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ABSTRACT: 

 

Mapping of topsoil properties using Visible, Near-Infrared and Short Wave Infrared (VNIR/SWIR) hyperspectral imagery requires 

large sets of ground measurements for calibrating the models that estimate soil properties. To avoid collecting such expensive data, 

we proposed a procedure including two steps that involves only legacy soil data that were collected over and/or around the study site: 

1) estimation of a soil property using a spectral index of the literature and 2) standardisation of the estimated soil property using 

legacy soil data. This approach was tested for mapping clay contents in a Mediterranean region in which VNIR/SWIR AISA-DUAL 

hyperspectral airborne data were acquired. The spectral index was the one proposed by Levin et al (2007) using the spectral bands at 

2209, 2133 and 2225 nm. Two legacy soil databases were tested as inputs of the procedure: the Focused-Legacy database composed 

of 67 soil samples collected in 2000 over the study area, and the No-Focused-Legacy database composed of 64 soil samples collected 

between 1973 and 1979 around but outside of the study area. The results were compared with those obtained from 120 soil samples 

collected over the study area during the hyperspectral airborne data acquisition, which were considered as a reference.  

 Our results showed that: 1) the spectral index with no further standardisation offered predictions with high accuracy in term of 

coefficient of correlation r (0.71), but also high bias (-414 g/kg) and SEP (439 g/kg), 2) the standardisation using both legacy soil 

databases allowed an increase of accuracy (r = 0.76) and a reduction of bias and SEP and 3) a better standardisation was obtained by 

using the Focused-Legacy database rather than the No-Focused-Legacy database. Finally, the clay predicted map obtained with 

standardisation using the Focused-Legacy database showed pedologically-significant soil spatial structures with clear short-scale 

variations of topsoil clay contents in specific areas. 

 This study, associated with the coming availability of a next generation of hyperspectral VNIR/SWIR satellite data for the entire 

globe, paves the way for inexpensive methods for delivering high resolution soil properties maps. 
 

 

 

1. INTRODUCTION 

Visible, Near-Infrared and Short Wave Infrared (VNIR/SWIR, 

0.4-2.5 µm) spectroscopy is a physical nondestructive, rapid, 

reproducible, and low-cost method that allows characterization 

of materials including soils. VNIR/SWIR spectroscopy has been 

proven to be accurate for the discrimination of soil types and 

estimation of a large range of soil properties (e.g., Viscarra 

Rossel et al., 2006; Ben-Dor et al., 2009), such as clay and 

CaCO3. More recently, VNIR/SWIR hyperspectral airborne 

imaging has been demonstrated to be a potential tool for topsoil 

property mapping over large areas (e.g., Selige et al., 2006; 

Gomez et al., 2008; Stevens et al., 2010).  

 Various methods have been developed and used to relate 

soil spectra to soil properties, including spectral indexes (e.g., 

Gomez et al., 2008; Lagacherie et al., 2008) and partial least-

squares regression (PLSR) (e.g., Selige et al., 2006; Stevens et 

al., 2010). Spectral indexes are based on physical analyses of 

spectral reflectance, such as slope or absorption band depth 

value which allow estimating mineral, rock, and soil properties. 

For example, the absorption band depth values centered at 2206 

and 2341 nm can be used to estimate clay (Chabrillat et al., 

2002) and CaCO3 (Gaffey, 1986) content, respectively. In the 

PLSR approach, the full spectrum is used to establish a linear 

regression model where the significant information contained in 

the VNIR/SWIR spectra is concentrated in a few latent 

variables that are optimized to produce the best correlation with 

the desired soil property. 

 The application of these techniques to airborne 

hyperspectral data included a calibration step that used a set of 

sites with VNIR/SWIR spectra associated to the studied soil 

property measured by physico-chemical lab analysis. These sets 

were sized large enough (> 70) to accurately represent the  

distributions of soil property over the study area. This induces 

significant costs that may limit the applicability of such 

approach. This will become all the more true with the coming 

availability of the next generation of orbiting hyperspectral 

sensors and routinely delivered high spectral resolution images 

for the entire globe.  

 

 The aim of this study was to test the use of legacy soil data 

collected over and/or around the study site, to calibrate a clay 

spectral index in order to reduce the soil sample collection cost 

and time. This study employed VNIR/SWIR AISA-DUAL 

hyperspectral airborne data acquired over a large area (300 km²) 

in a Mediterranean region.  
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2. MATERIALS 

2.1 Study Area and AISA-DUAL Airborne Data 

 

The study area is located in the Cap Bon region in northern 

Tunisia (36°24’N to 36°53’N; 10°20’E to 10°58’E), 60 km east 

of Tunis (Figure 1a). This 300 km² area includes the Lebna 

catchment, which is primarily rural (>90 %) and devoted to 

cereals, legumes, olive trees, natural vegetation for breeding and 

vineyards.  

  

VNIR/SWIR AISA-DUAL hyperspectral data were acquired in 

2010, over the study area (12 × 25 km) with a spatial resolution 

of 5 m (Figure 1b). The AISA-DUAL airborne imaging 

spectrometer measures the reflected radiance in 359 

noncontiguous bands covering the 400–2450 nm spectral 

domain. Noisy and atmospheric absorption bands were removed 

and 249 spectral bands 0.489 µm and 2.451 µm were retained. 

To isolate the bare soil areas, pixels with Normalized Difference 

Vegetation Index (NDVI) values over an expert-calibrated 

threshold were masked. As well water areas were masked using 

an expert-calibrated threshold and 13 urban areas were 

identified by visual inspection, and masked. So bare soils 

represent 46.3% of our study area. The AISA-DUAL airborne 

data and the study area have been described in details in Gomez 

et al. (2012). 

 

 

 
Figure 1: a) Location of the study area in the Northern Tunisia 

(Red rectangle), b) Hyperspectral image area (orange rectangle), 

120 soil samples of the REF database (blue), 86 soil samples 

collected in 2000 including the Focused-Legacy database (pink) 

and 72 soil samples collected between 1973 and 1979 including 

the No-Focused-Legacy database (yellow) plotted over a DEM 

of the Cap Bon. 

 

 

2.3. Soil Field Sampling and Laboratory Analysis 
 

The three following soil datasets differed in the standards of soil 

sampling and descriptions, the georeferencing methods, the 

laboratory analysis protocols and the data storage methods. 

They are most located on arable land. 

 

2.3.1. Reference Soil Database  
 

One hundred and twenty soil samples were collected over the 

study area covered by the AISA-DUAL data. Among this 

sample set, 50 samples were collected in June 2008, 30 in 

October 2009, and 40 in November 2010 (Figure 1b). All of 

these soil samples were collected in fields that were bare during 

the hyperspectral airborne data acquisition in November 2010. 

They were composed of five sub-samples collected to a depth of 

5 cm at random locations within a 10×10 m2 square centered on 

the geographical position of the sampling plot, as recorded by a 

Garmin GPS instrument.  

 The clay content (granulometric fraction < 2 µm) was 

determined using a pipette method (method NF X 31-107, 

particle size distribution by sedimentation) (Baize and Jabiol, 

1995). The clay content of the 120 soil samples varied between 

108 and 772 g/kg and followed a normal distribution (Table 1). 

This dataset will be denoted as REF. 

  

2.3.2. Legacy Soil Databases 
 

Eighty-six soil samples were collected in 2000 over the CapBon 

region (Figure 1b). Among these eighty-six soil samples, only 

sixty-seven samples located over the study area covered by the 

AISA-DUAL data were used and denoted as the Focused-

Legacy database. All of these soil samples correspond to the 

first soil horizon of profiles described by the IAO (Instituto 

Agronomico per l'Oltremare) 20th course professional master 

“remote sensing and natural resources evaluation” field survey 

staff from 2 to 28 April 2000 according to the IAO framework 

(IAO, 2002) (Figure 1b). The soil profiles were located initially 

on topographic maps georeferenced in CGE (Geodetic system 

Carthage Tunisia) with Lambert coordinates and the Greenwich 

Meridian as the origin. 

 

Seventy-two soil samples were collected between 1973 and 

1979 over the CapBon region (Figure 1b). Among these 

seventy-two soil samples, only sixty-four samples located 

outside of the study area covered by the AISA-DUAL data were 

used and denoted as the No-Focused-Legacy database. All of 

these soil samples correspond to the first soil horizon of profiles 

described following a set of specifications that were defined by 

the Tunisian ministry of Agriculture by adapting existing 

specifications of the French overseas research institute 

(ORSTOM – Maignien, 1980). The soil profiles were located 

initially on topographic maps georeferenced in CGE (Geodetic 

system Carthage Tunisia) with latitude and longitude 

coordinates in grade and the Paris Meridian as the origin.  

 

Finally, the Focused-Legacy and No-Focused-Legacy databases 

were grouped to form the Entire-Legacy database containing 

158 soil samples. 

 

The clay content of the Focused-Legacy and No-Focused-

Legacy databases was determined by hydrometer method (Baize 

and Jabiol, 1995). The clay content of Focused-Legacy database 

varied between 39 and 762 g/kg (Table 1). The clay content of 

No-Focused-Legacy database varied between 10 and 425 g/kg 

(Table 1). The clay content of Entire-Legacy database varied 

between 10 and 762 g/kg (Table 1). All legacy dataset had 

positive skew distribution. 

 

 REF 
Focused- 

Legacy 

No-

Focused- 

Legacy 

Entire-

Legacy 

Number of 

samples 
120 67 64 158 

min 108 39 10 10 

max 772 762 425 762 

Mean 466 270 173 214 

sd 173 169 105 144 

skewness -0.11 0.8 0.4 1.13 

Table 1: Statistical measurements of clay contents (g/kg) 
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3. METHODS 

3.1. Spectral Index 
 

The clay contents  were predicted from the Clay Index 

(called  index) proposed by Levin et al (2007) using the 

spectral bands ,  and 

, and following: 

  (1) 

The HYperspectral SOil Mapper (HYSOMA) software interface 

was used to derive semi-quantitative soil properties maps from 

the hyperspectral data. HYSOMA was developed at the GZF 

German Research Center for Geosciences in the Remote 

Sensing section and is a software package written in IDL 

language (www.gfz-potsdam.de/hysoma, Chabrillat et al, 2011).  

 

3.2. Prediction Standardisation 
 

The clay content predictions  obtained from the  

index were then standardized using a process in three steps. At 

the first step, a boxcox transformation was applied to transform 

the distribution of the clay content predictions into normal 

distribution (Legendre and Legendre, 1984) defined as: 

  (2) 

where  is the clay content predictions obtained from the 

 index,  is the transformed prediction and α is 

the transformation parameter. The assumption is that among all 

transformations with α values between -5 and +5, transformed 

data has the highest likelihood – but not a guarantee – to be 

normally distributed when standard deviation is the smallest. 

This step is independent to a calibration database (legacy or 

reference). 

 

 At the second step the normalized predicted values  

were scaled from a calibration database as follow:  

 (3) 

Where   

 

And finally at the third and last step the normalized predicted 

values  were centred from a calibration database as 

follow:  

 (4) 

 

 and  

 

where is the mean of the clay contents from the calibration 

database and  is the mean of the . 

 

3.3. Performances Predictions Indicators 
 

The prediction performances of the spectral index were 

evaluated using the coefficient of correlation r of the predicted 

values (  or ) against the measured values  in the 

REF database. The coefficient of correlation r is defined as the 

covariance of the two variables (  or ) and , divided 

by the product of their standard deviations as follow: 

   (5) 

 

As recommended by Davies and Fearn (2006), prediction 

performances analyses have to be also guided by the Standard 

Error of Prediction (SEP) or Root Mean Square Error of 

Prediction (RMSEP). The SEP is the parameter commonly used 

in the NIR spectroscopy literature to describe the prediction 

ability of a model. SEP appears as an averaged error recorded 

on the validation-sample set, and was calculated as follow: 

 (6) 

Where  is the clay content of the sample i from the REF 

database,  is the estimated clay content of the sample i from 

the REF database by the spectral index, and N is the number of 

soil samples in the REF database.  

 

Finally, the SEP value can be decomposed as follows (Davies 

and Fearn, 2006):  

  (7) 

Where  

  (8) 

 

  (9) 

As explained in detailed by Bellon-Maurel et al. (2010), the bias 

and the  (for ‘‘SEP corrected for bias’’) appear as the error 

of means and the residual variance respectively.  and the 

bias are independent. 

 

 

4. RESULTS 

4.1. Raw Predictions 

Clay contents were obtained from the spectral index  

(equation 1) with a coefficient of correlation r of 0.71 and a 

high bias and SEP (Table 2). These clay predicted values were 

ranged from 10 to 305 g/kg (Table 3) which were small 

compared to the one of the REF database (Table 1). Moreover, 

the distribution of these clay predicted values was not normal 

(high skewness) (Table 3). 

 

 

  

No 

standar

disatio

n 

Database used for standardisation 

REF 
Focused-

Legacy 

No- 

Focused-

Legacy 

Entire-

Legacy 

r 0.71 0.76 

SEP 

(g/kg) 
439 116 221 311 269 

Bias 

(g/kg) 
-414 8 -188 -288 -245 

Table 2: Performance of prediction 

 

 Mean  Std. Min Max Skewness 

Raw clay 

content 

prediction 

by 

 

index 

52 40.8 10.9 305.3 2.4 

Table 3: Distribution of raw clay content predictions (g/kg) 
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4.2. Standardized Predictions 

Clay contents obtained from the spectral index were 

transformed using the boxcox transformation, with α = 0.7 in 

equation (2).This step allows the increasing of r from 0.71 to 

0.76, without any changes of bias and SEP.   

 

4.2.1. Range and Standard Deviation Transformation Using 

REF Database 

Estimated clay contents after boxcox transformation ( ) 
were transformed using the REF database following equations 

(3) and (4). This process allowed to increase the performance of 

predictions with a significant decrease of bias (8 g/kg) and SEP 

(around 116 g/kg) (Table 2).  

 

4.2.2. Range and Standard Deviation Transformation Using 

Legacy Databases 

Estimated clay contents after boxcox transformation 

( were transformed using the Focused-Legacy and No-

Focused-Legacy databases following equations (3) and (4). This 

process using the Focused-Legacy and No-Focused-Legacy 

databases allowed increasing the performance of predictions 

with a decrease in bias (respectively -187 g/kg and -288 g/kg) 

and SEP (respectively 219 g/kg and 311 g/kg) (Table 2).  

Finally, estimated clay contents after boxcox transformation 

( ) were transformed using the Entire-Legacy database 

following equations (3) and (4). This process allowed obtaining 

predictions with a bias of -245 g/kg and a SEP of 269 g/kg 

(Table 2). 

 

4.3. Clay Predicted Maps 

The analysis of the clay predicted maps was focused on a test 

area. This test area is a 6.67 km² area that is centered on the 

Kamech catchment, which contained a high percentage of bare 

soils during image acquisition and exhibited contrasting soil 

patterns. The Kamech experimental catchment belongs to a 

long-term environmental research observatory called OMERE 

(Mediterranean observatory of water and rural environment) 

which aims to study the anthropogenic impacts on water and 

sediment budgets at catchment scale (e.g., Mekki et al., 2006; 

Raclot and Albergel, 2006). The Kamech catchment is 

characterized by strong variations in soil patterns on a small 

scale, with a close succession of clay-rich areas and clay-poor 

areas, oriented northwest/southeast, corresponding to marl and 

sandstone outcrops, respectively. 

 

The raw clay predicted map was obtained from the spectral 

index  following equation (1) (Figure 2a). And the clay 

maps of  using the REF, Focused-Legacy and No-

Focused-Legacy databases were also obtained (Figure 2b, c and 

d). The estimations at field-scale had low accuracies because of 

high bias (Table 2). Nevertheless, these maps restricted to the 

Kamech catchment, showed the close successions of clay-rich 

and poor-clay areas whatever the soil dataset used for 

standardisation.  

 

5. DISCUSSION 

The clay spectral index proposed by Levin et al (2007) and used 

without calibration data to estimate relative soil property values, 

offered accurate estimations (r = 0.71) but highly biased (bias = 

-414 g/kg). The standardisation of the estimated clay contents 

using the REF dataset allows a significant increasing of model 

performances (r = 0.76 and SEP = 116 g/kg), compared to the 

model without standardisation. These performances are 

comparable to those obtained by Lagacherie et al. (2008) also 

using a clay spectral index and Hymap airborne data (R2 = 0.6 

and RMSE = 130 g/kg). Nevertheless, the model performances 

remain lower than those obtained by Gomez et al. (2015) (R2
val 

= 0.75 and SEP = 86 g/kg) using PLSR technique to estimate 

clay content from the same datasets than in this study (the 

VNIR/SWIR AISA-DUAL images and the REF soil data). 

 The standardisation of the estimated clay contents using 

legacy soil data allows a slightly increasing of model 

performances (accuracy increasing and bias decreasing), 

compared to the model without standardisation. Nevertheless, 

the model performances remain lower than using the REF 

dataset, whatever the legacy soil dataset used for the 

standardisation. The location of the legacy samples is more 

important than the number of these legacy samples for 

standardisation. Indeed, the use of a small legacy soil database 

(~80 samples, Focused-Legacy database) with all samples 

located over the study area, provides better results than bigger 

legacy soil database (~150 samples, Entire-Legacy database) 

including samples located out of the study area. Much of the 

performances limitations are due to bias of clay measurements 

that affect the legacy soil databases. This means that these 

legacy soil databases need to be standardized themselves before 

using them for such approach, as some attempts has been 

already done in that objective (Baume et al, 2011, Ciampalini, 

2013) 

 The standardisation applied in our study is composed of a 

boxcox transformation for normalization of the predicted data, 

and a scaling and centering of the normalized data. This 

standardisation process is comparable to one of the most widely 

used transfer methods for correcting predicted values which is 

the univariate slope and bias correction (SBC) (Bouveresse et 

al., 1996). Transfer methods have been developed to enable a 

calibration model to be effectively transferred between two 

“systems” (e.g., two spectroscopic instruments), thus 

eliminating the need for a full recalibration (Fearn 2001; 

Feudale et al., 2002). In our case, we do not have a calibration 

model which has to be adjusted to different “systems”, but we 

have a model which has to be calibrated with an approximate 

system (legacy soil dataset). 

 In future, this work should be extended to other clay 

spectral indexes, such as those proposed by Chabrillat et al, 

2002 and Lagacherie et al., 2008. As well, this work would be 

extended to other topsoil properties, such as iron or CaCO3 

using iron and carbonate indexes (e.g., Madeira et al., 1997; 

Lagacherie et al., 2008). This may confirm the independence of 

our actual observations from the selected spectral index and the 

topsoil property.  
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Figure 2: a) Raw_Map, b) Tr_REF_map, c) Tr_Focused_Map, 

and d) No-Focused_Map of Clay contents (g/kg).  

6. CONCLUSION 

This paper shows a procedure to estimate relative soil property 

values from a spectral index applied to VNIR/SWIR AISA-

DUAL hyperspectral airborne data, and standardize it with 

legacy soil data. The maps accuracy depends on the legacy soil 

data. The more the legacy soil data are focused on the study 

area, the more the accuracy is high and the soil patterns are 

mapped. 

 With the coming availability of a next generation of 

hyperspectral VNIR/SWIR satellite data for the entire globe 

(such as the French HYPerspectral X Imagery – HYPXIM –, 

the Spaceborne Hyperspectral Applicative Land and Ocean 

Mission – SHALOM –, the PRecursore IperSpettrale della 

Missione Applicativa –  PRISMA –, the Environmental 

Mapping and Analysis Program –EnMAP – and the 

Hyperspectral Infrared Imager – HyspIRI –), this study may 

open new way toward accessible and cheap methods for the 

delivery of soil properties maps to the geoscience community. 
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