg 4.8 [21] 18.8 [21] 

Relative tissue blood flows 
(% CO) 

      

Fat scFFat - 4.6 [22,23] 0.54 [22,23] 

Poorly perfused scFPoor - 13.4 [22,23] 10.0 [22,23] 

Liver scFLiver - 25.9 [22,23] 16.0 [22,23] 
Skin scFSkin - 5.4 [22,23] 7.8 [22,23] 

Alveolar ventilation rate Falv L/h 2220 [23] 6.35 [23] 

Stratum corneum thickness Height_sc dm 0.0001 [24] 0.0001 [24] 

Body skin surface area BSA dm2 190a [24] 3.64a [25] 

Viable skin thickness Height_vs dm 0.0122b [22,23]  0.0094b [22,23]  
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experimental data. This can be regarded as ab initio parameterization, although some 

parameters obtained in the literature can have been estimated using in vivo data. First, in 

parameterization A, QSAR models were used to predict 11 of the substance-specific 

parameters. Default values were used for the remaining parameters which related to oral 

absorption: the intestinal absorption rate was set arbitrarily to 1 hr-1 as in httk [10,26] and the 

absorbed fraction was set to 1 (maximizing absorption). Parameterization B makes use of 

available high-throughput toxicokinetic data [10,26] and in vitro experiments carried out 

specifically in the EuroMix project. In vitro hepatic clearance values were obtained in primary 

hepatocytes, and, in cases where clearance could not be quantified, screening values obtained 

from the literature in high-throughput assays were used. In vitro plasmatic unbound fractions 

and blood to plasma ratios from the literature were also used. In parameterization B, oral 

absorption parameters are also set to default values, dermal absorption defaulted to 0 except 

for imazalil where the proposed value was based on the mean QSAR estimates. Another 

parameterization (C) is based on the calibration of certain PBTK model parameters with 

available in vivo kinetic data. The characteristics of these parameterizations are summarized 

in Table 2. 

Table 3, Table 4, and Table 5 list the values used for flutamide, linuron, dienestrol, imazalil, 

thiacloprid, clothianidin, cyproconazole, triadimefon, and valproic acid for each 

parameterization. Parameter values in rat are reported in SI, section 2. 

Table 2: Characteristics of the three different parameterizations used 
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  Partition 
coefficients 

Hepatic 
clearance 

Unbound 
fraction 

Renal 
elimination 

Dermal and 
oral 

absorption 

Estimation 
methods 
available 

in vitro  X X X  

in vivo X 
only with model 

calibration 
X 

only with 
model 

calibration 

only with 
model 

calibration 

Methods 
used  

A QSAR QSAR QSAR QSAR default 

B QSAR 
new in vitro data 

or literature 
literature QSAR default 

C 

QSAR or 
literature or 
calibrated in 

vivo 

new in vitro data 
or literature or 

calibrated in vivo 

literature or 
default 1 

calibrated 
or default 0 

default or 
calibrated 

A- QSAR models 

Partition coefficients between blood and tissues and between air and blood, unbound fraction 

in blood, dermal absorption rate, and renal elimination rate were estimated with the QSAR 

models used in the Induschem tool [27], based on the (log) octanol:water partition coefficient, 

volatility, and tissue composition. Hepatic clearance was estimated by using the whole-body 

primary biotransformation rate constant (kM) model for fish, as implemented in the BCFBAF 

QSAR model by the USEPA. This model is based on an evaluated database kM estimates in 

fish for ~700 chemicals with satisfactory predictive performance [28–30]. The allometric 

scaling from fish (10 gr, 15°C) to rat (200 gr, 37°C) or humans (70 kg, 37°C) and the 

resulting estimate of rat and human hepatic clearance has not been validated 

Substance-specific parameters obtained in humans in parameterization A are reported in Table 

3.  

Table 3: Substance-specific parameters in parameterization A in humans 

  logPC     

Substance PCAir Fat Liver Poor Rich Skin Skin_sc fub Ke CLH Kp_sc_vs 

Flutamide 1.96E+09 2.127 0.822 0.632 0.072 0.632 -0.699 0.06 4.29E-03 1.03 0.009 
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Linuron 1.03E+08 2.116 0.794 0.609 0.093 0.609 -0.699 0.082 5.92E-03 0.749 0.011 

Dienestrol 8.35E+12 2.155 0.922 0.723 -0.538 0.723 -0.699 5E-04 3.87E-05 4.21 0.366 

Imazalil 4.96E+08 2.144 0.874 0.680 -0.018 0.680 -0.699 0.024 1.69E-03 0.0616 0.003 

Thiacloprid 1.93E+09 1.927 0.507 0.362 0.124 0.362 -0.699 0.399 2.87E-02 0.360 0.002 

Clothianidin 4.83E+14 0.481 -0.201 -0.092 -0.066 -0.092 0.551 0.98 1.85E-01 0.496 3E-05 

Cyproconazole 7.68E+08 2.081 0.720 0.543 0.124 0.543 -0.699 0.152 1.09E-02 0.015 0.003 

Triadimefon 6.40E+09 2.058 0.679 0.508 0.130 0.508 -0.699 0.194 1.40E-02 0.0127 0.003 

VPA 1.47E+05 0.497 -0.194 -0.092 -0.066 -0.092 -0.699 0.979 1.70E-01 0.0130 0.012 

 

B- In vitro parameters measured in substance specific experiments 

In vitro experiments were performed in order to refine the parameterization of the PBTK 

model by better quantifying metabolism (see SI, section 3.1 for details). In vitro 

measurements of metabolism in primary cultures of human and rat hepatocytes were obtained 

for dienestrol (intrinsic clearance, Table 5 in SI), linuron, and imazalil (Vmax, Km, and 

unbound fraction, Table 6, 7, and 8 in SI). The results are summarized in Table 4. 

Flutamide metabolism parameters were refined with specific values obtained by [31–34] 

using in vitro hepatic cell line studies by in either rat cells, or human cells, or both. Flutamide 

is metabolized by three pathways, hydroxylation and hydrolysis into two different 

metabolites, all three pathways described by Michaelis-Menten saturable kinetics. At 

concentration levels below 1µM, the main metabolic pathway is hydroxylation (see section 

3.2 in SI). Clearance was therefore estimated as the hydroxylation Vmax: Km ratio, assuming 

that the internal concentrations were sufficiently low compared to the Km for the kinetics to 

be approximated as first-order (see summary on in vitro data in section 3.3 of SI). 

Cyproconazole, thiacloprid, and clothianidin were also tested but no kinetic constants could 

be determined from the in vitro experiments. The clearance values used for the remaining 

substances were therefore obtained from in vitro screening tests reported in the literature, in 
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[35] (cyproconazole, thiacloprid, clothianidin, and also triadimefon) and in [36] (valproic 

acid).  

Unbound fractions in plasma were based on the screening in vitro tests reported in [37] 

(flutamide), by TNO and reported in R package httk [26] (valproic acid), and in [35] (other 

substances).  

Substance-specific parameters obtained in humans in parameterization B with screening or 

more specific in vitro tests are reported in Table 4. Other parameters have the same values as 

in parameterization A  

Table 4: Substance-specific parameters in parameterization B for humans obtained with 
screening or more specific in vitro tests. Other parameters have the same values as in 
parameterization A. 

Substance RBP [26] 

 

fub [26] CLH (L/hr) [26] 

in vitro CLHa 

(specific test) 

Kp_sc_vs 

(dm/hr) 

Flutamide 1.20 0.0376 (531, not used) 405 0 

Linuron 1.93 0.11 (545, not used) 580 0 

Dienestrol 1.00 1 (0, not used) 157 0 

Imazalil 2.18 0.03 (0, not used) 310 0.01 

Thiacloprid 1.23 0.29 34.8  0 

Clothianidin 0.745 0.51 132  0 

Cyproconazole 1.24 0.11 22.9 - 0 

Triadimefon 7.24 0.11 369  0 

Valproic acid 0.66 0.366 2.15E-05  0 

a Obtained with the Vmax/Km ratio or the intrinsic clearance (see SI, section 3.2) 

 

C- Parameters calibrated using in vivo data 

In parameterization C, in the cases of flutamide, linuron, dienestrol, thiacloprid and 

clothianidin, the PBTK model structure was first adapted to each substance, using existing 
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knowledge on kinetics from the literature. For triadimefon/triadimenol, an existing PBTK 

model [38] was used without further adjustment. For imazalil and valproic acid, the generic 

model was used for calibration.  

In a second step, the following PBTK model parameters were calibrated to fit in vivo data for 

flutamide, valproic acid, imazalil, thiacloprid, and clothianidin: hepatic clearance (valproic 

acid, imazalil in humans), skin diffusion coefficient, fraction absorbed by gut, oral absorption 

rate, renal excretion rate, unbound fraction in blood (imazalil in humans), renal excretion rate 

(flutamide), and renal excretion rate as total clearance (clothianidin and thiacloprid). No 

calibration was performed for cyproconazole, linuron, or dienestrol. Partition coefficients for 

flutamide, thiacloprid and clothianidin were estimated using the Area Under the Curve (AUC) 

of in vivo data. Those for linuron and dienestrol were estimated by QSAR methods. The 

remaining parameters were set to default values or additional values retrieved from the 

literature, see the summary in Table 5 and section 4 in SI for details (references and 

distributions of substance-specific parameter values in the original PBTK models which were 

adapted to each case).  

Table 5: Substance-specific parameters used in parameterization C in human. PCAir was set to 
1e+99 

 logPC      

Substance Fat Liver Poor Rich Skin Skin_sc fub Ke CLH Kp_sc_vs Frac kGut RBP 

Flutamide 0.444 0.746 0.746 0.420 0.746 0.746 0.09 1.25 405 0 0.5 0.64 1.20 

Linuron 1.91 0.65 0.65 0.43 0.65 0.65 1 7.62 57.5 0 1 1 1.93 

Dienestrol 2.27 1.00 1.00 0.79 1.00 1.00 0.6 9.48 283 0 1 1 1.00 

Imazalil 3.6 0.7 -0.44 0.7 -0.44 -4.04 0.05 17 70 1.00E-05 0.8 10 2.18 

Thiacloprid 0.0899 0.415 0.415 0.223 0.415 0.415 1 2.27 0 0 1 1 1.23 

Clothianidin -0.409 0.250 0.250 0.255 0.250 0.250 1 2.27 0 0 1 1 0.745 

Cyproconazole 1.96 -0.92 -1.61 -0.92 -1.61 -3.57 0.07 0 23.4 0.1 0.996 1 1.24 

Triadimefon 2.06 1.09 0.65 0.65 0.65 0.65 1 9.21 0 0 1 1 7.24 
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Valproic acid -1.83 -3.1 -3.22 -2.85 -3.22 -1.39 0.14 0 4 0.1 0.996 2.88 0.66 

 

2.1.4 Model implementation in MCRA 

The MCRA system for human health chemical risk assessment, version 9.0, is available at 

https://mcra.rivm.nl. MCRA is a modular system for exposure, hazard and risk assessment, 

where doses of multiple chemicals can be modelled at either the external level (specifying an 

exposure route) or the internal level (specifying a target organ). MCRA contains a module 

Kinetic models, where various PBTK models have been linked in, such as the EuroMix 

generic PBTK model described in this paper. The EuroMix PBTK model can be run with any 

parameter set: both human and animal models can be specified. Alternatively, if no kinetic 

model is available, simple absorption factors can be specified to characterize the ratio 

between internal and external doses. Given a PBTK model, several parameterizations of it can 

be defined for different substances and biological systems (e.g. rat, human). The parameter 

values for each instance of a model are specified in data files that have to be uploaded to the 

MCRA platform. For the nine substances in this paper, the parameter data files are available 

on the EuroMix data share. In MCRA runs with kinetic models, the user specifies the internal 

compartment that is of interest and the time period that the PBTK model should be run. 

Internal doses for chronic risk are quantified by the average internal dose as calculated by the 

PBTK model past a user-specified start time point (to avoid the build-up phase of a pseudo-

steady state). Internal doses for acute risk are quantified by the average internal peak level in 

this same period. For exposure assessments, daily exposure values as inputs are derived from 

the dietary exposure module of MCRA or from externally provided exposure values for non-

dietary exposure [12,39]. For hazard characterizations, the input dose corresponds to e.g. the 
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acceptable daily intake (ADI) or acute reference dose (ARfD), which is then provided as an 

input to the PBTK model once per day.  

The EuroMix generic PBTK model, version 6 (see https://doi.org/10.5281/zenodo.3553689) 

was implemented as a set of ordinary differential equations (ODE) written in C and compiled 

into a dynamically linked library (DLL). The R package deSolve [40,41] is used to load the 

DLL into R. Compiled code has the benefit of increased simulation speed. This may be a 

significant gain especially when the model is applied multiple times which is current practice 

in MCRA. Through the use of a forcing function time series, external input variables (i.e. the 

administered doses) are fed into the model and the solver will interpolate between the 

different timesteps. (Example code written in R is available on request). 

2.1.5 Model calculations 

Calculations were performed with MCRA 9.0, R version 3.6.1 [20], packages httk [26], 

deSolve [40], EnvStats [42], sensitivity [43]. 

2.2 Model verification 

The internal concentrations predicted by the PBTK model were compared to in vivo data on 

kinetics for each of the 9 chemicals. Area Under the Curve (AUC) and maximal concentration 

(Cmax) of kinetics were also computed and compared to in vivo data. In vivo data on kinetics 

was collected from the literature in humans and rats (Table 6 hereafter, Table 23 in section 6.1 

in SI). Human in vivo data on internal kinetics was only available for flutamide, valproic acid 

and imazalil in blood, plasma or urine.  

With parameterization C, where some parameters specific to flutamide, valproic acid, 

imazalil, thiacloprid, or clothianidin were calibrated to fit in vivo data, prediction quality is 

assessed using data that served for calibration and additional data, used as validation datasets 
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[44–51], when available. For imazalil, thiacloprid and clothianidin, no additional data was 

available: quality of prediction could not be assessed on data which had not been used to 

calibrate the model. Quality of prediction for valproic acid and flutamide was assessed on all 

data together and also on the additional data. 

Table 6: Summary of available in vivo data on kinetics. Details are provided in supplementary 
information, section 6.1 

Substance Number  

of studies 

Organ / 

Tissue 

Dosing  Dose Duration 

(hours) 

Calibration 

data 

Validati

on data 

 Human Rat      

Flutamide 2 1 plasma Oral,  

single 

(2), 

multiple 

(1) 

250, 500, 

750 mg/day 

(human) 

15 mg/kg 

(rat)l 

72 [52]  [51] 

 [44] 

Valproic acid 6 1 Serum 

(3),  

plasma 

(5),  

blood 

(1) 

Oral 

(6), IV 

(6) 

Single 

(8), 

twice 

(2) 

250-

1000 mg or 

15 mg/kg 

(human) 

10-600 mg 

(rat) 

110 [53]  [45], 

[46], 

[47], 

[48], 

[49] 

[54]  [50] 

Triadimefon / 

triadimenol 

- 1 plasma, 

liver, 

kidney, 

brain, 

fat 

IV 

single 

50 mg/kg  24 [38]   

Imazalil 1 - Urine 

(2) 

Oral 

(1), 

Dermal 

(1) 

0.025 – 

0.05 mg/kg 

120 unpublished 

data 

(Faniband et 

al.) 

 

Thiacloprid* - 1 Organs,  

plasma,  

excreta 

Oral 

(4), IV 

(1) 

Single 

(4) 

1 - 

100 mg/kg  

72 [55] 

(unpublished 

data) 

 



18 

 

multiple 

(1) 

Clothianidin* - 2 organs,  

plasma, 

excreta, 

blood 

Oral 

Single 

(6), 

multiple 

(1) 

2.5 - 

250 mg/kg  

168 [56] 

(unpublished 

data), [57] 

 

Cyproconazole* - 1 Organs, 

excreta 

Oral (3) 

IV (1) 

0.5 - 

130 mg/kg 

168 [56] 

(unpublished 

data) 

 

Linuron - -    --   

Dienestrol - -    --   

*: Only measured as total radioactivity, not parent substance. 

 

Data on flutamide and valproic acid were collected in both species. For imazalil, as data was 

only found in humans, only the human parameterization of the PBTK model was checked. 

Conversely, for thiacloprid, clothianidin, cyproconazole, and triadimefon, data was only 

available in rat, and so only the rat parameterization was checked. The data collected in rats 

on thiacloprid, clothianidin, and cyproconazole was expressed as equivalents of administered 

dose and not as levels of the parent substance, as it was obtained using autoradiography. 

Metabolism was the main elimination pathway for thiacloprid and cyproconazole [55,56] and 

occurs to a lower extent for clothianidin [56]. Body weight was set to the value reported in the 

studies if specified, or with a default 57 kg for women and 75 kg for male if gender was 

specified, or to a default 70 kg. 

Levels were often quantified in plasma rather than blood, therefore blood concentrations 

predicted by the PBTK model were converted to plasmatic concentrations when necessary, 

using a default value of 1 in parameterization A and the substance-specific blood to plasma 
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ratio (RBP) [26] in parameterizations B and C (see Table 4 and Table 5 for humans, and 

section 2 of SI for rats).  

2.3 Using the PBTK model in cumulative risk assessment 

In the absence of PBTK models or other kinetic information, the default assumption in 

MCRA is that the internal concentration at the target organ is equivalent to the daily exposure 

per unit of bodyweight. This is defined as a kinetic absorption factor equal to 1. For chronic 

risk assessments, the kinetic absorption factor is defined as the ratio of the mean 

concentration at target organ divided by the mean exposure per unit of bodyweight and per 

day. For acute risk assessments, the kinetic absorption factor is defined as the ratio of the 

maximum calculated concentration at target organ within a day (averaged over multiple days) 

divided by the mean exposure per unit of bodyweight and per day. 

The assumption of a kinetic absorption factor equal to 1 is met in a variety of situations, for 

example, with oral exposure, if the chemical is totally absorbed, uniformly distributed in the 

body, and that, in acute exposures, it is not eliminated, or that in chronic risk assessment, it 

does not accumulate. A variety of other scenarios could be envisaged that result in a kinetic 

absorption factor equal to 1, for example when the absorbed fraction is lower but the 

substance bioconcentrates at the target organ, or else when the substance has a high affinity 

for the target organ but its elimination compensates for that higher affinity. The availability of 

a kinetic model allows risk assessors to refine the default assumption on the kinetic absorption 

factor by using the predicted internal concentrations. 

The Euromix generic PBTK model implemented in MCRA includes one term for non-

linearity, the Michaelis-Menten metabolism kinetics. In this application to nine substances, 

metabolism was modelled as first-order kinetics (clearance) and therefore the model is linear: 

the internal concentrations are proportional to the external dose at steady state. The kinetic 
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absorption factors and relative concentration factors between substances can therefore be used 

whatever the dose levels investigated, both for interspecies extrapolation and for inter-

chemical relative potency factors (RPFs). 

Once the model performance with the various parameterizations had been checked against in 

vivo data, the impact of the various parameterizations on critical steps of cumulative risk 

assessment was evaluated. Internal concentrations in a 70 kg human at steady state were 

predicted under continuous exposure scenarios with 1 mg/kg BW/day of each substance. A 

continuous exposure scenario was used rather than daily repeated exposure in order to avoid 

sharp peaks in concentration levels. Steady state was defined as being achieved when the 

concentration at a given time was greater than 95% of the concentration reached at twice this 

time. When steady state was not achieved, the simulations were stopped at 2000 days in 

humans. The predicted internal concentrations were analyzed in the following ways: 

1- The human blood concentrations were compared to those obtained in rat for use in 

interspecies extrapolation. 

2- Kinetic absorption factors at steady state were also calculated. These factors allow 

extrapolation of internal to external dose-response relationships and can be used to 

compare kinetics inside each cumulative assessment group.  

It is important for risk assessment to take into account both uncertainty in model parameter 

values and variability of those parameters in the population. In this work population 

variability on physiological parameters was ignored but uncertainty on substance-specific 

parameters was quantified. Commonly assumed uncertainty factors on partition coefficients, 

transport rates and metabolic parameters are 3-fold factors (e.g. [15-19]). When the PBTK 

model was used to predict internal concentrations, 10,000 Monte Carlo simulations were 

performed in each exposure scenario, by simulating uncertainty on partition coefficients 
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(whilst maintaining proportionality amongst them), oral absorption rate, fraction absorbed, 

hepatic clearance, elimination rate and unbound fraction in plasma. For more details, see 

section 5.1 in SI. Furthermore, when uncertainty around substance-specific parameter values 

was not reported in the sources, the uncertainty was modelled with the same distribution 

whether the value was obtained from the literature or was a default value and is reported in SI, 

section 5.2. 

3 RESULTS 

3.1 Model evaluation 

3.1.1 A data-rich situation: valproic acid 

Predicted valproic acid (VPA) concentrations in plasma were compared to the data collected 

from the literature (Figure 2 and Figure 3). The PBTK model for VPA had been calibrated on 

data in obtained in rats by [54] and [32]. The substance-specific parameters for valproic acid 

are reported in Table 7. With parameterizations A and B, although most predictions were 

within a 10-fold factor of the observations, the kinetics did not match observed kinetics since 

barely no decrease was observed during the study duration. Parameterization C provided 

overall better predictions in rats and in humans (Table 8): in humans, 72% of predictions were 

within a 2-fold factor. When kinetics were summarized as the AUC or the Cmax (Table 9 and 

Table 10), Parameterization C also provided better predictions in particular in humans (where 

a large number of individual curves were available), but not in rats, where the concentrations 

were slightly over predicted. The results show that in humans both repeated and unique 

exposures are well described by the model especially with parameterization C (Figure 3). 
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With parameterizations A and B, due to low hepatic clearances, VPA is predicted to 

accumulate in the body, which is not observed in vivo.  

Table 7: Rat and human PBTK parameters for valproic acid. 

   logPC 

Parameters Species PCAir Fat Liver Poor Rich Skin Skin_sc 

A Human 1.47E+05 
0.497 -0.194 -0.092 -0.066 -0.092 -0.699 

B Human 1E+99 

C Human 1E+99 -1.83 -3.1 -3.22 -2.85 -3.22 -1.39 

A Rat 6.53E+04 
0.057 -0.036 -0.201 -0.027 -0.201 -0.699 

B Rat 1E+99 

C Rat 1E+99 -1.83 -3.1 -3.22 -2.85 -3.22 -1.39 

 

Parameters Species fub Ke CLH Kp_sc_vs Frac kGut RBP 

A Human 0.979 0.170 1.30E-02 0.012 1 1 1 

B Human 0.366 7.5 2.15E-05 0 1 1 0.66 

C Human 0.14 0 8.8 0.1 0.996 2.88 0.66 

A Rat 0.979 0.00186 2.35E-04 0.035 1 1 1 

B Rat 0.22 0.0786 1.09E-07 0 1 1 0.600 

C Rat 0.14 0 0.4 0.1 0.996 0.3 0.600 

 

Parameterization A and B are akin to a worst-case scenario regarding absorption. In the case 

of acute exposure scenarios, though, the maximal concentration is underestimated, which can 

be problematic in a risk assessment context. Over-predictions in this deterministic solution 

(nominal run) may be due to high levels of absorption. When uncertainty is added, the 

absorbed fraction will often be lower which may result in more accurate predictions. 

Furthermore, it must be noted that even in data-rich situations such as valproic acid, when a 

substance-specific PBTK model is translated into the generic PBTK model, results can be 

more uncertain than with the original model.  
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Figure 2: Predicted vs. observed plasmatic, serum or blood valproic acid (VPA) concentrations 
in humans or rats. Symbols refer to the source studies. Black= parameterization A (QSAR), 
red= parameterization B (QSAR+vitro), blue = parameterization C (vivo). Dotted lines denote 
10-fold deviations. 

 

Humans Rats 
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Figure 3: Predicted and observed plasma VPA concentrations in humans, according to 
parameterizations A (plain curve), B (dashed curve), and C (dotted curve). In [48], serum rather 
than plasma concentrations were reported. 

 

Table 8: Percentage of VPA concentration predictions within a 10- and 2-fold factor of the 
observations 

Species Parameterization 

A B C 

Human (10-fold difference) 96.7 99.6 100.0 

Human (2-fold difference) 28.4 32.5 72.0 

Rat (10-fold difference) 84.0 76.0 100 
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Rat (2-fold difference) 52.0 60.0 40.0 

 

Table 9: Percentage of VPA predicted AUC within a 10- and 2-fold factor of the observed AUC 

Species Parameterization 

A B C 

Human (20 simulations) 10-fold 

difference 

100 100 100 

2-fold difference 15 55 75 

Rat (3 simulations) 10-fold 

difference 

100 67 100 

2-fold difference 0 33 33 

 

Table 10: Percentage of VPA predicted Cmax within a 10- and 2-fold factor of the observed 
Cmax 

Species Parameterization 

A B C 

Human (20 simulations) 10-fold difference 85 100 100 

2-fold difference 10 20 85 

Rat (3 simulations) 10-fold difference 100 100 100 

2-fold difference 100 100 67 
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3.1.2 Effect of parameterizations on the predictive performance of the generic PBTK model 

The PBTK model predictions for the nine selected chemicals, using the three 

parameterizations, were compared to the in vivo data on kinetics collected from the literature 

(Table 6), obtained with oral or intravenous administration (section 6.2 in SI for humans and 

section 6.3 in SI for rats). Concentrations in blood or plasma, liver, skin, and fat were 

predicted with the model; summaries of the comparisons with observations are provided in 

Figure 4, Figure 5, and Table 11. With thiacloprid, clothianidin, and cyproconazole in rats, 

data represented both parent substance and metabolites; concentrations are therefore expected 

to be underpredicted. For these substances, graphical comparisons of predictions and 

observations are provided (section 6.4 in SI) but the deviation factors are not reported since 

they can be misleading.  

 

Figure 4: Predicted vs. observed plasmatic concentrations (flutamide and VPA) or cumulated 
amounts excreted in urine (Imazalil, µmol) in humans. Black = parameterization A (QSAR), red 
= parameterization B (QSAR+vitro), blue = parameterization C (vivo). 
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Figure 5: Predicted vs. observed concentrations in rats for flutamide, triadimefon, and VPA 
with parameterizations A, B, and C.  

Table 11: Percentage of predictions within a 10-fold factor of the observations 

Species Parameterization 

A B C 

Flutamide Human 0 0 6.25 

Imazalil Human 0 0 100 

Valproic acid Human 96.7 99.6 100 

Flutamide Rat 0 0 100 

Thiacloprid Rat 64.3 86.7 70.4 

Clothianidin Rat 63.8 33.0 55.3 

Cyproconazole Rat 17.9 21.4 14.3 

Triadimefon Rat 0 0 15 

Valproic acid Rat 84 76 100 
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Quality of predictions was assessed by computing fold deviations from observations over the 

limit of quantification (Table 11). With the human data and parameterization A or B, overall, 

56 and 58% of the predictions were within a 10-fold factor; in both parameterizations, 

predictions for flutamide, imazalil, and triadimefon where never within a 10-fold factor. With 

parameterization C where some model parameters were calibrated, overall 93% of the 

predictions were within a factor 10 and for all substances. In some cases, small changes in 

parameterization provided significant improvements. For instance, predictions of the amount 

of imazalil excreted in urine were improved by increasing the urinary elimination clearance.  

With parameterization C, in the cases where validation datasets where available, i.e. for 

valproic acid in humans, and for flutamide and valproic acid in rats, all predictions were 

within a 10-fold interval, including the validation datasets, which were generally less well 

predicted in parameterizations A and B. For flutamide in humans, with parameterization C, 

predictions quality was similar in both validation and calibration datasets: 2 out of 5 data 

points in the validation dataset were within a 10-fold interval compared to 6.25% overall. 

With the rat data - excluding radioactivity data – parameterization A and B provided overall 

similar but not very good predictions: respectively 37% and 34% of the predictions were 

within a 10-fold factor. With parameterization C, 70% were within a 10-fold factor. The time-

course of plasmatic levels (including the AUC and the Cmax) is better predicted in 

parameterization C. 

According to Figure 4 and Figure 5, flutamide concentrations in the dataset from Radwanski 

et al. [52] (humans) and in Zuo et al. [44] (rats) were better predicted with parameterization B 

than with parameterization A due to in vitro hepatic clearances which were over 2 orders of 

magnitude higher than the QSAR estimates. A sensitivity analysis of blood concentrations 

after repeated ingestion of flutamide every 8 hours confirmed the importance of hepatic 
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clearance, by showing that with parameterization B, hepatic clearance, unbound fraction in 

blood and, to a lesser extent, absorbed fraction were by far the most influent parameters (see 

SI section 8). Predicted triadimefon concentrations in rats with parameterization B were not 

significantly improved compared to parameterization A, although the in vitro hepatic 

clearance was also higher than the QSAR estimate. Even with in vitro clearance estimates, the 

internal concentrations were overestimated for both substances. 

3.2 Comparison of concentrations in blood between species and between substances 

The impact of the parameterization on relative concentration factors between human and rat, 

and between substances was evaluated using continuous exposure scenarios. Predictions for 

continuous 100-day oral administration of 1 mg/kg/day of each substance are shown in 

section 7 in supplementary information.  

Steady-state, here defined as 95% of the maximum predicted value, was not always achieved 

after 100 days of continuous exposure (see Table 12 and Figures 1 to 6 in Section 7 in SI). 

Parameterization A does not achieve steady-state even at 2000 days (over five years) for 

dienestrol, imazalil, cyproconazole, and triadimefon.  

Table 12: Substances for which steady state is not achieved after 100 days or 2000 days 
continuous exposure in humans  

 

In particular in humans, with increasing parameterization complexity, the predictions varied 

more widely from one substance to another (Figure 6). In particular, with parameterization A, 

elimination and metabolism were relatively small for all substances. Predictions in human at 

  
 100 days 2000 days 
A QSAR only flutamide, linuron, dienestrol, 

imazalil,  
thiacloprid, 
cyproconazole, triadimefon 

dienestrol, imazalil, 
cyproconazole, 
triadimefon 

B QSAR + in vitro valproic acid - 
C in vivo - - 
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2000 days were generally higher than in rat at 100 days (except for linuron in 

parameterization B and C and Triadimefon in parameterization B), although in humans in 

parameterization A, some substance concentrations had not reached steady-state. 

 

Figure 6: Predicted steady-state arterial concentration after exposure to 1mg/d/kg in humans 
and rats for each parameterization 

 

The concentrations predicted at steady-state with parameterization B were generally lower 

than those obtained with parameterization A, due to faster metabolism in the former. The in 

vitro hepatic clearances were indeed larger than those estimated with QSAR models except 

for valproic acid. With parameterization C, predicted internal concentrations were lower still 

in particular for flutamide. The various in vitro tests were mostly in agreement with each 

other: the clearance values obtained were within a factor 2 of the values obtained from the 

literature for linuron [35] and flutamide [37]. For imazalil in rats, the value was 4-fold lower 

than the value from the literature [35]. Using a clearance value rather than Michaelis Menten 

kinetics appears to be an acceptable approximation for linuron and imazalil: hepatic 

concentrations predicted in the various exposure scenarios were indeed lower than the value 

of Km. 

 



31 

 

The uncertainty around the predicted relative concentrations in human blood following a 

chronic 2000 day-exposure of the nine chemicals belonging to three cumulative assessment 

groups is represented in Figure 7, according to the three different parameterizations. In both 

humans and rats, the parameterization had most impact on predicted flutamide and dienestrol 

levels in blood; it had the least impact on thiacloprid and valproic acid. No relationship could 

be drawn between the amount of data available and the extent to which parameterization 

affected predictions. In all cumulative assessment groups, the overall level of arterial 

concentrations varied, as well as the concentrations of substances relative to each other 

(Figure 7). 

 

Figure 7: Predicted arterial blood concentrations after 2000 days continuous exposure to 
1mg/kg/day in humans in each cumulative assessment group using parameterizations A, B and 
C. 
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3.3 Kinetic absorption factors 

The kinetic absorption factor values represented in Figure 8 were obtained using liver 

concentrations over 100 days of continuous exposure. With parameterization A, they are 

mainly greater than 1. With parameterization B and C, they are mainly smaller than 1 in the 

flutamide-linuron-dienestrol group, and variable for the two other groups. 

 

Figure 8: Kinetic absorption factors in humans resulting from a 2000-day continuous exposure 
in each cumulative assessment group using parameterizations A, B and C, calculated as a ratio 
of the mean hepatic concentration over 100 days over the daily exposure per unit bodyweight. A 
value of 1 implies the hepatic concentration equilibrates with the daily dose per unit body 
weight. 
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4 DISCUSSION 

In the present paper, various ab initio parameterizations of the EuroMix generic PBTK model 

included in the MCRA platform were tested on nine substances belonging to three cumulative 

assessment groups. This paper illustrates how the level of knowledge used in the 

parametrization of PBPK models can affect their predictive capabilities. We also showed the 

impact on the parametrization on model outputs used in chemical risk assessment. In the 

current implementation in MCRA, the PBTK model for humans translates an external human 

exposure to an internal exposure and vice versa. The kinetic model includes three major 

exposure routes in order to model dermal, oral, and inhalation exposures and can, therefore, 

be applied to a variety of chemicals and exposure scenarios. The model can also be used to 

determine to which extent each exposure route contributes to the kinetics of a single chemical 

in each compartment and model kinetics of binary mixtures with metabolic interactions. In the 

hazard characterization part in MCRA, the first points of departure from animal studies are 

translated to a human internal concentration equivalent using an interspecies factor rather than 

the animal PBTK model.  

Detailed modelling requires detailed data which is not always available. Intestinal absorption 

rates, fraction absorbed, and elimination rates, either specifically as hepatic clearances, or 

more generally as elimination from blood, were often missing. As in silico or in vitro 

estimates of absorption were not available, default values were often used for the two 

intestinal absorption parameters although there is evidence that, in particular in non-

pharmaceutical substances, the observed absorbed fraction may be smaller than our default 

value of 1 and that intestinal absorption rate can vary significantly between substances [58]. 

The estimate of metabolic clearance using ab initio (QSAR) predictions is notably uncertain 
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as it involves multiple assumptions, that a) fish whole body clearance is mainly due to hepatic 

clearance, b) the fish hepatic clearance is an indication of (similar) rat and/or human hepatic 

metabolization, and c) that this can even be extrapolated quantitatively (applying allometric 

scaling). One obvious way to improve on the generic QSAR model estimations is to use a 

similar model specific for human whole body clearance [59] which has only recently become 

publicly available in a software implementation (QSARINS package, http://www.qsar.it/). 

Metabolic clearances were in some cases underestimated when based on in vitro data, either 

due to limitations of the in vitro assays or because metabolism may occur at sites other than 

the liver. Metabolic clearances were in some cases underestimated when based on in vitro 

data, either due to limitations of the in vitro assays or because metabolism may occur at sites 

other than the liver.  

The quality of prediction with the various parameterizations was variable. In parameterization 

C, a small number of parameters (most often: unbound fraction, renal excretion rate, absorbed 

fraction and intestinal absorption rate, depending on the substance) were calibrated to fit in 

vivo data for flutamide, clothianidin, imazalil and valproic acid. The results with in vivo 

parametrization were, as expected, in better agreement with the data than the ab initio 

parameterizations. In the data-rich case of valproic acid, most predictions were within a 2-fold 

factor of the observations, which is generally considered adequate [2]. Estimates of oral 

absorption and total clearance parameters were very uncertain and could be improved if input 

from in vivo data was available.  

Use of worst-case default values for absorbed fraction (1) and metabolism and elimination 

may lead to overestimation of internal concentrations, in particular under chronic exposure 

scenarios. The worst-case intestinal absorption rate could depend on each chemicals’ 

toxicokinetic and toxicodynamic characteristics and on the type of exposure scenario (acute or 
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chronic): high intestinal absorption rates result in short duration peak concentrations if the 

chemical is rapidly eliminated. In this case, uncertainty and variability on the absorption rate 

translate into uncertainty on the peak internal concentrations which are used in acute exposure 

risk assessment. On the other hand, low values of absorption rate are unrealistic in this PBTK 

model since they would lead to accumulation in gut. With our PBTK model, a value of 1 hr-1 

appears to be already relatively high, since sensitivity analysis showed that blood 

concentrations after repeated exposure to flutamide in parameterization B (kGut=1 hr-1) were 

not sensitive to variations in intestinal absorption rate. The default value for absorption rate in 

the httk package has been changed in more recent versions from 1 hr-1 to an even higher value 

of 2.18 hr-1. With our model, when using default values for metabolism and elimination, 

inaccuracies in predictions are likely to occur under chronic exposure scenarios with 

chemicals which are predicted to accumulate, due to low metabolism or poor elimination and 

accumulation of prediction errors over time. Furthermore, default values carry a large amount 

of uncertainty. When PBTK model parameters are obtained with ab initio approaches, such as 

with QSAR models, rather than from default values, the uncertainty on parameter values can 

be quantified and propagated in the PBTK model predictions. 

Overall, the use of default values illustrates how risk assessment tools must compromise 

between data availability and model complexity [7,60]: calibrating parameters is time-

consuming, and requires large amounts of in vivo data for the model to be predictive in dose-

to-dose extrapolation. Under the perspective of providing PBTK models for a large number of 

substances in lower-tier calculations, ab initio models that rely upon existing databases or 

simple QSAR models are more feasible. Their use is increasingly encouraged; many 

databases of physico-chemical parameters and in vitro-determined ADME properties are 

available and have been recently described [61]. Data from several sources could be 

combined in a meta-analysis before being used as input in PBTK parameterization. This 
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approach can also provide indications on the uncertainty and variability of the parameters. 

Recent examples of application show how the httk package can be used to analyses in vitro 

toxicity databases [62]. On the other hand, it is a bonus for higher-tier calculations if more 

complex models are also available. For cypermethrin, for example, precise simulations 

require diffusion-limited models [63], which is a complexification of all the flow-limited 

model implemented in MCRA: simpler models will imply sacrifices on precision and 

accuracy of the predictions. More complex kinetic models can be specified and linked to 

MCRA. 

The PBTK model can be used to compare bioaccumulation and kinetics of substances 

belonging to the same cumulative assessment group. Deriving relative concentration factors 

required choosing the tissue of interest and the metric used to summarize the kinetics of each 

substance in that tissue. In the present paper, kinetics were summarized by a steady-state 

concentration level in the case of continuous exposures, but, in the case of single or repeated 

boluses, relative internal concentration factors can also be derived on the basis of other kinetic 

metrics. The most commonly used kinetic metrics in relation to adverse effects are peak 

concentration, mean daily amount, steady-state-concentration, or Area Under the Curve 

(AUC) of the parent compound or one of its metabolites in blood or target tissue [64,65]. 

Short-term effects are generally characterized by peak or mean concentration in blood or 

target tissue [66], whereas longer-term effects tend to be predictable by cumulative measures 

of dose in tissues, as in MCRA. Attention is drawn to the fact that, in the case of chemicals 

that accumulate under chronic exposure scenarios, overestimation of internal concentrations 

which can occur with the use of default values. In cumulative risk assessment, these 

inaccuracies can build up to substantial overestimation of the risk. Furthermore, depending on 

the compound, metrics can be more appropriate when estimated using unbound rather than 

total concentrations [67]. All these metrics can be computed in MCRA.  
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In the present paper, relative concentration factors between substances were estimated based 

on blood concentration levels, because blood is an important biomarker of exposure and 

because blood level predictions are the least uncertain: in vivo data on kinetics in humans 

were often only available in this compartment. Here, the model was linear, therefore relative 

concentration factors based on steady-state concentrations are independent of the dose levels. 

In turn, these factors can allow conversion of internal relative potency factors (RPFs) between 

substances obtained from in vitro data into external RPFs in humans by translating internal 

concentrations into external doses. An example is provided in [12]. Furthermore, internal 

interspecies (as opposed to within-species) relative potency factors (RPFs) can also be 

estimated by multiplying the external interspecies RPFs by the kinetic absorption factor. 

In practice, within the context of cumulative risk assessment, realistic exposures are rarely 

constant, which means that internal concentrations fluctuate, and steady state is not achieved. 

When substances exhibit differences in internal kinetics, their internal concentration ratio will 

also be time-dependent, even if they are present in the environment or food at a constant ratio. 

In this case, the internal RPFs (within-species and between species) cannot be directly 

converted into an external RPF because internal concentration factors determined at steady 

state are no longer valid. This is of particular concern when at least one of the chemicals is 

absorbed and eliminated rapidly. Indeed, in case of an acute simultaneous exposure for 

example, if the response at the cell level is immediate, the difference in time of peak 

concentration may imply that once one chemical has reached the tissue, the other may no 

longer be present. In this case, predicting the response based on an addition of both peak 

concentrations could be a very conservative approach, which would overestimate the risk 

under the assumption of absence of any toxicodynamic interaction, and may call for a more 

sophisticated use of the PBTK model.  
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IVIVE integrates kinetic modelling into a larger goal of extrapolating the magnitude of 

effects. Using the internal kinetics, responses to mixtures, i.e. toxicodynamics, can be 

predicted, provided the dose-response relationship of each substance in a cumulative risk 

assessment group can be accurately modelled. However, this relies on several assumptions 

such as (i) dose additivity, (ii) absence of any carry-over effect [68], and (iii) relevance of the 

metric chosen to summarize internal kinetics towards the dose-response relationship. (i) As 

mentioned in the previous paragraph, dose-additivity may be a simplistic approach when 

steady-state is not achieved, because of the fluctuations in relative concentrations of the 

various compounds. (ii) Carry-over effects from one chemical to another occur when one 

substance has a lasting effect on the response to the other chemical, although it has been 

cleared from the target tissue. (iii) The metric chosen to represent the kinetics can be 

determinant on whether the response has time to occur. Unfortunately, data on dose-time-

relationships is rarely available, and therefore summarizing the predicted time-course of the 

concentration at the target organ is a convenient simplification. Adverse Outcome Pathways 

(AOPs) often include an implicit time-scale which depends on the level (molecular, cellular, 

tissue, or whole-body) at which each key event occurs [69,70]. In the perspective of modeling 

quantitative AOPs, PBTK models can provide an internal dose to be related to the molecular 

initiating event.  

5 CONCLUSION 

The generic PBTK model developed has been implemented in the MCRA platform to be used 

in cumulative risk assessment. The model can convert external exposure to organ-level 

exposure and can quantitatively extrapolate in vitro exposures to in vivo, as in the QIVIVE 

module of MCRA. The PBTK model implemented is generic regarding the substance and in 
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many cases will not take into account some physico-chemical or biological specificities of 

substances. The model can however be used in data-poor situations, so that calculations can 

be done for large numbers of chemicals. When used as more than a screening tool, accurate 

predictions call for a large amount of data and time-consuming adjustments of the model to fit 

the data.  

When associated with in vitro dose-response data, the PBTK model can provide either 

interspecies or inter-chemical potency factors at steady state, which is relevant for chronic 

risk assessment. Uncertainty factors can however be large, covering several orders of 

magnitude. 
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8 FIGURE LEGENDS 

Figure 1: Schematic representation of the EuroMix generic PBTK model implemented in the 

MCRA platform. 

Figure 2: Predicted vs. observed plasmatic, serum or blood valproic acid (VPA) 

concentrations in humans or rats. Symbols refer to the source studies. Black= 

parameterization A (QSAR), red= parameterization B (QSAR+vitro), blue = parameterization 

C (vivo).  

Figure 3: Predicted and observed plasma VPA concentrations in humans, according to 

parameterizations A (plain curve), B (dashed curve), and C (dotted curve). In [48], serum 

rather than plasma concentrations were reported. 

Figure 4: Predicted vs. observed plasmatic concentrations (flutamide and VPA) or cumulated 

amounts excreted in urine (Imazalil, µmol) in humans. Black = parameterization A (QSAR), 

red = parameterization B (QSAR+vitro), blue = parameterization C (vivo). 

Figure 5: Predicted vs. observed concentrations in rats for flutamide, triadimefon, and VPA 

with parameterizations A, B, and C.  

Figure 6: Predicted steady-state arterial concentration after exposure to 1mg/d/kg in humans 

and rats for each parameterization 

Figure 7: Predicted arterial blood concentrations after 2000 days continuous exposure to 

1mg/kg/day in humans in each cumulative assessment group using parameterizations A, B 

and C. 

Figure 8: Kinetic absorption factors in humans resulting from a 2000-day continuous 

exposure in each cumulative assessment group using parameterizations A, B and C, calculated 
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as a ratio of the mean hepatic concentration over 100 days over the daily exposure per unit 

bodyweight. A value of 1 implies the hepatic concentration equilibrates with the daily dose 

per unit body weight.  
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9 TABLE LEGENDS 

Table 1: Physiological parameter values used for the Euromix generic PBTK model 

Table 2: Characteristics of the three different parameterizations used 

Table 3: Substance-specific parameters in parameterization A in humans 

Table 4: Substance-specific parameters in parameterization B for humans obtained with 

screening or more specific in vitro tests. Other parameters have the same values as in 

parameterization A. 

Table 5: Substance-specific parameters used in parameterization C in human. PCAir was set 

to 1e+99 

Table 6: Summary of available in vivo data on kinetics. Details are provided in supplementary 

information, section 6.1 

Table 7: Rat and human PBTK parameters for valproic acid. 

Table 8: Percentage of VPA concentration predictions within a 10- and 2-fold factor of the 

observations 

Table 9: Percentage of VPA predicted AUC within a 10- and 2-fold factor of the observed 

AUC 

Table 10: Percentage of VPA predicted Cmax within a 10- and 2-fold factor of the observed 

Cmax 

Table 11: Percentage of predictions within a 10-fold factor of the observations 

Table 12: Substances for which steady state is not achieved after 100 days or 2000 days 

continuous exposure in humans 

 




