Feasibility of moderate load eccentric bed-cycling training during dialysis
Laura Pavlin, Rauhiti Lowgreen, Florian Fernandez, Isabelle Ohreser, Henri Bernardi, Cécile Turc Baron, Robin Candau

To cite this version:

HAL Id: hal-02737132
https://hal.inrae.fr/hal-02737132
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License
Feasibility of moderate load eccentric bed cycling during dialysis

Laura Pavlin1,2*, Rauhiti Lowgreen1, Florian Fernandez2, Isabelle Ohresser2, Henri Bernardi1, Cécile Turc-Baron2 and Robin Candau1

1 INRA, UMR 866, Muscular Dynamics and Metabolism, 2 place Pierre Viala, 34 060 Montpellier
2 AIDER Santé, Lapeyronie Hospital, 371 avenue du Doyen Gaston Giraud, 34 090 Montpellier
*Send correspondence to: laura.pavlin@inra.fr

Renal disease constitutes a slow and progressive loss of kidney function. End-stage renal disease (ESRD) patients must substitute deficient kidneys and undergo dialysis, a treatment taking place three times a week for 4h. Hemodialysis patients are considered as super-sedentary, suffering from a chronic illness often associated with numerous comorbidities and displaying among the lowest daily activities. As physical activity decreases, deconditioning operates and conduces to an important muscle wasting, critical for patients’ outcomes. Physical activity constitute an efficient form of intervention to restore functional abilities and quality of life of hemodialysis patients. Among exercises, moderate load bed-cycling seems to be the most propered. Nevertheless, old patients and those suffering from malnutrition are not able to sustain energy expenditure of conventional cycling, i.e. concentric cycling. Indeed, concentric contractions are associated with high metabolic and cardiovascular strains leading an early fatigue, which often motivates an abandonment. Recently, it has been proposed that negative work, i.e. eccentric cycling, could be an efficient strategy to exercise frail elderly people. Eccentric contractions produce high forces at low metabolic and cardiovascular costs and may largely improve muscular force and mass.

INTRODUCTION

This study aimed to evaluate feasibility and efficiency of moderate load eccentric bed-cycling training on 10 healthy individuals, and establish whether this training modality could be implemented into hemodialysis patients’ routine care. Development of a bed-adapted eccentric ergometer allowed to conduct 5 training sessions during a 3 weeks period at increasing intensity. Force-speed relationship, maximal voluntary knee extension force and neural activation of all subjects were evaluated before and after the program.

MATERIAL & METHODS

DEVELOPMENT OF A BED-ADAPTED ECCENTRIC ERGOMETER
- Motor fixed to a patient lift
- Classic chainset in direct drive
- Pedals with integrated power meter

Subjects have to brake pedals’ movement generated by the engine, producing eccentric contractions

STUDY PARTICIPANTS & DESIGN
- 10 healthy volunteers: 4 women, 6 men
- Age: 39.5 ± 15.5 years old, Height: 175 ± 10 cm, Weight: 70 ± 16 kg
- Longitudinal study with autocorrelation of each participant

PRE POST
Force-speed relationship (Friction loaded cycle)
Maximal voluntary contraction force (Dynamometer)
Neural activation during maximal contraction (EMG)

MODERATE LOAD ECCENTRIC BED-CYCLING TRAINING FEASIBILITY
- Rate of perceived exertion (RPE) was estimated on a modified Borg’s scale: 0 = no effort to 10 = extremely hard
- RPE is not proportional to increased speed
- Speed <70 rpm was easier for all subjects

NO IMPROVEMENT OF MAXIMAL THEORIC FORCE AND SPEED
Force-speed relationship was not statistically different (p=0.1) after the program

EARLY GAINS IN MAXIMAL ISOMETRIC FORCE AND CYCLING POWER
Maximal isometric force increased by 17% while maximal power increased by 8%

FUNCTIONAL AND STRUCTURAL MUSCLE ADAPTATIONS
EMG signal improvement (+22%) was mainly due to functional adaptations

CONCLUSION & PERSPECTIVES
After 3 weeks of training, maximal voluntary knee extension force was significantly improved in all subjects, with a mean increase of 17% (p<0.001). Analysis of EMG signal showed a mean improvement of 22% (p<0.05) in neural activation of leg extensors muscles. Whether maximal cycling force and speed showed no significant changes (p=0.1), maximal cycling power was significantly higher (+8%) after training program. Taken together, these results show that 5 sessions of moderate load eccentric bed cycling (i) was feasible and efficient (ii) involved both structural and functional adaptations and (iii) allowed early force and power gains in healthy subjects. Implementation into dialysis’ patients routine care could permit to promote exercise practice during dialysis without excessive perceived exertion, avoiding early fatigue and potential abandonments to training programs.