

Milk fatty acids can predict enteric methane emissions from dairy cows fed various diets

Adeline Bougouin, Ranga Niroshan Appuhamy, Anne Ferlay, Ermias Kebreab, Cécile Martin, Peter Moate, Chaouki Benchaar, Peter Lund, Maguy Eugène

▶ To cite this version:

Adeline Bougouin, Ranga Niroshan Appuhamy, Anne Ferlay, Ermias Kebreab, Cécile Martin, et al.. Milk fatty acids can predict enteric methane emissions from dairy cows fed various diets. Greenhouse Gases and Animal Agriculture (GGAA) conference, Aug 2019, Iguassu, Brazil. 2019. hal-02738030

HAL Id: hal-02738030 https://hal.inrae.fr/hal-02738030

Submitted on 2 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1. Title

Milk fatty acids can predict enteric methane emissions from dairy cows fed various diets⁽¹⁾

2. Authors

Adeline Bougouin¹, Jayasooriya Ranga Niroshan Appuhamy², Anne Ferlay³, Ermias Kebreab⁴,

Cécile Martin⁵, Peter Moate⁶, Chaouki Benchaar⁷, Peter Lund⁸ and Maguy Eugène⁹

1 Animal science, PhD, Postdoctoral at INRA Clermont-Ferrand, France

2 Animal science, PhD, Assistant Professor, Iowa State University, USA

3 Animal science, PhD, Senior Scientist at INRA Clermont-Ferrand, France

4 Animal Science, PhD, Professor at University of California, Davis, USA

5 Animal science, PhD, Senior Scientist at INRA Clermont-Ferrand, France

6 Veterinary Science, PhD. Senior Scientist at Agriculture Victoria Research, Ellinbank, Australia

7 Animal Science, Ph.D. Senior Scientist, Agriculture and Agri-Food Canada, Quebec, Canada

8 Animal Science, PhD, Professor at Aarhus University, Denmark

9 Animal science, PhD, Senior Scientist at INRA Clermont-Ferrand, France

⁽¹⁾This study is part of collaborative project led by INRA and funded by 11 institutes and private companies: Adisseo France SAS (Antony, France), Agrial (Caen, France), APIS-GENE (Paris, France), Deltavit (Janzé, France), DSM Nutritional Products AG (Kaiseraugst, Switzerland), Institut de l'Elevage (Paris, France), Lallemand (Blagnac, France), Moy Park Beef Orléans (Fleury-les-Aubrais, France), Neovia (Saint-Nolff, France), Techna France Nutrition (Couëron, France), Valorex (Combourtillé, France).

3. Abstract

Proxies are needed to develop genetic selection of low methane (CH₄) emitting ruminants and to evaluate at large scale, CH₄ mitigating strategies on farm. Milk fatty acids (**MFA**) have been used as proxies to predict CH₄ emissions from dairy cows because of common rumen biochemical pathways between the two processes. The objectives of the study were (1) to construct a set of empirical models to predict CH₄ emissions using MFA records of individual lactating dairy cows (n =825) fed a wide range of diets, (2) to increase the representativeness of the models by including additional independent variables such as dietary chemical composition [organic matter (**OM**); neutral detergent fiber (**NDF**); crude protein (**CP**); starch; ether extract (**EE**)], milk yield and composition, and animal characteristics [days in milk (**DIM**)

or body weight (**BW**)], and (3) to evaluate the performance of the developed models on two independent datasets (individual measurements and treatment means). Prediction equations based only on MFA [C10:0, *iso* C17:0 + *trans*-9 C16:1, *cis*-11 C18:1, and *trans*-11,*cis*-15 C18:2 for CH₄ production (g/d); *iso* C16:0, *cis*-11 C18:1, *trans*-10 C18:1, and *cis*-9,*cis*-12 C18:2 for CH₄ yield (g/kg of dry matter intake (**DMI**)); *iso* C16:0, *cis*-15 C18:1, and *trans*-10+*trans*-11 C18:1 for CH₄ intensity (g/kg of milk)] have root mean square error of 58.6 g/d, 2.8 g/kg DMI and 3.7 g/kg milk, respectively. The models including DMI, dietary nutrient contents (NDF, EE, starch), and BW had lower root mean square errors of 42.8 g/d, 2.5 g/kg DMI and 3.3 g/kg milk, respectively.

4. Index terms: cattle, methane equation, milk fatty acids

Session 1: technical advances: from genomics to precision agriculture, that will address aspects to measuring and modelling GHG