

BSA-Seq: an efficient method to decipher a complex trait on Poplar, a highly heterozygous diploid genome

Aurelie Canaguier, Véronique Jorge, Vanina Guérin, Odile Rogier, Vincent Segura, Aurélie Chauveau, Elodie Marquand, Aurélie Berard, Marie-Christine Le Paslier, Catherine Bastien, et al.

► To cite this version:

Aurelie Canaguier, Véronique Jorge, Vanina Guérin, Odile Rogier, Vincent Segura, et al.. BSA-Seq: an efficient method to decipher a complex trait on Poplar, a highly heterozygous diploid genome. PAG XXVI - Plant and Animal Genome Conference, Jan 2018, San Diego, United States. , 1 p., 2018. hal-02736419

HAL Id: hal-02736419 https://hal.inrae.fr/hal-02736419v1

Submitted on 2 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BSA-Seq : an efficient method to decipher a complex trait on Poplar, a highly heterozygous diploid genome

Aurélie Canaguier¹, Véronique Jorge², Vanina Guérin², Odile Rogier², Vincent Segura², Aurélie Chauveau¹, Elodie Marquand¹, Aurélie Bérard¹, Marie-Christine Le Paslier¹, Catherine Bastien² and Patricia Faivre Rampant¹

1 - INRA, US 1279 Etude du Polymorphisme des Génomes Végétaux, F-91000 Evry, France 2 – INRA, UR 0588 AGPF, Centre INRA Val de Loire, Orléans, France

INTRODUCTION

The efficiency of the Bulk Segregant Analysis (BSA) has clearly been demonstrated to dete genomic regions and genes involved in various traits. It allows large experiments reducing t cost and time and preserving the power of full individual's population analysis. Over the pa few years the combination of BSA and Next Generation Sequence (NGS) data (BSA-Seq) h given a new accuracy and robustness to the discovery of genes and genomics region underlying traits of interest, mainly on crop and model species (1).

In our study, we applied the BSA-Seq on Poplar, a heterozygous and diploid genome, decipher the genetic determinism of leaf rust resistance. As a proof of concept, we focused R_{us}, a major gene previously fine-mapped on Chromosome 19 and controlling the urider size during the rust-Poplar interaction (2,3).

NALYSIS W	ORKFLOW		
STEP	TOOLS		RESULTS
Sequencing	TruSeq DNA IlluminaGA or HiSeq2000	 Paired-end reads (2x76bp and 2x101bp) Sizing 450-650bp 	Pt : 131 823 814 Pd : 314 757 684 Pd : 242 963 534 reads B2 : 216 556 986 B3 : 174 374 986 B4 : 197 757 684
Trimming	 Trimmomatic/0.32 (5) 	 Min Length = 36pb No N ; PHRED score > 20 on 4 bases (sliding windows) 	Pt: 72 634 382 Pd: 284 660 324 Pd: 284 660 324 B1: 206 186 462 B2: 186 221 932 B3: 152 344 640 B4: 178 663 234
Mapping	• BWA/0.7.12 (6)	 Ref : <i>P. trichocarpa</i> Nisqually v3.0 softmasked (4) (Default parameters) 	Pt: 70 713 777 Pd: 269 209 371 B1: 200 949 595 B2: 181 161 530 B3: 148 398 543 B4: 173 148 769
Merging and filtration	• SAMtools/1.3.1 (7)	 Reads with unique mapping in pair with quality score ≥ 30 	Pt: 51 903 451 Filtered Pd: 173 489 464 B1: 129 698 163 B2: 121 026 257 reads B3: 99 723 832 B4: 114 707 114
Variant detection	 FreeBayes/0.9.21 (8) 	 Multi samples detection on Chromosomes and scaffolds ≥ 50Kb Multi samples Depth ≥ 30 	Variant frequency : Chr. : 32,7 variant/kb Sc. >50kb : ~25 variant/kb
Variant validation	• R/3.3.1	 Conformity of the Mendellian segregation in the 4 Bulks (Pearson's Chi2) Parental depth > 10 Information on the 4 bulks 	Filtered variant frequency : Chr. : 5 variant/kb Sc. >50kb : ~0,7 variant/kb
Segregation identification	 In-house Perl scripts 	 Identification in each Bulk, of the specific allele(s) of <i>P. trichocarpa</i> and/or <i>P. deltoides</i>. Characterization of the segregation by bulk comparison 	On chromosomes : OTH RU On scaffolds : 0,02 to 0,07% 0,01 to 0 -269
Interval identification	 In-house Perl scripts 	 At least 2 consecutive variants with the same segregation. 	Intervals OTH 74 int. Intervals RUS 91 i
	Manual selection	 Interval size > 20nt 	Int. <u>OTH</u> on Chr01, 02, 03, 04, 05, 06, 08, 09, 10, 11, 12, 15, 16, 18 and ap 20

MATERIAL AND METHODS

MATERIAL

- Phenotyping for traits associated to the resistance to Melampsora larici-populina (Mlp) le rust of parents and **1414 progenies** from an interspecific cross :

Populus deltoides clone 73 028-62 (Pd) x Populus trichocarpa clone 101-74 (Pt)

- Independently DNA extractions with Qiagen Kit and genotyping (2,3).

METHOD – BULK CONSTITUTION

The selection of 62 progenies, based on genotyping of markers physically linked to $R_{\mu s}$ and the phenotypic information, was realized as described in Figure 1. Then, the corresponding DNA were pooled equimolarly into 4 bulks.

Figure 1. Population phenotyping and genotyping to select progenies for extreme and

intermediate Bulks.

METHOD – BULK COMPARISON

The **RUS** markers are expected to be polymorphic between the 2 parents and to cosegregate with [R_{US}] and R_{US}+. More precisely, a variant was considered as <u>RUS</u> whenever it fulfilled the following two conditions: (i) its alleles differed between the 2 parents; and (ii) its P. trichocarpa allele was present in bulks 1 and 3 and absent in bulks 2 and 4.

Positions which segregates in conformity with the resistance leaf rust and not with Rust are called « other » (**OTH**).

Figure 2. Analysis workflow and general results.

78101 93112 25F19 74H06 scaffold_20 (kb) < 820 660 720 600 780 170 scaffold_232 (kb) 15M01 16N23 **11N09** 97G09 25F19 , <mark>78101</mark> 110E15 36M18 74H06 380 260 320 500 Chr19 (kb) 140 **11N09** 50A15 30F11 #--<u>41A14</u>----# 97C12 53019 112P13 04J18-97F12 120 180 60 scaffold_25 (kb)

DESIGN OF NEW MARKERS ON A SPECIFIC REGION

Legend

RESULT 2

- Chromosome 19 or scaffolds of P. trichocarpa Nisqually v3.0
- Interval on *P. trichocarpa* Nisqually v3.0
- 1 partial new marker : one primer and partial amplicon
- 1, 2 or 3 new marker(s) : 2 primers and amplicon
- Pt BACs related to R_{us} allele
- *Pt* BACs related to $r_{\mu s}$ allele

BACs anchoring by new markers on one 74H06, 97C12 ^{25F19}... scaffold and on the Chromosome 19

Previous genetic and physical markers linked

to $R_{us}(2)$.

106H06

Figure 3. Description of the $R_{\mu s}$ gene environment.

NewM : New marker Int. : Interval Chr. : chromosome sc. : scaffold

CONCLUSION & PERSPECTIVES

BSA-seq method allows identification of P. trichocarpa and/or P. deltoides specific variants for complex trait in a diploid and heterozygous context and this, even if the mapping reference doesn't carry the searched region of interest.

Next steps are first to proceed the PCR experiments with the new markers on the parents and progenies to enrich the R_{us} fine-map; second to characterize the 23 other regions in segregation with the resistance to leaf rust.

Moreover this pipeline, usable on any heterozygous species, releases to the scientific community a high-confidence set of variant positions based on the conformity of the allele frequencies within the bulks.

REFERENCES

- (1) Cheng Z et al.: Genetic sample analysis in genetics and crop improvement. Plant Biotechnology Journal (2016) 14: 1941-1955.
- (2) Bresson A et al.: Qualitative and quantitative resistances to leaf rust finely mapped within two nucleotide-binding site leucine-rich repeat (NBS-LRR)-rich genomic regions of chromosome 19 in poplar. New Phytologist (2011) 192: 151–163.
- (3) Jorge V et al.: Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytologist (2005) 167: 113-127.
- (4) Tuskan G et al.: The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) Science (2006) 313:1596-1604.
- (5) Bolger A et al.: Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (2014) 30: 2114–2120.
- (6) Li H and Durbin R: Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics (2009) 25: 1754–1760.
- (7) Li H et al.: The Sequence Alignment/Map format and SAMtools. Bioinformatics (2009) 25: 2078–2079.
- (8) Garrison E and Marth G.: Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN]2012.
- (9) Untergasser A et al.: Primer3—new capabilities and interfaces. Nucleic Acids Res (2012) 40(15): e115.
- (10) Altschul S et al.: Basic local alignment search tool. Journal of Molecular Biology (1990) 215(3): 403-410.

THANKS TO CEA-CNG : A. Boland-Augé group for performing DNA samples QC, M.T Bihoreau and D. Lechner for providing INRA-EPGV group with access to their Illumina Sequencing Platform.

Plant Biology and Breeding Division F-78026 Versailles, France

97C12

EPGV group contact aurelie.canaguier@inra.fr

