A trait-based approach to understand and predict the performance of arable annual mixed crops

Rémi Mahmoud, Noémie Gaudio, Pierre Casadebaig, Xavier Gendre, Laurent Bedoussac, Guénaëlle Corre-Hellou, Florian Fort, Etienne-Pascal Journet, Isabelle Litrico, Christophe Naudin, Cyrille Violle
Agronomic context: towards a more sustainable agriculture

Intensive agriculture

Environment optimized through **external inputs**

Agroecological transition
System diversification (field, rotation, landscape)

Sustainable agriculture

Less or no inputs \rightarrow limiting conditions
Use of **plant diversification**
Agronomic context: towards a more sustainable agriculture

Intensive agriculture
Environmental optimized through *external inputs*

Agroecological transition
System diversification *(field, rotation, landscape)*

Sustainable agriculture
Less or no inputs → limiting conditions
Use of *plant diversification*

Sole crops

Intercrops
Agronomic context: towards a more sustainable agriculture

Intensive agriculture
- Environment optimized through *external inputs*

Agroecological transition
- System diversification *(field, rotation, landscape)*

Sustainable agriculture
- Less or no inputs → limiting conditions
- Use of *plant diversification*

Maximize complementarities and positive interactions
Conceptual framework: Recipes of ecology to make efficient mixtures

Divergence between species Complementarity or competition

Metrics = distance for target functional traits between the two species

Brooker et al. (2015)
Conceptual framework: Recipes of ecology to make efficient mixtures

Divergence between species Complementarity or competition

Metrics = distance for target functional traits between the two species

Brooker et al. (2015)

Phenotypic plasticity

1 genotype ↔ n phenotypes = Adaptation to the environment

Metrics = variance of a target trait between environments

Trends Plant Sci 15:684-692
What about the transposability of these concepts to agroecosystems?
- Low diversity compared to natural communities
- Artificial selection for sole crops rather than natural selection
Conceptual framework: Recipes of ecology to make efficient mixtures

What about the transposability of these concepts to agroecosystems?
- Low diversity compared to natural communities
- Artificial selection for sole crops rather than natural selection

Can we gather relevant data to add experimental points on theoretical curves?

Litrico I, Violle C (2015)
Trends Plant Sci. 20:604–613

Trends in Ecology & Evolution 27:244–252
Objective

- Agronomic interest of intercrops experimentally demonstrated
- High variability of results according to environmental conditions
Objective

- Agronomic interest of intercrops experimentally demonstrated
- High variability of results according to environmental conditions

Interest of predictive approaches to generalize (and profusion of data)
Objective

- Agronomic interest of intercrops experimentally demonstrated
- High variability of results according to environmental conditions

Interest of *predictive approaches* to generalize (and profusion of data)

Objective: develop statistical models to predict intercrops performance based on environmental conditions (soil, climate, practices), species intrinsic differences (trait values) and species plasticity (trait variance).
Approach: existing data (being acquired) → statistical models

- France, Germany, UK, Denmark, Netherlands, Italy
- 42 field experimentations, in 15 sites and 16 years
- 153 intercrops combinations and ~ 10,000 plots
- Measured traits: biomass, height, LAI, N...dynamically

Data-driven models (empirical)
Approach: existing data (being acquired) → statistical models

- France, Germany, UK, Denmark, Netherlands, Italy
- 42 field experimentations, in 15 sites and 16 years
- 153 intercrops combinations and ~ 10,000 plots
- Measured traits: biomass, height, LAI, N...dynamically
Approach: existing data (being acquired) → statistical models

Data-driven models (empirical)
“intelligent”: driven by ecological concepts
= mobilize agronomic and ecological knowledge to define integrative variables that are considered important for the performance of the modeled system

- France, Germany, UK, Denmark, Netherlands, Italy
- 42 field experimentations, in 15 sites and 16 years
- 153 intercrops combinations and ~ 10,000 plots
- Measured traits: biomass, height, LAI, N...dynamically
Approach: existing data (being acquired) → statistical models

- France, Germany, UK, Denmark, Netherlands, Italy
- 42 field experimentations, in 15 sites and 16 years
- 153 intercrops combinations and ~ 10,000 plots
- Measured traits: biomass, height, LAI, N...dynamically

Data-driven models (empirical)
“intelligent”: driven by ecological concepts

= mobilize agronomic and ecological knowledge to define integrative variables that are considered important for the performance of the modeled system
Preliminary results on a data subset

Data subset:

- 10 experiments in France (two sites: INRA AGIR, ESA Angers)
- 6 years
- 40 intercrops combinations of wheat and pea
Preliminary results on a data subset

Successful but variable performance of intercrops in low input contexts

\[LER_{trait} = \frac{\text{trait}_{ICi}}{\text{trait}_{SCI}} + \frac{\text{trait}_{ICj}}{\text{trait}_{SCj}} \]

SC, sole crop
IC, intercrop
Preliminary results on a data subset

Successful but **variable performance** of intercrops in low input contexts

\[\text{LER}_{\text{trait}} = \frac{\text{trait}_{\text{ICi}}}{\text{trait}_{\text{SCI}}} + \frac{\text{trait}_{\text{ICj}}}{\text{trait}_{\text{SCj}}} \]

SC, sole crop
IC, intercrop
Preliminary results on a data subset

Successful but **variable performance** of intercrops in low input contexts

$$L_{ER_{trait}} = \frac{trait_{ICi}}{trait_{SCI}} + \frac{trait_{ICj}}{trait_{SCj}}$$

SC, sole crop
IC, intercrop
Preliminary results on a data subset

Effect of mixtures on species characteristics (plasticity)

Species adapt strongly when growing in intercrop (illustration for wheat)

\[\Delta \text{trait}_{(\text{intercrop}, \text{sole crop})} = \text{trait}_{\text{intercrop}} - \text{trait}_{\text{sole crop}} \]
Preliminary results on a data subset

Differences between species within intercrops (inter-specific divergence)

pea > wheat

pea < wheat
Preliminary results on a data subset

Differences between species within intercrops (inter-specific divergence)

pea > wheat

\[\Delta t_{\text{trait}} = \text{trait}_{\text{wheat}} - \text{trait}_{\text{pea}} \]
Preliminary results on a data subset

Performance of a species according to the difference between species

In intercrop, pea performance is linked to growth strategies (predictors)

\[
\text{Yield}_{\text{pea}} = f(\text{growth rate}_{\text{wheat}} - \text{growth rate}_{\text{pea}})
\]
Perspectives

Still a lot of work

Identify other variables linked to the cover functioning + other mixtures

→ Develop the models, from multiple regression to machine learning (decision tree, random forests, deep learning)

Difficulties identified

- The traits measured in agronomic experiments do not systematically reflect niche complementarity (height, biomass)
- Take into account phenotypic plasticity to build generic assembly rules for different cropping conditions
Still a lot of work

Identify other variables linked to the cover functioning + other mixtures → Develop the models, from multiple regression to machine learning (decision tree, random forests, deep learning)

Difficulties identified

The traits measured in agronomic experiments do not systematically reflect niche complementarity (height, biomass)

Take into account phenotypic plasticity to build generic assembly rules for different cropping conditions

For the photographs, thanks to G Corre-Hellou, J Evers (univ. Wageningen), C Bonnet (INRA), L Bedoussac