Life cycle assessment at the scale of France on Human health and aquatic environment of micropollutants released by wastewater treatment plants
Quentin Aemig, Dominique Steyer, Arnaud Hélias

To cite this version:
Quentin Aemig, Dominique Steyer, Arnaud Hélias. Life cycle assessment at the scale of France on Human health and aquatic environment of micropollutants released by wastewater treatment plants. 2. International Conference on Risk Assessment of Pharmaceuticals in the Environment (ICRAPHE), Nov 2019, Barcelone, Spain. hal-02735921

HAL Id: hal-02735921
https://hal.inrae.fr/hal-02735921
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Life cycle assessment at the scale of France on Human health and aquatic environment of micropollutants released by wastewater treatment plants

Quentin Aemig, Arnaud Hélias, Dominique Patureau
Micropollutants: an old story!

- Industries
- Agriculture
- Cities
- Food
- Plastics
- Drugs
- Household products
- Cosmetics

Briand et al. 2018
Environmental contamination

Transfer of contamination:
• Sorption to sludge
• Volatilization

Elimination from water:
• Physicochemical or biological transformation
• Mineralization

Adapted from: Barret M., 2009.
Environmental contamination

More than 20,000 WWTP in France:
Each day, around 14 millions m3 of water containing a huge diversity of micropollutants released in the environment

What is the potential impacts of these micropollutants on Human health and aquatic environment?

http://assainissement.developpement-durable.gouv.fr/
Substances selection

European policies
- Monitoring in aquatic environment

Studies with quantification in WWTP effluents

Studies considering emerging contaminants

Water Framework Directive
- French National Action RSDE
- French projects and studies
- Expert assessment of Synteau and INRA

286 substances selected: 261 organic compounds and 25 inorganic compounds
Selected substances

- Pharmaceuticals
- Pesticides
- Inorganic compounds
- PolyChloroBiphenyls
- PolyChloroDibenzo Dioxines and Furanes
- Polycyclic Aromatic Hydrocarbons
- Non classified
- Alkylphenols
- HaloPhenols
- HexaBromoCycloDoDecans
- PolyBromoDiphenylEthers
- BTEX
- Chlorobenzenes
- Organtins
- Halogenated Volatile Organic Compounds

Mainly pharmaceuticals and pesticides

15 families: high variety of compounds ⇔ high variety of fate and toxicity

Number of substances:
- Pharmaceuticals: 87
- Pesticides: 66
- Polycyclic Aromatic Hydrocarbons: 16
- PolyChloroDibenzo Dioxines and Furanes: 17
- PolyChloroBiphenyls: 18
- Inorganic compounds: 25
- Alkylphenols: 8
- HaloPhenols: 8
- HexaBromoCycloDoDecans: 5
- PolyBromoDiphenylEthers: 7
- Organtins: 4
- Chlorobenzenes: 3

15 families contain a high variety of compounds and are often found in the environment.
Calculation

One-year balance

Concentration

\[\frac{\mu g}{m^3} \]

\[x \]

Volume

Mass released to aquatic environment

Potential impacts on Human health and aquatic environment

\[x \text{ characterization factor (USEtox 2.1 \textregistered)} \]
Concentrations and annual masses released to aquatic environment

- Data representative of the whole WWTPs
- $C^o < \text{Quantification Limit} = \frac{QL}{2}$
- $\bar{C}^o = \text{geometric mean} + 95\% \text{ confidence interval}$

One-year volume = 5 billion m3

One-year mass = one-year volume \times concentration
Characterization factor

Reference method in Life Cycle Assessment for assessing human toxicity and freshwater ecotoxicity

DALY = Disability Adjusted Life Years = number of life years « lost » because of illness, handicap or death

PDF.m^3.j = Potentially Disappeared Fraction x cubic meter x day = fraction of species potentially disappeared integrated to volume and time

https://www.usetox.org/
Potential impacts calculation

Potential impact = one-year mass x characterization factor

Total impact = \(\sum \) impacts

Organic and inorganic compounds treated separately:

\(\neq \) concentrations \(\neq \) USEtox 2.1® \(\neq \) fate

Silva et al. 2002
Available data and selecting

- 261 organics (100%)
 - 225 (86%)
 - 153 (59%)

List

- 25 inorganics (100%)
 - 25 (100%)

Compounds with at least one concentration available

Compounds with more than 10% data > QL

- 24 (96%)

• Selecting allows to eliminate:
 • Non precise data
 • Substances poorly quantified with high QL which overestimate concentration
153 organic micropollutants mass released into aquatic environment

- Concentrations range: 0.1 ng.L\(^{-1}\) to 5 µg.L\(^{-1}\)
- 90% micropollutants: ng.L\(^{-1}\) < C° < µg.L\(^{-1}\)
- Mass range: kg to tons
- \(\sum 153 \approx 150\) tons

- 15/153 micropollutants represent 70% of the mass:
 - 9 pharmaceuticals \(\Leftrightarrow\) 48% of mass:
 - atenolol, carbamazepine, furosemide, sotalol, chlordiazepoxide, hydrochlorothiazide, ranitidine, irbesartan, valsartan
 - 6 other compounds \(\Leftrightarrow\) 22% of mass:
 - tetrachloroethylene, trichloromethane, dichloromethane, NP1EC, DEHP, AMPA
24 inorganic substances mass released into aquatic environment

- Concentrations range: 9 ng.L\(^{-1}\) to 200 µg.L\(^{-1}\)
- 90% micropollutants: 0.1 < C° < 40 µg.L\(^{-1}\)
- Mass range: 10\(^1\) kg to 10\(^3\) tons
- \(\sum 24 \approx 2\,000\,000\) tons

- 5/24 micropollutants represent 85% of the mass:
 - Iron, boron, aluminum, zinc and manganese

- Concentrations and mass in general higher than those of organic micropollutants:
 - Use in wastewater treatment (Fe)
 - Naturally present in water
 - No biodegradation
Available data and selecting

- 261 organics (100%)
 - 225 (86%)
 - 153 (59%)
 - 94 (36%)
 - 88 (34%)
 - 24 (96%)

List

- 25 inorganics (100%)
 - 25 (100%)
 - 24 (96%)

Compounds with at least one concentration available

Compounds with more than 10% data > QL

Human toxicity

- 15 (60%)

Characterized substances

Ecotoxicity

- 19 (76%)

Lack of characterization factors (especially for pharmaceuticals)
Characterization factors

- **Inorganic micropollutants CFs > Organic micropollutants CFs** in general (no biodegradation)
- **Inorganic micropollutants CFs** less precise
- **Fate**: use of mean speciation for inorganic compounds
Potential impacts of micropollutants on Human health

- **9/15** organic micropollutants with highest mass have CFs (atenolol, carbamazepine, furosemide, sotalol, hydrochlorothiazide, tetrachloroethylene, trichloromethane, dichloromethane and DEHP)

- **1/5** inorganic micropollutants with highest mass has CF (Zn)
Potential impacts of micropollutants on Human health

- **9/15 organic micropollutants with highest mass have CFs** (atenolol, carbamazepine, furosemide, sotalol, hydrochlorothiazide, tetrachloroethylene, trichloromethane, dichloromethane and DEHP)

- **1/5 inorganic micropollutants with highest mass has CF** (Zn)
Potential impacts of micropollutants on Human health

• Toxicity is very important when estimating potential impacts

<table>
<thead>
<tr>
<th>Potential impact on Human health (DALY – number of year lost)</th>
<th>94 organic micropollutants</th>
<th>15 inorganic micropollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (≈ 3 s/year/inhabitant)</td>
<td>818 (≈ 6.4 min/year/inhabitant)</td>
<td></td>
</tr>
</tbody>
</table>

• Potential impacts on Human health low

• No direct exposure (dermal exposure not considered in USEtox ®)

• Drinking water treatment before consumption (ozonation, active carbon)

• Missing CFs for emerging compounds (31/59 pharmaceuticals) and for highly concentrated inorganic micropollutants (iron, aluminium, etc.)
Potential impacts of micropollutants on Aquatic environment

- **8/15** organic micropollutants with highest mass have CFs (sotalol, atenolol, carbamazepine, tetrachloroethylene, dichloromethane, trichloromethane, NP1EC, DEHP,)
- **4/5** inorganic micropollutants with highest mass has CF (iron, aluminum, zinc, manganese)
Potential impacts of micropollutants on Aquatic environment

- **8/15 organic micropollutants with highest mass have CFs** (sotalol, atenolol, carbamazepine, tetrachloroethylene, dichloromethane, trichloromethane, NP1EC, DEHP)

- **4/5 inorganic micropollutants with highest mass have CF** (iron, aluminum, zinc, manganese)
Potential impacts of micropollutants on Aquatic environment

<table>
<thead>
<tr>
<th></th>
<th>88 organic micropollutants</th>
<th>19 inorganic micropollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential impact on Aquatic</td>
<td>61</td>
<td>2,858</td>
</tr>
<tr>
<td>environment (10^9 PDF.m^3.d)</td>
<td>(∼ 0.1 species potentially disappeared/year)</td>
<td>(∼ 6 species potentially disappeared/year)</td>
</tr>
</tbody>
</table>

- Micropollutants does have an impact on aquatic environment
- WWTP effluents versus other emissions in aquatic environment?
- Not taken into account: antibioresistance, endocrine disruption, cocktail effect, etc.
- Number of studied compounds <<<< number of existing compounds
Conclusions

• Potential impacts:
 • Low on Human health
 • Noticed on Aquatic environment ➔ comparison needed

• Toxicity generally more important than concentration for impacts

• Impacts calculated with 1/3 of selected micropollutants:
 • Lack of concentration data
 • Lack of toxicological and ecotoxicological data

• With our data, possible to estimate impacts linked to micropollutants in WWTP effluents

• Restricted number of substances compared to existing ones

• Restricted knowledge on the effects on Human health and aquatic environment

• Nanomaterials, nanoplastics, resistance genes present in WWTP effluents not taken into account

• Mean data at the scale of France and only additive effects considered
Perspectives

• **Comparison at WWTP scale:**
 - Other emissions (air, sludge)
 - Different treatments (e.g. tertiary treatments)

• **Comparison at catchment basin scale:** emissions from WWTP effluents, agriculture, industries, etc. ➔ **identify the main source of impact**

• **Comparison** of concentrations/masses **with values from other countries** (Europe, United States)

• Toxicity and LCA studies to **obtain missing characterization factors**
Thank you to Synteau for their scientific and financial support...

... and thank you for your attention!

q.aemig@gmail.com

French National Institute of Agronomic Research (INRA)

Laboratoire de Biotechnologie de l’Environnement, Université de Montpellier
102 Avenue des Etangs, 11 100 Narbonne, France

+33 (0)4 68 42 51 51
+33 (0)4 68 42 51 67
Barret, M., 2009. Devenir des perturbateurs endocriniens HAPs / NP / PCBs au cours de la digestion anaérobie de boues contaminées : rôle de la biodisponibilité et du cométabolisme. Université Montpellier II.

