



PÔLE ( AGRONOMIQUE OUEST













### NEW APPROACH FOR THE CHARACTERISATION OF DAIRY PROTEIN FOAMS STABILITY

A. Audebert <sup>1</sup>, S. Beaufils <sup>2</sup>, V. Lechevalier <sup>1</sup>, C. Le Floch-Fouéré <sup>1</sup>, A. Saint-Jalmes<sup>2</sup>, S. Cox <sup>3</sup>, S. Pezennec <sup>1</sup>

1 STLO, UMR1253, INRA, Agrocampus Ouest, 35000, Rennes, France 2 Institute of Physics Rennes, UMR6251 UR1-CNRS, Rennes University, 35000, Rennes, France 3 Institute of Mathematics, Physics and Computer Science, Aberystwyth University, SY23 3FL, Wales









# Dairy foams

- ✓ mechanical properties
- ✓ low density
- ✓ high surface area



example of food foams







### LMW surfactants vs proteins

| PROTEIN S           |                                                                | β-lactoglobulin<br>M = 18 000 g/mol | Sodium docecyl sulfate SDS<br>M = 288 g/mol  |
|---------------------|----------------------------------------------------------------|-------------------------------------|----------------------------------------------|
| Folded              | $\checkmark$                                                   | Proteins                            | Low Molecular Weight<br>LMW surfactants      |
| protein unfolding   | unfolding<br>self assoc                                        | iation (interface + bulk)           | no conformational changes<br>upon adsorption |
|                     | high surface visco-elasticity                                  |                                     | low or 0 surface visco-elasticity            |
|                     | adsorption $\approx$ irreversible<br>(Bos and van Vliet. 2001) |                                     | adsorption reversible                        |
| protein aggregation |                                                                |                                     |                                              |



# Stability in food sciences



In food sciences :

global stability = integrative of all of them

\*the time at which the first drop drained \*the cumulative weight of drained liquid as a function of time

improvement of protein foam characterisation by transposition of foam physics

- understanding the respective relation of these instability mechanisms with surface properties may help to understand protein foam stability
- surface properties : planar, semi-static conditions

What about the protein foam dynamics?



### Foam dynamics for proteins

(Krüss)







# Multi-scale approach





## Surface properties

area changes by dilatation/compression frequency = 0.2 Hz Drop 7 μl ± 0.75 μl

protein </br>solution

### pendant drop method

 $\leftrightarrow$ 

*surface dilatational modulus E'E'' (oscillation drop method)* 

#### Samples $\sigma_{(1600 s)}$ mN/m $\sigma_{(250 s)}$ mN/m untreated WPI $49,35\pm0.81$ bd ab $45,62\pm0.89$ WPI pH 3.5 0 h $51,57\pm0.02$ $49,00\pm0.24$ fg e WPI pH 3.5 125 h $49,07\pm0.39$ bc bc $46.53 \pm 0.17$ WPI pH 6.5 0 h 50,17±0.37 d $47,76\pm0.18$ de WPI pH 6.5 125 h 49,91±0.32 $47.08 \pm 0.24$ cd cd

surface tension (drop shape)

#### **D** no equilibrium state for proteins



broad variety of surface visco-elasticity kinetics

### Alexia Audebert - PhD student – EUFOAM2018



### T1 topological rearrangements



relaxation for different samples





### T1 duration depends on surface rheology

spearman correlations between dimensionlesss ratio and T1 duration  $t_{90}$  where E' elastic modulus; E'' viscous modulus ;  $\sigma$  surface tension

|                        | t <sub>90</sub> |
|------------------------|-----------------|
| $(E'/\sigma)_{250s}$   | 0.72**          |
| $(E'/\sigma)_{1600s}$  | 0.58 *          |
| $(E''/\sigma)_{250s}$  | 0.70 **         |
| $(E''/\sigma)_{1600s}$ | 0.66 **         |

NS no significant, \* p-value < 0.05

#### significant correlations :

between surface visco-elasticity E' E'' and T1 duration





### Foam stability especially against disproportionation



foams by double syringe control liquid fraction = 0.16 bubble size  $R \approx 30 \ \mu m$ 

$$G' \propto \frac{\sigma}{R} g(\emptyset)$$

where  $g(\emptyset)$  decreasing function (Saint-Jalmes and Durian, 1999; Marze et al., 2009)

drainage :  $\$  liquid fraction  $\emptyset$  :  $\$  G' disproportionation :  $\$  bubble size R :  $\$  G' = indirect access to foam stability

disproportionation :  $\nearrow$  bubble size vs  $\sqrt{t}$  (Hutzler and Weaire, 2000)

disproportionation coefficient =parameter for correlations



#### different disproportionation coefficients



### Foam stability especially against drainage



**2** cm

foam with milimetric bubbles

bubbling method

conductivity measurements ≠ heights

 $\rightarrow$  Liquid fraction Ø

 $\emptyset = \frac{3\sigma(1+11\sigma)}{1+25\sigma+10\sigma^2}$ 

where  $\sigma~$  was the relative conductivity  $\sigma_{foam}/\sigma_{solution}$  (Feitosa et al., 2005)



 $\oint \propto t^{-\alpha}$ where  $\alpha$  is the free-drainage exponent (Koehler et al., 2000; Saint-Jalmes and Langevin, 2002)

when drainage is the only instability phenomena occurring in the foam



# Foam stability especially against drainage Typical results





#### $\emptyset \propto t^{-\alpha}$

where  $\alpha$  is the free-drainage exponent (Koehler et al., 2000; Saint-Jalmes and Langevin, 2002)

#### 50 g/L proteins drawbacks

➡ ≠ liquid fraction profile (wetter foam, lower drainage exponents, others instability mechanisms are coupled

noisy signal



### Foam stability especially against drainage





### Multiscale correlations

#### Spearman correlations

where  $\eta = E'' \times frequency$ ; E' elastic modulus; E'' viscous modulus;  $\sigma$  surface tension

|                        | disproportionation coeficient | foam stability (drainage) |
|------------------------|-------------------------------|---------------------------|
| $(E'/\sigma)_{250s}$   | -0.85 ***                     | NS                        |
| $(E'/\sigma)_{1600s}$  | NS                            | NS                        |
| $(E''/\sigma)_{250s}$  | -0.72 **                      | NS                        |
| $(E''/\sigma)_{1600s}$ | NS                            | NS                        |
| t <sub>90</sub>        | -0.55 ·                       | NS                        |

NS no significant, · p-value < 0.10 ; \* p-value < 0.05 ; \*\* p-value < 0.01, \*\*\* p-value < 0.001

- □ correlations only with early surface rheology (250 s)
- no correlations with foam stability (drainage)

#### negative correlations

- disproportionation coefficient and dimensionless viscous surface ratio
- disproportionation coefficient and dimensionless elastic surface ratio





# Conclusion





## Outlooks

#### no correlation between dilatationnal modulus with foam stability against drainage



surface shear viscosity

bulk properties (protein self-assembly into aggregates, reduced flow by confinement in Plateau border) (Koehler et al., 2000; Saint-Jalmes and Langevin, 2002)

WPI specificity : multiple proteins, emergent properties due to interactions





### Thanks for your attention ...



### ... any questions ?



AGRO CAMPUS

Alexia Audebert - PhD student - EUFOAM2018