

Diversity of Tobacco etch virus pathotypes faced with pepper resistance sources and durability potential of resistance genes

Benoît Moury, Bülent B. Arpaci, Vincent Simon, Alain Palloix

► To cite this version:

Benoît Moury, Bülent B. Arpaci, Vincent Simon, Alain Palloix. Diversity of Tobacco etch virus pathotypes faced with pepper resistance sources and durability potential of resistance genes. 17. Eucarpia Meeting on Genetics and Breeding of Capsicum and Eggplant, Sep 2019, Avignon, France. INRA, Centre de recherche Provence-Alpes-Côte d'Azur, 263 p., 2019, Innovations in Genetics and Breeding of Capsicum and Eggplant. Proceedings of the 17th EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant September 11-13, 2019 | Avignon - France. hal-02737252

HAL Id: hal-02737252 https://hal.inrae.fr/hal-02737252

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Diversity of Tobacco etch virus pathotypes faced with pepper resistance sources and durability potential of resistance genes

Moury B¹, Arpaci BB², Simon V³, Palloix A^{4†}

¹UR407 Pathologie Végétale, Avignon, France. ²Agriculture Faculty, Horticulture Department, Kilis Yedi Aralık University, Kilis, Turkey. ³INRA, UMR BFP, Villenave d'Ornon, France. ⁴INRA, UR I 052 GAFL, Avignon, France

- **BACKGROUND** Potyviruses are an important agronomic constraint to pepper (*Capsicum* spp.) production, worldwide. Compared to other potyviruses, *Tobacco etch virus* (TEV) has rather limited natural host range and geographical distribution. The main crops affected by TEV are tobacco (*Nicotiana tabacum*) and pepper and TEV is mostly prevalent in the Americas, Turkey and sporadically in China. In pepper, several recessive resistance alleles at the *pvr1/pvr2* locus, which encodes the eukaryotic initiation factor 4E (eIF4E), are available to control TEV and the corresponding resistance-breaking factor in TEV is the VPg (viral protein genome-linked). Until now, the spectrum of action of these different alleles has only been evaluated with a limited set of TEV isolates.
- **MATERIALS & METHODS** We used a worldwide collection of 16 TEV isolates to evaluate the spectrum of action and durability potential of five *pvr1/pvr2* resistance alleles in laboratory conditions and under mechanical inoculation.
- **RESULTS** The 16 TEV isolates infected the susceptible controls 'Yolo Wonder' and 'Yolo Y' homozygous at the *pvr2*⁺ and *pvr2*¹ alleles, respectively. Phenotypes of resistance (i.e. no detectable TEV accumulation at the systemic level) and of susceptibility (i.e. presence of symptoms and TEV detection at the systemic level) were observed in the four remaining pepper genotypes homozygous at the *pvr2*², *pvr2*⁷, *pvr2*¹⁴ or *pvr1* alleles, depending on the TEV isolate. Some genotypes had heterogeneous responses to inoculation with some TEV isolates, with both resistant and susceptible plants. In several of these cases, the TEV populations in susceptible plants showed amino acid changes in the VPg, indicative of resistance breakdown. The *pvr2*¹⁴ allele had the broadest resistance spectrum (14 of 16 isolates), followed by *pvr1* (10/16), *pvr2*² (9/16) and *pvr2*⁷ (4/16). In all, eight different pathotypes of a theoretical total of 16 were observed (Table 1). VPg mutations associated with resistance breakdown have been observed at amino acid positions 109 and 119 for the pvr1 allele and at position 120 for the *pvr2*² allele.
- **DISCUSSION & CONCLUSION** Although fewer *pvr2* alleles confer resistance to TEV than to the other potyvirus *Potato virus* Y (PVY) [1], there is a similarly high diversity of pathotypes in the two viruses. Such diversity is potentially driven by coevolution between pepper and potyviruses [2] but it is difficult to identify which potyvirus species has (or have) exerted a selection pressure on pepper. In addition, this study provides new informations about the resistance spectrum and potential of durability of different *pvr1/pvr2* alleles.

REFERENCES

- [1] Moury B et al., 2014, Infection, Genetics and Evolution, 27:472–480. doi: 10.1016/j.meegid.2013.11.024.
- [2] Charron C et al., 2008, The Plant Journal, 54:56-68. doi: 10.1111/j.1365-313X.2008.03407.x.

ACKNOWLEDGEMENTS

This work was supported by the Plantum working group Phytopathology. Bulent Arpaci thanks the Agropolis Fondation for covering the registration fees for the 17th EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant.

Pathotype	pvr22	pvr27	pvr214	pvr1
1 (n=2)	R	R	R	R
2 (n=3)	R	S	R	R
3 (n=3)	S	S	R	R
4 (n=2)	S	S	S	R
5 (n=2)	R	R	R	S
6 (n=2)	R	S	R	S
7 (n=1)	S	S	PR	S
8 (n=1)	S	S	S	S

Table 1. The eight TEV pathotypes revealed by this study using four pepper genotypes with pvr2/pvr1 resistance alleles.R : resistant ; PR : partially resistant ; S : susceptible.

n : number of isolates belonging to each pathotype.

Innovations in Genetics and Breeding of Capsicum and Eggplant

Proceedings of the 17th EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant,

September 11-13, 2019 | Avignon - France

Editors: Véronique Lefebvre & Marie-Christine Daunay

Editors

Véronique Lefebvre & Marie-Christine Daunay

Title

Innovations in Genetics and Breeding of Capsicum and Eggplant

Sub-title

Proceedings of the 17th EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant September 11-13, 2019 | Avignon - France

Publisher

Institut National de la Recherche Agronomique (INRA)

Centre de recherche Provence-Alpes-Côte d'Azur 228 route de l'aérodrome CS 40 509 - Domaine Saint Paul, Site Agroparc, 84914 Avignon Cedex 9 - France

Visual identity

© Armelle Favery © Lyonel Liger assisted by Sabine Laugier

Layout design and editing Salima Kherchache

Printed by

SUD LABO, 35 avenue Pierre Sémard, 84000 Avignon - France

Artistic director