R. S. Ayers and D. W. Westcot, Water quality for agriculture. FAO. Irrigation and Drainage Paper 29 Rev. 1, vol.174, p.pp, 1985.

M. Cornacchione and D. L. Suarez, Emergence, Forage Production and Ion Relations of Alfalfa in Response to Saline Waters, Crop Sci, vol.55, pp.444-457, 2015.

E. V. Maas, S. R. Grattan, C. Asa, . Sssa, and W. I. Madison, Crop yields as affected by salinity, Agricultural drainage. Agron. Monogr. 38, pp.55-108, 1999.

D. L. Suarez, . Lesch, J. D. Wood, and S. R. Lesch, Effect of SAR on water infiltration under a sequential rain-irrigation management system, Agric. Water Manage, vol.86, pp.150-164, 2006.

P. R. Carter and C. C. Sheaffer, Alfalfa Response to Soil Water Deficits. I. Growth, Forage Quality, Yield, Water Use, and Water-Use Efficiency, Crop Science, vol.23, pp.669-675, 1983.

B. Hanson, S. Orloff, B. Bali, D. Sanden, and . Putnam, Coping with Low Water Years: What strategies can you use? Proceedings, Western Alfalfa & Forage Conference, 2009.

R. E. Howitt, J. Macewan, J. Medillin-azuara, and . Lund, Economic Modeling of Agriculture and Water in California Using the Statewide Agricultural Production Model, CA Dept. Water Resources, 2010.

R. B. Lindenmayer, N. C. Hansen, J. Brummer, and J. G. Pritchett, Deficit Irrigation of Alfalfa for Water Savings in the Great Plains and Intermountain West, Agron. J, vol.103, pp.45-50, 2010.

S. Orloff, D. Putnam, B. Hanson, and H. Carlson, Implications of deficit irrigation management on alfalfa. California Alfalfa and Forage Symposium, 2005.

M. Ottman and D. H. Putnam, Deficit Irrigation with Alfalfa: What are the Economics?, Proceedings, 2017 Western Alfalfa & Forage Symposium, 2017.

D. H. Putnam, Strategies for the Improvement of Water-Use Efficient Irrigated Alfalfa Systems. Proceedings, California Alfalfa and Grain Symposium, pp.10-12, 2012.

A. Bertrand, M. Bipfubusa, A. Claessens, S. Rocher, and Y. Castonguay, Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa, Medicago sativa L.). Plant Sci, vol.264, pp.122-128, 2017.

Y. Castonguay, J. Cloutier, S. Laberge, A. Bertrand, and R. Michaud, A bulk segregant approach to identify genetic polymorphisms associated with cold tolerance in alfalfa, Cold Hardiness in Plants: Molecular Genetics, pp.88-102, 2006.

Y. Castonguay, R. Michaud, P. Nadeau, and A. Bertrand, An indoor screening method for improvement of freezing tolerance in alfalfa, Crop Science, vol.49, pp.809-818, 2009.

Y. Castonguay, A. Bertrand, R. Michaud, and S. Laberge, Cold-induced biochemical and molecular changes in alfalfa populations selectively improved for freezing tolerance, Crop Sci, vol.51, pp.2132-2144, 2011.

Y. Castonguay, M. Dubé, J. Cloutier, R. Michaud, A. Bertrand et al., Intron-length polymorphism identifies a Y2K4 dehydrin variant linked to superior freezing tolerance in alfalfa, Theor Appl Genet, vol.124, pp.809-819, 2012.

J. C. Glaubitz, T. M. Casstevens, F. Lu, J. Harriman, R. J. Elshire et al., TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline, PLoS ONE, vol.9, issue.2, p.90346, 2014.

A. E. Limin and D. B. Fowler, Breeding for cold hardiness in winter wheat: Problems, progress and alien gene expression, Field Crop Res, vol.27, pp.201-218, 1991.

R. Michaud, C. Richard, C. Willemot, and H. Gasser, Apica alfalfa, Can J. Plant Sci, vol.63, pp.547-549, 1983.

R. Michaud and C. Richard, AC Caribou alfalfa, Can J. Plant Sci, vol.72, pp.845-847, 1992.

P. N. Miklas, J. D. Kelly, S. E. Beebe, and M. W. Blair, Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding, Euphytica, vol.147, pp.105-131, 2006.

S. Rocher, M. Jean, Y. Castonguay, and F. Belzile, Validation of Genotyping-By-Sequencing Analysis in Populations of Tetraploid Alfalfa by 454 Sequencing, PLoS One, vol.10, issue.6, p.131918, 2015.

J. M. Barral and L. B. Zago, Programa para el Manejo Integrado de insectos y ácaros en algodón. INTA EERA Sáenz Peña, Chaco. Boletín 71, vol.32, 1983.

R. L. Doutt and . Debach, Some biological control concepts and questions, pp.118-142, 1964.

J. M. Imwinkelried and . Salto, Biotipo del pulgón azul de la alfalfa Acyrthosiphon kondoi Shinji (Homoptera: Aphididae) en Argentina, 1994.

J. M. Imwinkelried, . E. Albrecht;-c, ;. Salto, &. Zehnder, and . Galetto, Informe para Extensión 151. INTA, Estación Experimental Agropecuaria Rafaela. 4 p INTA-FAO. 1978. Compendio del curso de perfeccionamiento en Control Integrado de Plagas, 1992.

R. H. Macarthur and E. O. Wilson, The Theory of Island Biogeography. Monographs in Population Biology, 1967.

R. B. Root, Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea), Ecological Monographs, vol.43, pp.95-124, 1973.

V. ;. Stern, &. K. Smith;-r.-van-den-bosch, and . Hagen, The integration of chemical and biological control of the spotted alfalfa aphid: The integrated control concept, Hilgardia, vol.29, issue.2, pp.81-101, 1959.

L. ;. Zumoffen, M. Salto, and . Signorini, Alfalfa (Medicago sativa L.) como reservorio de insectos entomófagos, Revista FAVE -Ciencias Agrarias, vol.9, issue.1-2, pp.73-82, 2010.

E. T. Bingham and R. P. Murphy, Breeding and morphological studies on multifoliolate selections of alfalfa Medicago sativa L, Crop Sci, vol.5, pp.233-235, 1965.

D. Rienzo, J. A. Guzmán, A. W. Casanoves, and F. , A multiple-comparisons method based on the distribution of the root node distance of a binary tree, J. of Agric., Biol. and Env. Statistics, vol.7, issue.2, pp.129-142, 2002.

J. J. Doyle and J. L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochemistry Bulletin, vol.19, pp.11-15, 1987.

M. G. Etzel, J. J. Volenec, and J. J. Vorst, Leaf morphology, shoot growth, and gas exchange of multifoliolate alfalfa phenotypes, Crop Science, vol.28, issue.2, pp.263-269, 1988.

J. E. Ferguson and R. P. Murphy, Comparison of trifoliolate and multifoliolate phenotypes of alfalfa (Medicago sativa L.), Crop Sci, vol.13, pp.463-465, 1973.

N. A. Juan, C. C. Sheaffer, and D. K. Barnes, Temperature and photoperiod effects on multifoliolate expression and morphology of alfalfa, Crop Sci, vol.33, pp.573-578, 1993.

N. A. Juan, C. C. Sheaffer, D. K. Barnes, D. R. Swanson, and J. H. Halgerson, Leaf and stem traits and herbage quality of multifoliolate alfalfa, Agronomy J, vol.85, issue.6, pp.1121-1127, 1993.

B. Julier, S. Flajoulot, P. Barre, G. Cardinet, S. Santoni et al., Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers, BMC Plant Biology, vol.3, p.9, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02670483

G. D. Lacefield, Alfalfa quality: what is it? What we can do about it? And, will it pay?, Proc. National Alfalfa Symposium, 2004.

M. Nei, Analysis of gene diversity in subdivided populations, Proc. Nat. Acad. of Sci. USA, vol.70, pp.3321-3323, 1973.

M. Nei, Molecular evolutionary genetics, p.512, 1978.

D. Petkova and G. Panayotova, Comparative study of trifoliolate and multifoliolate alfalfa (Medicago sativa L.) synthetic populations, Bulgarian J.l of Agric. Sci, vol.13, pp.221-224, 2007.

C. C. Sheaffer, M. Mccaslin, J. J. Volenec, J. H. Cherney, K. D. Johnson et al., Multifoliolate leaf expression. Standard tests to characterize alfalfa cultivars, 1995.

K. Van-puyvelde, A. V. Geert, and L. Triest, ATetra, a new software program to analyse tetraploid microsatellite data: Comparison with Tetra and Tetrasat, Molecular Ecology Resources, vol.10, pp.331-334, 2010.

E. Biazzi, Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits, PLoS ONE, issue.1, p.169234, 2017.

K. S. Bora and A. Sharma, Phytochemical and pharmacological potencial of Medicago sativa: a review, Pharmaceutical Biology, vol.49, issue.2, pp.211-220, 2011.

E. A. Comeron, Cultivo e utilização da alfafa em pastejo para alimentação de vacas leiteiras, pp.131-149, 2015.

E. A. Comeron and L. A. Romero, La utilización de pasturas de alfalfa en los sistemas lecheros intensificados, Información Técnica de Producción Animal, vol.4, issue.2, pp.5-16, 2017.

X. Li, A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome. G3: genes, genomes, genetics, pp.1971-1979, 2014.

, 2017 -Organização das Nações Unidas diz que população mundial chegará a 8,6 bilhões de pessoas em 2030, Internacional. Agência Brasil. Disponível em

, POPULAÇÃO da América Latina pode aumentar 25% até 2061, 2015.

C. G. Ribeiro, Produção e consumo de brotos comestíveis, 2016.

A. Rodrigues and A. De, Cultivo e utilização da alfafa nos trópicos. São Carlos, SP: Embrapa Pecuária Sudeste, pp.345-378, 2008.

O. Tupy, Viabilidade econômica e financeira do pastejo em alfafa em sistemas de produção de leite, Revista de Política Agrícola, vol.24, issue.2, pp.102-116, 2015.

D. Vilela, Comparação de um sistema de pastejo rotativo em alfafa com um sistema de confinamento para vacas de leite. Archivo Latinoamericano de Produción Animal, pp.69-84, 1994.

D. Vilela, Prioridades de pesquisa e futuro da alfafa no Brasil, 2008.

, Cultivo e utilização da alfafa nos trópicos. São Carlos, SP: Embrapa Pecuária Sudeste, pp.2017-2035

E. C. Brummer, Capturing Heterosis in Forage Crop Cultivar Development, Crop Sci, vol.39, pp.943-954, 1999.

B. Julier, S. Flajoulot, P. Barre, S. Gaëllecardinet, T. Santoni et al., Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers, BMC Plant Biology, vol.3, issue.1, p.9, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02670483

&. Scotti and . Brummer, Creation of Heterotic Groups and Hybrid Varieties, 2010.

H. Yuegao, Global status and development trends of alfalfa, Alfalfa management guide for Ningxia, pp.1-14, 2009.

J. Zhang, B. Yin, Y. Xie, J. Li, Z. Yang et al., Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability. Cheng Z, vol.10, 2015.

. Bot, , vol.55, pp.130-141

E. A. Ainsworth, C. Beier, C. Calfapietra, R. Ceulemans, M. Durand-tardif et al.,

A. D. Leakey, K. F. Lewin, S. P. Long, R. Manderscheid, D. L. Mcneil et al., Next generation of elevated [CO2] experiments with crops: A critical investment for feeding the future world, Plant, Cell and Environment, vol.31, issue.9, pp.1317-1324, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02668821

D. K. Barnes, B. P. Goplen, J. E. Baylor, and . R. ;-r, Highlights in the USA and Canada, pp.1-24, 1988.

W. I. Madison,

M. Baslam, M. C. Antolín, Y. Gogorcena, F. Muñoz, and N. Goicoechea, Changes in alfalfa forage quality and stem carbohydrates induced by arbuscular mycorrhizal fungi and elevated atmospheric CO2, 2014.

, Biol, vol.164, pp.190-199

G. Bélanger, P. Rochette, Y. Castonguay, A. Bootsma, D. Mongrain et al., Climate change and winter survival of perennial forage crops in eastern Canada, Agron. J, vol.94, pp.1120-1130, 2002.

G. Bélanger, Y. Castonguay, A. Bertrand, C. Dhont, P. Rochette et al., Winter damage to perennial forage crops in eastern Canada: Causes, mitigation and prediction, Canadian Journal of Plant Science, vol.86, pp.33-47, 2006.

A. Bertrand, D. Prévost, F. J. Bigras, and Y. Castonguay, Elevated atmospheric CO2 and strain of rhizobium alter freezing tolerance and cold-induced molecular changes in alfalfa (Medicago sativa), Ann. Bot, vol.99, pp.275-284, 2007.

A. Bertrand, D. Prévost, F. J. Bigras, R. Lalande, G. F. Tremblay et al., Alfalfa response to elevated atmospheric CO2 varies with the symbiotic rhizobial strain, Plant Soil, vol.301, pp.173-187, 2007.

A. Bertrand, Temperature adaptation in a changing climate, Nature at risk. CABI Climate Change Series, issue.3, 2012.

J. H. Bouton, Breeding lucerne for persistence. Crop and Pasture Science, vol.63, pp.95-106, 2012.

Y. Castonguay, S. Laberge, E. C. Brummer, and J. J. Volenec, Alfalfa winter hardiness: A research retrospective and integrated perspective, Adv. Agron, vol.90, pp.203-265, 2006.

Å. Ergon, G. Seddaiu, P. Korhonen, P. Virkajärvi, G. Bellocchi et al., How can forage production in Nordic and Mediterranean Europe adapt to the challenges and opportunities arising from climate change?, Eur. J. Agron, vol.92, pp.97-106, 2018.

J. L. Hatfield, K. J. Boote, B. A. Kimball, L. H. Ziska, R. C. Izaurralde et al., Climate impacts on agriculture: Implications for crop production, Agron. J, vol.103, pp.351-370, 2011.

F. Ruget, J. L. Durand, D. Ripoche, A. Graux, F. Bernard et al., Impacts des changements climatiques sur les productions de fourrages (prairies, luzerne, maïs) : variabilité selon les régions et les saisons, Fourrages, vol.214, pp.99-109, 2013.

Á. Sanz-sáez, G. Erice, J. Aguirreolea, F. Muñoz, M. Sánchez-díaz et al., Alfalfa forage digestibility, quality and yield under future climate change scenarios vary with Sinorhizobium meliloti strain, J. Plant Physiol, vol.169, pp.782-788, 2012.

C. L. Sgherri, M. F. Quartacci, M. Menconi, A. Raschi, and F. Navara-izzo, Interactions between drought and elevated CO2 on alfalfa plants, J. Plant Physiol, vol.152, issue.1, pp.118-124, 1998.

J. F. Soussana and A. Lüscher, Temperate grasslands and global atmospheric change: A review, Grass Forage Sci, vol.62, issue.2, pp.127-134, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02665849

M. N. Thivierge, G. Jégo, G. Bélanger, A. Bertrand, G. F. Tremblay et al., Predicted yield and nutritive value of an alfalfa-timothy mixture under climate change and elevated atmospheric carbon dioxide, 2016.

, Agron. J, vol.108, issue.2, pp.585-603

M. N. Thivierge, G. Jégo, G. Bélanger, M. H. Chantigny, C. A. Rotz et al., Projected impact of future climate conditions on the agronomic and environmental performance of Canadian dairy farms, Agric. Sys, vol.157, pp.241-257, 2017.

G. Thorvaldsson, G. F. Tremblay, and H. T. Kunelius, The effects of growth temperature on digestibility and fibre concentration of seven temperate grass species, Acta Agric. Scand. Sect. B -Soil & Plant Sci, vol.57, p.322, 2007.

S. Wan, D. Hui, L. Wallace, and Y. Luo, Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie, Global Biogeochem. Cycles, vol.19, pp.1-13, 2005.

E. Comeron and L. A. Romero, Utilización de la alfalfa para vacas lecheras en pastoreo, vol.14, pp.305-334, 2007.

E. Comerón, L. Romero, M. Vera, J. Villar, M. Maciel et al., Algunas consideraciones sobre la evolución del proceso de intensificación de la lechería argentina y los aportes del INTA. Información técnica de producción animal, 2016.

E. A. Comeron and L. A. Romero, La utilización de pasturas de alfalfa en los sistemas lecheros intensificados. Información Técnica De Producción Animal, 2017.

A. M. Descalzo, L. Rossetti, R. Páez, G. Grigioni, P. T. García et al., Differential Characteristics of Milk Produced in Grazing Systems and Their Impact on Dairy Products, Milk Production, Greenhouse gas emissions on British dairy farms DairyCo C footprinting study, vol.147, pp.73-81, 2012.

A. Leip, F. Weiss, T. Wassenaar, I. Perez, T. Fellmann et al., Evaluation of the livestock's sector contribution to the EU greenhouse gas emissions (GGELS), Final report, EC, 2010.

D. O'brien, J. L. Capper, P. C. Garnsworthy, C. Grainger, and L. Shalloo, A case study of the carbon footprint of milk from highperforming confinement and grass-based dairy farms, Journal of Dairy Science, vol.97, issue.3, pp.1835-1851, 2014.

C. Opio, P. Gerber, A. Mottet, A. Falcucci, G. Tempio et al.,

, Greenhouse Gas Emissions from Ruminant Supply Chains-A Global Life Cycle Assessment. FAO

, Chinese Academy of Agricultural Sciences, China, 3 Agriculture and Life Sciences Dep, p.5

D. Hannaway, To improve potential yield prediction through crop simulation modeling. MATERIALS AND METHODS ? Assemble existing agro-ecological/alfalfa zone maps from scientific literature and seed companies. ? Review yield data and expert recommendations from field trial data in each alfalfa production zone. ? Create logistic response functions for T-min and T-max parameterized for each cultivar class. ? Develop suitability maps using GIS layers and response functions and validate in each growing zone. ? Develop seasonal and annual yield maps from APSIMX-Lucerne crop model and verify from yield data. ? Create extension and journal manuscripts and web-based materials for cultivar selection. ? Conduct professional development workshops for outreach personnel. RESULTS ? Collaborators identified for USA, PRC, New Zealand, and Australia. ? Project planning sessions held at national and international forage meetings. ? Quantitative tolerances developed and mapped for example FD/WSI class. ? Logistic functions parameterized for 8 clover species demonstrated the improved approach to be used. ? Prototype selection process flowchart and web application developed. ? APSIMX-Lucerne crop simulation model shows good agreement between predicted and observed values. CONCLUSIONS This project will: (1) connect alfalfa scientists and seed industry specialists in several countries leading to faster, more efficient research progress, GIS INTRODUCTION: There are hundreds of alfalfa cultivars within 11 fall dormancy (FD) and 6 winter survival index (WSI) classifications, vol.3, pp.660-667, 2005.

B. Sharratt, Base temperature for the application of the growing-degree-day model to field-grown alfalfa, Field Crops Res, vol.21, issue.2, pp.95-102, 1989.

E. Teixeira, Growth and phenological development patterns differ between seedling and regrowth lucerne crops (Medicago sativa L.), European J. Agron, vol.35, issue.1, pp.47-55, 2011.

*. Ivelic-sáez, J. Valenzuela, J. Suarez, and A. ,

*. Ojeda and J. J. , *jorge.ivelic@inia.cl Yield gap analysis of lucerne (Medicago sativa L.) in the Argentinian Pampas Jáuregui, Instituto de Investigaciones Agropecuarias INIA Kampenaike

C. Facultad-de and . Agrarias-;-van-ittersum, The profitability of dairy systems in the Argentinian Pampas could increase by reducing the lucerne yield gap in these environments. OBJECTIVES: to explore potential and actual lucerne yields and consumption levels to identify, in the future, the main drivers that could reduce production and utilisation losses. MATERIALS AND METHODS: A literature review was conducted to identify gaps between current and potential production and consumption of lucerne pastures on dairy farms in the Argentinian Pampas. RESULTS: The world record for lucerne yield is from Yuma Valley, Arizona (USA), with ~59 t ha -1 . Such yield was achieved under potential conditions: arid climate, sandy soils with irrigation (~9400 mm), high fertilisation (515 kg P2O5 ha -1 and 570 kg N ha -1 ) and under cutting. In Argentina, considering only maximum short-term growth rates (which occur in spring) and full irrigation, lucerne yield could potentially reach 47 t ha -1 . However, low temperatures and short photoperiods reduce aerial biomass accumulation, Australia * josemartinjauregui@gmail.com KEYWORDS: Yield potential, 2013.

, Indicadores productivos de tambos del movimiento CREA, AACREA, 2016.

D. H. Basigalup, Avances en Alfalfa. Ensayos territoriales. EEA Manfredi-INTA, Año 26 -Nº 26, vol.86, 2016.

J. Baudracco, Effects of stocking rate on pasture production, milk production and reproduction of supplemented crossbred Holstein-Jersey dairy cows grazing lucerne pasture, Animal Feed Science and Technology, vol.168, pp.131-143, 2011.

L. Gastaldi, El tambo argentino: una mirada integral a los sistemas de producción de leche de la región pampeana, 2015.

B. Lazzarini, Evolución de la suplementación, el consumo de pastura y la producción de leche en sistemas lecheros de argentina, Fave. Sección ciencias agrarias, vol.13, pp.73-78, 2014.

A. Ludwick, High Yield Alfalfa: 24 tons Irrigated, Better Crops, vol.84, pp.18-19, 2000.

M. K. Ittersum, Avances en Alfalfa. Ensayos territoriales. EEA Manfredi-INTA, Año 18 -Nº 18, Field Crops Research, vol.143, pp.4-17, 2008.

J. M. Jáuregui, . Delbino, . Ballanti, and M. Bosio,

. Fac, . De-cs, and . Agrarias, On each plot, 3 images were taken with a cell phone using Canopeo. The cell phone was held ~1 m above the canopy and pictures were taken at a straight angle. Simultaneously, light interception was measured with a Line Quantum Sensor (LI-Cor LI190SA) by making one measurement above and 4 measurements below the canopy per plot. On the same spots where images were taken and light interception was measured, lucerne biomass was determined. This was done by cutting to ground level a 1.5m 2 area in each plot. Samples were forced-oven dried (65°C) until constant weight. Linear regression models were constructed to determine the capability of Canopeo to predict biomass and light interception of alfalfa crops. Models were evaluated using ttest analysis (?=0.05) and their goodness of fit, ecophysiological studies. Traditional methods to measure light interception require using expensive equipment with little portability (i.e. LI-190SA, AccuPAR, SunScan), 2017.

, In the case of light interception, Canopeo was also able to predict values with very good accuracy without the need to consider seasons, RESULTS: The overall goodness of fit for biomass was 0.86 for Spring & Summer (y=22.44X) and 0.77 for Autumn & Winter (y=-1361.5+30.4X) (p<0.05, Figure 1a)

R. N. Lati, S. Filin, and H. Eizenberg, Robust methods for measurement of leaf-cover area and biomass from image data, Weed Science, vol.59, pp.276-284, 2011.

A. Patrignani and T. E. Ochsner, Shoot and root biomass of lucerne (Medicago sativa L.) were affected by sowing dates and inoculation treatments, Agronomy Journal, vol.107, pp.2312-2320, 2015.

J. M. Jáuregui, *. Mills, D. B. Black, K. Wigley, H. Ridgway et al., This experiment tested the effects of different sowing dates from summer into autumn and different inoculation treatments. OBJECTIVE: The aim of this work was to understand how different sowing dates and inoculation treatments affected crop physiological responses during the seedling stage and for the first two growing seasons. MATERIALS AND METHODS: A field experiment with rainfed 'Force 4' (fall dormancy 4) lucerne was established as a split plot design with three replicates at Lincoln University, soils with no previous history of lucerne, positive effects of inoculation have been reported, vol.7647, p.3, 2011.

. Sim, Root biomass was higher (P<0.05) from early sowing dates, but by the end of the experiment all treatments had >3 t ha -1 of perennial biomass. Inoculation increased (P<0.05) shoot yield by 40% compared with the uninoculated control (16.6±0.1 vs. 13±0.2) in the first year. Bare seed treatments fixed 50% less (P<0.05) nitrogen during the winter and early spring of 2012. This was linked to less nodulation and reduced nitrogen content in shoots of the uninoculated treatment. However, after late spring, nitrogen fixation was similar among all treatments. This was probably linked to the presence of a small proportion (~18%) of RR128 strains in nodules from the bare seed treatment, as indicated from DNA analysis. Same analysis also showed a large proportion of other bacteria (particularly Erwinia spp.) in those nodules. A 20% decrease in RUEshoot was measured in uninoculated crops compared with inoculated ones, probably due to reduced photosynthesis due to a lower shoot N%. Root biomass was unaffected by inoculation and all treatments reached >3.5 t ha -1 by the end of the experiment. Uninoculated lucerne crops appeared to have similar accumulation rates of perennial biomass despite lower N fixation and N content in shoots. This supports the idea that perennial biomass accumulation is driven by ontogeny and less affected by the environment, 2012.

S. Berenji, Lucerne dry matter and N-fixation, when sown with or without lime and inoculant, Journal of New Zealand Grasslands, vol.77, pp.109-116, 2015.

D. Moot, An overview of dryland legume research in New Zealand, Crop and Pasture Science, vol.63, pp.726-733, 2012.

D. Moot, Base temperature and thermal time requirements for germination and emergence of temperate pasture species, New Zealand journal of agricultural research, vol.43, pp.15-25, 2000.

R. E. Sim, Sowing date affected shoot and root biomass accumulation of lucerne during establishment and subsequent regrowth season, European Journal of Agronomy, vol.68, pp.69-77, 2015.

E. I. Teixeira, Growth and phenological development patterns differ between seedling and regrowth lucerne crops (Medicago sativa L.), European Journal of Agronomy, vol.35, pp.47-55, 2011.

R. Wynn-williams and E. D. Bolaños-aguilar, Effect of sowing date on lucerne emergence, survival, nodulation, and early growth, New Zealand Journal of Experimental Agriculture, vol.4, pp.333-345, 1976.

R. B. Hutmacher, Crop water stress index for seed alfalfa: influences of within-season changes in plant morphology, Agric. Water Manag, vol.19, pp.135-149, 1991.

J. Rodríguez, Conceptos para el mejoramiento de especies forrajeras, E.E.R.A. Anguil, INTA. Publicación miscelánea N°, vol.8, pp.3-10, 1983.

S. Sengul, Using path analysis to determine lucerne (Medicago sativa L.) seed yield and its components, New Zealand Journal of Agricultural Research, vol.49, pp.107-115, 2006.

*. Monteros, . He, . Choi, . Zhao, . Dai et al.,

O. K. Ardmore and . Usa, National Center for Genome Resources, vol.2

J. Craig, , vol.6

C. U. Davis and X. References:-dai, Genome Annotation of the Cultivated Alfalfa at the Diploid Level (CADL). PAG Conference, vol.14, 2016.

C. A. Pag-conference-;-san-diego and J. A. O&apos;rourke, The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies, BMC Genomics, vol.16, p.502, 2015.

. Moot, These maximize consumption of high quality leaf and soft stem, particularly in spring and summer. A period of extended growth in autumn is used to recharge underground reserves to maintain persistence of the alfalfa stands. This paper summarises the grazing rules, liveweight gains and on-farm experiences of farmers adopting them. OBJECTIVE: To quantify animal production by sheep from rotationally grazed alfalfa in New Zealand. MATERIALS AND METHODS: Data source, Private Bag 3 Kurow, NZ. *Corresponding author: Derrick.Moot@lincoln.ac.nz KEYWORDS: Grazing management, 2003.

, Grazing in spring commences when the first paddock is 10-15 cm tall and is stocked at ~12 ewes+twin lambs per ha. These animals complete the first rotation through six paddocks in 28-35 days depending on weather conditions. The second rotation aims for all paddocks to be 35-40 cm tall on entry. This equates to about 3 ton of dry matter (DM) per ha. In Canterbury, liveweight gain was measured 2-4 weekly on-station with 3-5 years of data analysed. On-farm production gains are reported over a 10 year period from Bonavaree farm in Marlborough (550 mm average annual rainfall) and a 9 year period at Bog Roy Station in the Mackenzie District (450 mm average annual rainfall). RESULTS: On-station experiments consistently showed twin lambs growing >300 g/hd/d from birth to weaning (Fig 1a) which allowed them to reach killing weights (>17.5 kg carcass weight) in 100-120 days. On-farm production at Bonavaree has increased meat production per hectare by 94% over 10 years through increased lambing percentage (117 vs. 143%), and, each case alfalfa was rotationally grazed from early spring until water deficits stopped growth in summer. A period of 6-7 weeks regrowth is advocated in autumn which is the only time plants are allowed to flower

D. J. , ) of ewes and suckling twin lambs grazing dryland lucerne for three dryland alfalfa grazing experiments in Canterbury and b) changes in lamb weaned (t) and number of ewes mated at Bog Roy Station in the Mackenzie District. CONCLUSIONS: Adoption of changes in grazing management for alfalfa has resulted in increased animal production per head and per hectare on-farm. Changed grazing management has transformed over 200,000 ha of low rainfall areas in New Zealand. REFERENCES: Moot, Journal of New Zealand Grasslands, vol.78, pp.27-33, 2016.

D. J. Moot, ACKNOWLEDGEMENTS: This work was undertaken as part of Phase II of the Pastoral 21 Programme, funded by the Ministry for Business, Innovation & Employment; DairyNZ; Beef + Lamb NZ; and Fonterra, and Ministry for Primary Industries, New Zealand Grassland Association Research & Practice Series, vol.11, pp.201-208, 2003.

, Alfalfa (Medicago sativa L.) coumestrol phytoestrogen content in response to genotypes, cultivar and viral disease

M. Silva, . Chiacchiera, . Mamaní, . Giolitti, . Trucco et al., MATERIALS AND METHODS: plant material: seven genotypes from cv Monarca SP INTA (M) used as susceptible and six genotypes from cv Traful PV INTA (T) used as tolerant were cloned and divided into two groups: 3 infected clones and 3 non-infected clones (NI). The trial was conducted in the greenhouse under controlled conditions. Plants were covered with an anti-aphid fabric to prevent virus infection by insect vectors. COU content in both conditions (I and NI) was measured by HPLC in 6 cuts in ppm (18 measures for each genotype)

, Most of the genotypes showed a general trend to increase coumestrol production in response to viral infection

, however, only four genotypes (M18, M29, T140 and T124) significantly (p<0.05) increased COU content relative to their NI counterparts (Table 1). As expected, M behaved as more susceptible (p<0.05) than T, with mean SI values 73.57% and 50%, respectively (Table 1). A negative association (p<0.05) between SI and COU differences (I relative to NI) was detected for M