Xiaobo Chen 
email: xiaobo.chen@rennes.inra.fr
  
Michael S Corson 
  
Application of Dempster-Shafer theory to integrate methods to propagate variability and epistemic uncertainty in agricultural LCA

Keywords: life cycle assessment, Dempster-Shafer theory, variability, epistemic uncertainty

teaching and research institutions in France or abroad, or from public or private research centers.  

Introduction

Life Cycle Assessment (LCA) is a useful tool to estimate potential environmental impacts and resource use of farming systems (van der Werf and Petit 2002; [START_REF] Thomassen | Life cycle assessment of conventional and organic milk production in the Netherlands[END_REF]. The reliability of LCA results, which depends primarily on the quality of data and their pertinence for the system studied, is affected by uncertainty [START_REF] Weidema | Data quality management for life cycle inventories-an example of using data quality indicators[END_REF][START_REF] Finnveden | On the limitations of life cycle assessment and environmental systems analysis tools in general[END_REF]. Including uncertainty analysis in LCA may yield results that provide more useful information for decision making (ISO 2006;[START_REF] Heijungs | Identification of key issues for further investigation in improving the reliability of life-cycle assessments[END_REF]. Therefore, there is a need to improve uncertainty analysis in LCA to increase the reliability of its results.

Uncertainty analysis includes a variety of methods that are used to express and propagate uncertainty in many fields, such as risk analysis [START_REF] Vose | Risk analysis: a quantitative guide[END_REF] and LCA [START_REF] Benetto | Analyse du cycle de vie. Incertitudes des évaluations des impacts[END_REF][START_REF] Bjorklund | Survey of approaches to improve reliability in LCA[END_REF]). Most studies define two main types of uncertainty (variability and epistemic uncertainty), which have fundamental differences [START_REF] Morgan | Uncertainty: a guide to dealing with uncertainty in quantitative risk and policy analysis[END_REF]. Variability (also called stochastic uncertainty) represents inherent differences among individuals in a population. It cannot be reduced but can be represented more precisely if more population data are available [START_REF] De Rocquigny | Uncertainty in industrial practice: a guide to quantitative uncertainty management[END_REF][START_REF] Vose | Risk analysis: a quantitative guide[END_REF]). Probability distributions have been used widely in LCA [START_REF] Basset-Mens | Uncertainty of global warming potential for milk production on a New Zealand farm and implications for decision making[END_REF][START_REF] Henriksson | Variation in carbon footprint of milk due to management differences between Swedish dairy farms[END_REF]IPCC 2006b) to represent the variability due to randomness in the distribution of a given sample (e.g., with a mean, variance, and normal distribution). In contrast, epistemic uncertainty is defined as lack of knowledge (imprecise and incomplete information) about the true value of a variable or about the system mechanism. It can be decreased if more precise information or more accurate measurement becomes available. In LCA, epistemic uncertainty in parameters is often represented with probability distributions [START_REF] Lloyd | Characterizing, propagating, and analyzing uncertainty in life-cycle assessment -A survey of quantitative approaches[END_REF][START_REF] Huijbregts | application of uncertainty and variability in LCA -part II: Dealing with parameter uncertainty and uncertainty due to choices in life cycle assessment[END_REF], and both types of uncertainty are propagated by Monte-Carlo simulation (MCS), especially in complex models. MCS is an effective and robust way to estimate the uncertainty in predicted potential impacts [START_REF] Payraudeau | Analysis of the uncertainty associated with the estimation of nitrogen losses from farming systems[END_REF][START_REF] Sonnemann | Uncertainty assessment by a Monte Carlo simulation in a life cycle inventory of electricity produced by a waste incinerator[END_REF]. Some authors [START_REF] Tan | Using fuzzy numbers to propagate uncertainty in matrix-based LCI[END_REF][START_REF] Reza | A fuzzy-based approach for characterization of uncertainties in emergy synthesis: an example of paved road system[END_REF]Andre and Lopes 2012;[START_REF] Mauris | A fuzzy approach for the expression of uncertainty in measurement[END_REF][START_REF] Chevalier | Life cycle analysis with ill-defined data and its application to building products[END_REF], however, emphasize the difference between variability and epistemic uncertainty and argue that fuzzy-set theory [START_REF] Zadeh | Fuzzy sets as a basis for a theory of possibility[END_REF], with subjective degrees of plausibility/possibility, better represents uncertainty due to imprecise and incomplete information.

Since variability and epistemic uncertainty represent distinct states of knowledge, many studies have modeled them separately in the same framework. For example, [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF] constructed "probability boxes" by combining probability theory and set theory. [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF] represented random variability and imprecision with probability and possibility distributions, respectively, and then propagated them for risk assessment. And [START_REF] Baraldi | A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis[END_REF] combined MCS and the possibilistic approach to propagate uncertainty. These three studies introduced the Dempster-Shafer theory [START_REF] Dempster | New methods for reasoning towards posterior distributions based on sample data[END_REF][START_REF] Shafer | A mathematical theory of evidence[END_REF] 

to incorporate
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Although variability and epistemic uncertainty have been defined, and sometimes analyzed, separately in some LCA studies [START_REF] Heijungs | A review of approaches to treat uncertainty in LCA[END_REF][START_REF] Basset-Mens | Uncertainty of global warming potential for milk production on a New Zealand farm and implications for decision making[END_REF], few studies [START_REF] Clavreul | Stochastic and epistemic uncertainty propagation in LCA[END_REF] have modeled them in the same framework. The aim of this study is to demonstrate how to combine two types of uncertainty, via Dempster-Shafer theory, to estimate potential environmental impacts of dairy farms. We then compare this method to classic probability methods.

Methods

We used probability distributions and fuzzy intervals to represent variability and epistemic uncertainty, respectively. These two types of uncertainty were propagated into LCA results by MCS and interval analysis using R software (R Development Core Team 2012). For each impact category, distributions of impact were represented by a Dempster-Shafer structure and mean impacts were represented by fuzzy intervals. In addition, two other methods for analyzing uncertainty were applied for comparison purposes.

Representing variability with probability distributions

In a frequentist approach, a probability distribution assigns a probability of any possible event in a random experiment. It is often used to represent the variability of a variable. A random variable X, which is an element of all real numbers (ℛ), has a probability Pr(x) of having value x. In addition, the probability distribution can be described by its cumulative distribution function (CDF) and explained as the probability that X is less than x:

𝐹(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℛ
Eq. 1

In general, determining a distribution requires empirical data to identify its shape and basic parameters (e.g., mean and variance). If the amount of empirical data is sufficiently large, it can be considered to represent the entire population. However, since data acquisition is often limited by time and cost in LCA studies, probability distributions are generally determined subjectively based on the literature or expert judgment [START_REF] Heijungs | Representing statistical distributions for uncertain parameters in LCA[END_REF].

MCS is the most common method for propagating variability to estimate uncertainty in LCA studies. It consists of sampling input variables from their distributions and then calculating potential impacts through the model. By repeating the MCS many times, a CDF can be constructed to predict a probability range that represents overall uncertainty in impacts due to uncertainty in input variables.

Representing epistemic uncertainty with fuzzy intervals

Fuzzy-set theory is an alternative approach to express epistemic uncertainty. In this approach, an uncertain variable is modeled by a set of "fuzzy" intervals, each with a level of possibility (α) that ranges from 0 (least possible) to 1 (most possible). Denoting each fuzzy interval as π(α i ), there is:

𝜋(𝛼 = 1) ⊆ 𝜋(𝛼 𝑖 ∈ [0,1]) ⊆ 𝜋(𝛼 = 0)
Eq. 2

An uncertain variable can be mapped by a membership function defined by these "fuzzy" intervals and their corresponding levels of possibility. Commonly-used membership functions are shaped as triangles or trapezoids having minimum, maximum and mode values (mode intervals for the latter) (Fig. 1). For example, the minimum-maximum range of variable x, called the "support" (α=0), indicates all possible values of x. The mode (or mode interval), called the "core", indicates the most likely value(s) (α=1). At any given α level, there is a corresponding interval (called the "α-cut interval"). To propagate uncertainty, the fuzzy intervals of input variables are decomposed at each α level, and interval arithmetic is applied to generate a set of fuzzy intervals of the final result. 

Dempster-Shafer theory

Dempster-Shafer theory (DST) is a "mathematical theory of evidence" introduced by Dempster (1966) and further developed by [START_REF] Shafer | A mathematical theory of evidence[END_REF]. It is a generalization of discrete probability theory in which probabilities are assigned to sets of values rather than a single value. One important feature of DST is that imprecise information can be used to represent the state of knowledge quantitatively. It includes three basic functions: the basic probability assignment (bpa) function (or "mass function"), the belief function (Bel) and the plausibility function (Pl).

The bpa for a given set A (denoted m(A)) indicates the proportion of all available evidence that supports the supposition that a particular element of x belongs to set A. It has axioms such as:

𝑚: 2 𝛺 → [0, 1]
Eq. 3

𝑚(∅) = 0 Eq. 4 ∑ 𝑚(𝐴) = 1 𝐴∈2 𝛺 Eq. 5
where 2 Ω is the power set that comprises all possible subsets, including the empty set ∅. A is any subset (called a "focal element") of power set. The belief and plausibility functions are defined from the bpa. The belief function of A is the sum of the bpa of all of the subsets (B) of A (B ⊆ A):

𝐵𝑒𝑙(𝐴) = ∑ 𝑚(𝐵) 𝐵⊆𝐴 , 𝐵 𝑖𝑠 𝑎𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 𝑜𝑓 𝐴, 𝑎𝑛𝑑 𝐵 ≠ ∅ Eq. 6
The plausibility function of A is the sum of the bpa of any subset (C) of power set with the condition that the intersection of C and A is a non-empty set (C⋂A ≠ ∅):

𝑃𝑙(𝐴) = ∑ 𝑚(𝐶), 𝐶 ∈ 2 Ω , 𝑎𝑛𝑑 𝐶 ≠ ∅ 𝐶⋂𝐴≠∅ Eq. 7
The three concepts can also be used in continuous probability distributions where any element of the uncertain parameter x is expressed as an interval ([a i , b i ]) with bpa i (where a i ≤ b i for all i). Thus, the power set A is the collection of these intervals with their corresponding bpa i , and the sum of bpa i equals 1. So, Eq. 6 and 7 can be transformed as:

𝐵𝑒𝑙(𝑥 ∈ ]-∞, 𝑥]) = ∑ 𝑚([𝑎 𝑖, 𝑏 𝑖 ]) 𝑏 𝑖 ≤𝑥
Eq. 8

𝑃𝑙(𝑥 ∈ ]-∞, 𝑥]) = ∑ 𝑚([𝑎 𝑖, 𝑏 𝑖 𝑎 𝑖 ≤𝑥 ])
Eq. 9
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The belief and plausibility functions can be considered the lower and upper probabilities of a given value of x [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF], respectively, and the true probability distribution of x (Pr(x)) lies inside them, interpreted as:

𝐵𝑒𝑙(𝑥) ≤ 𝑃𝑟(𝑥) ≤ 𝑃𝑙(𝑥)

Eq. 10 with an interval of the mean of x ∑ 𝑚 𝑖 𝑎 𝑖 ≤ 𝐸(𝑥) ≤ ∑ 𝑚 𝑖 𝑏 𝑖 Eq. 11

If uncertain parameter x is determined by a single set of values (a i = b i for all i) instead of intervals, the belief and plausibility functions converge on the same distribution, as in a classic CDF.

We considered fuzzy intervals of uncertain parameters as focal elements, used DST to combine variability and epistemic uncertainty in input-parameter values, and propagated them with MCS. Thus, assuming that impact category (y) is calculated by the model (f(x 1 , x 2 …x k , x k+1 , x k+2 …x n )), we:

1. Randomly generate a matrix (B rows (10,000) × k columns) of the first k variables using each one's probability distribution while preserving correlations between them: M b (x 1 , x 2 …x k ). 2. Select a possibility level α i (e.g., assign values from 0 to 1 with step 0.1) and its corresponding fuzzy interval (π k+1 , π k+2 … π n ) for the last n-k uncertain parameters (x k+1 , x k+2 …x n ). construct lower (belief function) and upper (plausibility function) bounds of y using Eq. 8 and 9. 6. Calculate the mean of the lower and upper bounds of y using Eq. 11 for each α to generate fuzzy intervals of the mean of y.

For example, assume that indicator Y is modeled by a function with two uncertain parameters (X 1 and X 2 ), 𝑌 = 𝑋 1 × 𝑋 2 , where X 1 is normally distributed (X 1 ~ N prob (100,20)) and X 2 is modeled by a triangular membership function (X 2 ~ T fuzzy (2,6,3)). Thus, we construct the lower and upper bounds of Y and fuzzy intervals of the mean of Y at each α (Fig. 2) by following the above steps. Consequently, this procedure generates a set of intervals (11, in this study) with their corresponding α, and the mean of Y is represented as a membership function of this fuzzy set that is determined by its support, core and other α-cut intervals. 

Case study

We constructed an LCA model to estimate environmental impacts (climate change, acidification and eutrophication) of on-farm emissions of dairy farms. The functional unit was 1 metric ton of fat-and-protein corrected milk (FPCM). This model was based on the EDEN-E (Evaluation de la Durabilité des ExploitatioNs) tool, developed previously to estimate LCA-based environmental impacts of individual dairy farms (van der [START_REF] Van Der Werf | An operational method for the evaluation of resource use and environmental impacts of dairy farms by life cycle assessment[END_REF]. In this study, we focused only on direct impacts of the milk-production subsystem, because they were affected directly by uncertainty in emission factors. We used data from 41 conventional dairy farms from EDEN-E datasets. We obtained input variables such as animal production (e.g., meat, milk), number of animals by age and sex, and usable agricultural area. Other variables such as quantities of nitrogen (N) in farm inputs and outputs (e.g., fertilizers, feed, waste, animals), energy agents (e.g., diesel, gasoline, electricity), lubricants and plastics were also taken from EDEN-E. In addition, emission factors were used to estimate gaseous emissions; their default values and ranges of uncertainty were taken from the literature (IPCC 2006a;EMEP-CORINAIR 2001). These variables were used in the model to estimate direct impacts of conventional dairy farms. We considered two types of uncertainty in input variables: variability in structural characteristics of sampled farms and epistemic uncertainty in emission factors. Impact categories were calculated by multiplying emissions with the characterization factors of the CML-IA database [START_REF] Guinée | Handbook on life cycle assessment operational guide to the ISO standards[END_REF].

To compare results with those of the classic probability method, we made three scenarios to analyze uncertainty in the LCA model. For all scenarios, we used truncated normal or uniform distributions to represent variability in each farm characteristic because they provided only non-negative values. Means and standard deviations for each characteristic were determined from the empirical EDEN-E sample. Correlations between these variables were preserved using Spearman rank-order correlation (Helton and Davis, 2003). In the first scenario (S1), uncertainty in emission factors was ignored (default constants used). In the second scenario (S2), we considered uncertainty in emission factors with triangular probability distributions. In S2, default values and ranges of uncertainty were used as the mode and minimum/maximum values in the distribution, respectively. In the third scenario (S3), we used fuzzy intervals with triangular membership functions to represent uncertainty in emission factors. The same default values and ranges of uncertainty were used as the core and support in the membership function, respectively. Indeed, S1 can be considered a special case of S3 that considers only the core interval (α=1). Each emission factor was assumed to be independent. Scenarios S1 and S2 used MCS to propagate uncertainties, while S3 combined MCS and interval arithmetic to generate an interval distribution. Simulations were repeated 10,000 times. In S3, finding minimum and maximum impact values for each of the 10,000 replicates theoretically required calculating all possible combinations of emission factors (2 m combinations, m = number of emission factors), but doing so would have increased calculation time considerably. Therefore, since the LCA model was monotonic (emission factors used only addition and multiplication), calculations were optimized by using the minimum and maximum of each α-cut interval of emission factors.

Statistics (mean, 5 th and 95 th percentiles) of impact indicators were calculated as single values in S1 and S2 and as intervals in S3. To compare uncertainty in mean impact between categories, we calculated a "relative interval width" (RIW), equal to the maximum of a statistic's interval minus its minimum, divided by its mode. Thus, the RIW of mean impact in S3 was the width of the indicator's mean interval (i.e. its support) divided by its core (i.e. the most likely mean value). Because uncertainty in emission factors was assumed to be zero in S1 and a known distribution in S2, they were considered to have intervals of zero width.

Results

Statistics of the three impact categories differed by scenario (Table 1). For all three impact categories, the difference between the 5 th and 95 th percentiles (I percentile ) in S1 and S2 was narrower than the difference between the minimum of the 5 th -percentile interval and the maximum of the 95 th -percentile interval in S3, indicating higher overall uncertainty in S3. The increase in overall uncertainty was due to inclusion and representation of epistemic uncertainty in emission factors. The percentage increase in I percentile from S1 to S2 was 25% for climate change, 80% for acidification, and 0% for eutrophication, while that from S1 to S3 was 212% for climate change, 372% for acidification and 29% for eutrophication. Thus, overall uncertainty in impacts increased greatly when uncertainty in emission factors was considered as imprecise information.

Table 1. Statistics of potential climate change, acidification and eutrophication impacts per t of fat-and-proteincorrected milk (FPCM) in three scenarios that represented uncertainty in emission factors (EFs) differently: S1no uncertainty in EFs, S2 -probability distributions for EFs, S3 -fuzzy sets for EFs. 2 20.5 [6.3, 32.4] 13.7 13.3 [11.4, 14.8] Relative interval width of the mean 0% 0% 89% 0% 0% 134% 0% 0% 35%

Climate change

When visualized as CDFs (Fig. 3), S1 and S2 were represented by a single CDF each, while S3 was represented by two CDFs (plausibility and belief functions) defining upper and lower bounds of impact in each category (Fig. 3). These bounds were more widely separated for acidification and climate change impact than eutrophication. Membership functions of mean impacts in S3 were nearly triangular, with minor skewness (Fig. 4). For example, the support of climate change ranged from 718-1874 kg CO 2 eq./t FPCM, with a core of 1065 kg CO 2 eq./t FPCM. Note that the core of mean impact in S3 equaled the mean impact in S1, for which default values (considered as the true values) were used for emission factors. RIWs of mean impacts in S3 indicate that uncertainty in mean acidification impact (134%) was larger than that in mean climate change (89%) or eutrophication (35%) impacts (Table 1). However, S1 and S2 each had a single mean (e.g., 1208 and 1065 kg CO 2 eq./t FPCM, respectively) and RIWs of mean impact of 0%. 

Discussion

We focused on two sources of uncertainty in this case study: variability (in farm characteristics) and epistemic uncertainty (in emission factors). The classic probabilistic approach expresses both epistemic uncertainty and variability with probability distributions; however, subjectively defining probability distributions may underestimate overall uncertainty. Therefore, unknown distributions should be considered as another source of uncertainty due to incomplete information and modeled with fuzzy intervals. If both probability distributions and fuzzy intervals exist in the same analysis, our DST-based method can combine them to estimate overall uncertainty in impact (S3). It provides a more conservative range of uncertainty (i.e. the interval between the minimum of the 5 th percentile and maximum of the 95 th percentile) than the classic probabilistic approach. Since S1 considered only variability in farm characteristics, the increase in overall uncertainty in impacts in S2 and S3 compared to S1 reflects the contribution of epistemic uncertainty in emission factors alone. Considering emission factors as fuzzy intervals (S3) increased overall uncertainty more than considering them as random values (S2). Unlike variability, epistemic uncertainty in emission factors can be reduced when more precise information becomes available. For example, any distribution inside the bounds of plausibility and belief yields a mean value and a smaller range of uncertainty, because the true values (S1) or distributions (S2) of input variables are known or assumed to be known.

In parallel, the imprecision in emission factors was propagated into mean impacts, which were constructed from membership functions of their fuzzy sets. Those who used a similar propagation procedure in LCA [START_REF] Clavreul | Stochastic and epistemic uncertainty propagation in LCA[END_REF] or risk assessment [START_REF] Baudrit | Joint propagation of probabilistic and possibilistic information in risk assessment[END_REF]) studies considered all fuzzy intervals of impact as a set of random intervals with equal probability and then calculated a weighted-mean interval from upper and lower bounds of distributions. In contrast, we separated this process into two steps: (1) estimate the overall range of all possible impact values using the supports of emission factors and (2) model mean impacts with fuzzy intervals. Indeed, showing the membership function of mean impact instead of a weighted-mean interval provides more information to decision makers, such as the levels of possibility corresponding to the most likely mean impact and mean impacts of best-and worse-case scenarios based on the degree of possibility. This information allows a more precautionary approach than a simple interval of mean impact for evaluating the magnitude of and uncertainty in predicted impacts. For fuzzy intervals, the RIW of mean impact is a comparative indicator that reflects the influence of explicitly representing the knowledge of information as incomplete (an unknown distribution), unlike the classic probability method, which ignores this source of uncertainty. It enables the influence of epistemic uncertainty on different impacts to be compared when calculating a coefficient of variation is difficult or complex (e.g., in S3, which comprised multiple probability distributions). Comparing RIWs among impact categories illustrates the relative influence of epistemic uncertainty on overall uncertainty in the impacts of each. If overall uncertainty is hindering decision making, this information could lead decision makers to focus on reducing the sources of epistemic uncertainty that contribute the most to uncertainty in impacts. For example, since epistemic uncertainty in emission factors had a larger influence on acidification than eutrophication impacts in this study, more precise measurement of acidificationrelated emissions would have a relatively larger influence in reducing overall uncertainty in an impact.

For the sake of simplicity, we illustrated a simple LCA example based on a previous work. It had far fewer variables and parameters than a full LCA study; in addition, the model was monotonic, which simplified the optimization algorithm in the simulation. Increasing the number of uncertain variables (especially imprecise variables) may increase the complexity of computation and even greatly overestimate uncertainty. Therefore, performing an initial sensitivity analysis of the LCA model is recommended [START_REF] Heijungs | Identification of key issues for further investigation in improving the reliability of life-cycle assessments[END_REF][START_REF] Henriksson | A protocol for horizontal averaging of unit process data-including estimates for uncertainty[END_REF] to focus on the input variables that influence potential impacts the most. This decrease in the number of uncertain input variables may accelerate the optimization algorithm, especially in more complex and nonmonotonic models.

Correlations between random variables (i.e., inter-farm variability) were preserved in this study, while independence was assumed between random variables and imprecise parameters (emission factors). This assumption allowed a conservative confidence interval of impacts to be generated for all three scenarios, because all possible combinations of input variables were included in the stochastic simulation. However, representing dependence between random variables and imprecise parameters (if known) could improve the precision of predicted impacts. More research is needed on this issue to improve the validity of LCA results.

The DST-based method constructs two boundary distributions using belief and plausibility functions. This structure has been interpreted as "imprecise probability" [START_REF] Ferson | Constructing probability boxes and Dempster-Shafer structures[END_REF], which covers all possible probability distributions. Although it reflects the true state of knowledge (e.g., incomplete information about emission factors), an extremely wide range of potential impact is likely to be less useful for decision makers. Thus, simplifying interpretation of results by decision makers remains an open question. To address this problem in LCA, Clavreul et al. ( 2013) calculated a "confidence index" [START_REF] Dubois | Risk-informed decision-making in the presence of epistemic uncertainty[END_REF] to generate a weighted probability distribution. Decision makers can choose this confidence index subjectively, depending on whether their decision policies are more optimistic (close to the upper bound) or pessimistic (close to the lower bound). We concur that this kind of confidence index is useful for decision making in LCA studies when uncertainty is modeled with imprecise and incomplete information.

Conclusion

The classic probability method is rigorous in that it requires precise information to express an uncertain variable, but subjective assumption about its distribution may underestimate uncertainty in the predicted result. In addition, it cannot separate epistemic uncertainty from variability, meaning that decision makers will have no information about the relative influence of each on overall uncertainty. Our proposed method overcomes this limit by integrating fuzzy intervals to represent imprecise data (e.g., emission factors) in probability models. As a consequence, a distribution with two bounds and fuzzy intervals of mean impact was generated. Combining the effects of variability and epistemic uncertainty yields a wider range of potential impacts, which may influence decision making. Fuzzy intervals of mean impact model the uncertainty in mean values. The RIW of mean impact, as a comparative indicator, reveals the influence of epistemic uncertainty on uncertainty in impacts, which may help decision makers adopt appropriate strategies if they want to improve the reliability of LCA results.

The paper demonstrated the application of DST in uncertainty analysis in a simple LCA study. Representing the lack of knowledge as fuzzy intervals differs from treating it as randomness. Thus, it provides a conservative but robust way to represent the state of knowledge in LCA studies when information is scarce. Its application in LCA is currently limited, however, due to its greater model complexity and, if epistemic uncertainty is large, greater difficulty in distinguishing potential differences among scenarios. Considering dependence among input variables is also important, since it gives more precise results, but techniques for doing so with fuzzy-interval variables are difficult or complex. Therefore, more research is needed to focus on these issues to improve the feasibility of this method in LCA.

Figure 1 .

 1 Figure 1. Triangular (left) and trapezoidal (right) fuzzy-interval membership functions for an uncertain variable x defined by core, support and α-cut intervals.

  3. Using the variables in each row of M b (x 1 , x 2 …x k ), calculate minimum and maximum values of y with all possible combinations of the last n-k variables (= 2 (n-k) ) in α i , with a lower bound of L(y) = max [f(x 1 , x 2 … x n )] and an upper bound of U(y) = min [f(x 1 , x 2 … x n )]. For a model with only monotone functions, the optimization algorithm can be simplified by interval analysis. 4. Repeat steps 2 and 3 for all α i to generate the fuzzy intervals of y b ([U(y), L(y)] b ) and find the support of y b (denoted π (y b ) α=0 ). Then attribute a mass (m b = 1/B) to the support. 5. Repeat steps 2-4 B times to obtain a set of supports (π 1 , π 2 ,…, π B ) as focal elements, which is used to

Figure 2 .

 2 Figure 2. (Top) Lower (belief) and upper (plausibility) bounds of indicator Y at different possibility levels (α) and (bottom) fuzzy intervals of the mean of Y with support (α=0), core (α=1) and two α-cut intervals (at α=0.3 and 0.6).

Figure 3 .

 3 Figure 3. Cumulative density functions of direct (on-farm) climate change, acidification, and eutrophication impacts per t of fat-and-protein corrected milk (FPCM) in three scenarios that represented uncertainty in emission factors (EFs) differently: S1 -no uncertainty in EFs, S2 -probability distributions for EFs, S3 -fuzzy sets for EFs (solid curves bound 90% of possible values). Vertical gray lines indicate the mean impact (support of mean impact in S3) of each scenario.

Figure 4 .

 4 Figure 4. Fuzzy-interval distributions of means of climate change, acidification, and eutrophication impacts per t of fat-and-protein-corrected milk (FPCM) in scenario 3 (based on Dempster-Shafer theory).

Acidification Eutrophication (kg CO2 eq./t FPCM) (kg SO2 eq./t FPCM) (kg PO4 eq./t FPCM)

  

	Statistics	S1	S2	S3	S1 S2	S3	S1 S2	S3
	Lower limit (5 th percentile)	775 852 [511, 1383] 8.1 9.5 [3.6, 18.2] 4.3 3.9 [2.7, 5.0]
	Mean (support of the mean)	1065 1208 [718, 1874] 10.8 14.3 [4.8, 24.3] 8.6 8.2 [6.6, 9.4]
	Upper limit (95 th percentile)	1400 1632 [947, 2459] 14.			
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