ASICS: identification and quantification of metabolites in complex 1H NMR spectra
Gaëlle Lefort, Laurence Liaubet, Cécile Canlet, Nathalie Villa, Rémi Servien

To cite this version:
Gaëlle Lefort, Laurence Liaubet, Cécile Canlet, Nathalie Villa, Rémi Servien. ASICS: identification and quantification of metabolites in complex 1H NMR spectra. European RFMF Metabomeeting 2020, Jan 2020, Toulouse, France. hal-02737383

HAL Id: hal-02737383
https://hal.inrae.fr/hal-02737383
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
EC oral 1: EC1

ASICS: identification and quantification of metabolites in complex 1H NMR spectra

Gaëlle LEFORT1,2; Laurence LIAUBET2; Cécile CANLET3 ; Nathalie VIALANEIX1 ; Rémi SERVIEN4

1 MIAT, Université de Toulouse, INRA, Castanet-Tolosan, France
2 GenPhySE, Université de Toulouse, INRA, ENVT, Castanet-Tolosan, France
3 Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
4 InTheRes, Université de Toulouse, INRA, ENVT, France

Introduction

Several high-throughput technologies allow to obtain metabolomic profiles in biological fluids: Mass Spectrometry (MS) or Nuclear Magnetic Resonance (NMR) for instance. Among them, NMR has the advantage of being less expensive and is viewed as a promising tool to detect interesting biomarkers easily. However, the interpretation of the obtained spectra is difficult since the identification and the quantification of the metabolites present in a complex mixture is not automatic.

Technological and methodological innovation

To ease and expand the use of NMR, we developed a new R package available on Bioconductor, ASICS (Automatic Statistical Identification in Complex Spectra; [1] and [2]), that proposes a complete pipeline for metabolomic spectra analysis. ASICS contains a statistical method to identify and quantify metabolites in a complex mixture by using a statistical model based on a library of pure metabolite reference spectra.

Results and impact

For some datasets, biochemical dosages of several metabolites were also available. Overall, ASICS exhibited a good sensitivity and specificity to retrieve present metabolites and a quantification that was strongly correlated to most metabolite dosages. In conclusion, ASICS allows a faster and simpler direct biological interpretation than the classical bucket approach and better results than other quantification methods such as Batman [3], Bayesil [4] or Chenomx [5].

References