

Everything you always wanted to know about RF bias correction ... but were afraid to ask

Sylvie Clerjon, Jean-Marie Bonny Centre INRA de Clermont-Ferrand Theix, France

Spin density measurement affected by RF bias and noise

Measured signal

RF bias

Spin density weighted imaging

$$S \propto [s]. w_1^-.M_{x,y}(w_1^+)$$

Spin density, what we want to measure

A particular case: Spin Density Map

where $M_{x,y}(w_1^+) = 1$

What we can expect concerning coils homogeneity

Manufacturers

→ difficult to find quantified information

Bibliography

In brain transmit RF field bias = w_1 ⁺ variation 30%

Original image Inhomogeneity field

Vovk et al. (2007). A review of methods for correction of intensity inhomogeneity in MRI. *Ieee Transactions on Medical Imaging*, 26(3), 405-421.

What we can expect concerning coil homogeneities

Our own experiments

and simulation

Rapid Biomedical 19 cm birdcage coil. Bruker Biospec 4,7T. Prescribed angle 60°. Sample: 6 cm diameter homogeneous gelatin cylinder

Numerical simulation, birdcage

What we can expect concerning coil homogeneities

Spatial variations of transmit RF field can reach 40%

Spatial variations depend on

- Coil geometry
- Sample (size, shape, dielectric properties)
- Frequency : High field → high RF frequency → small wavelength / sample size
 → high heterogeneities
- Nucleus

Food science needs quantitative imaging of spin density:

- Products characterization
- Drying, cooking: water mapping
- Salting: sodium mapping

RF bias must be avoid for food quantitative imaging of spin density

- 1. RF field w_1 + mapping
- 2. Image correction

Mapping transmit RF field

DAM-SP for Double Angle Method – Selective Pulse

Principle:

Independent on receive field

$$\frac{S(k.w_1^+) \propto [s] w_1^- . M_{x,y}(k.w_1^+)}{S(w_1^+) \propto [s] . w_1^- . M_{x,y}(w_1^+)}$$

The ratio of two magnitude images at two different prescribed angles

Independent on spin density

The map only depends on transmit field

DAM-SP versus DAM

- No bias in M_{x,v} model due to pulse shape
- Can be used in SE imaging
- 2D

Bouhrara M, Bonny JM. B1 mapping with selective pulses. Magnetic Resonance in Medicine (2012) DOI: 10.1002/mrm.24146.

The DAM-SP's 3 experimental parameters

k factor between the two prescribed angles

Have to be optimized

Pulse shape governing $M_{x,y}(w_1^+)$

We choose a Shinnar-Le Roux

(SLR) pulse

MRI sequence

We used a Flash

Optimizing the k factor

Width = range

Slope = sensitivity

Depends on the pulse

Optimizing the k factor

We have an accurate RF field w₁+ map

How to correct our images?

$$S^* \propto \frac{[s]. \, w_1^{-}. M_{x,y} \left(\widehat{w_1}^+ \right)}{\widehat{w_1}^-}$$

We have an accurate RF field w₁+ map

How to correct our images ?

We have to be sure $W_1^- = W_1^+$

Single coil

Always equal?

We have an accurate RF field w₁+ map

How to correct our images?

We have to be sure $w_1^- = w_1^+$

$$S^* \propto \frac{[s]. w_1^-. M_{x,y}(\widehat{w_1}^+)}{\widehat{w_1}^+. M_{x,y}(\widehat{w_1}^+)} \propto [s]. \underbrace{w_1^-}_{w_1^+} \propto [s]$$

Single coil

Always equal?

Summarized guide

Choose a pulse

Compromise between measurement range and sensitivity best polarization point and best k factor for the best w_1^+ map

Perform acquisitions at prescribed flip angle and k.prescribed flip angle

Compute w₁⁺ map

Correct your raw density weighted images by dividing them by signal due to w₁⁺

You obtain quantitative images

.014

Discussion

Transmit and receive RF fields equality (amplitude and phase)

Sample

Dielectric properties (anisotropy, hydration, conductivity due to salt...)

Shape and size

Coil

Near field behavior close to coil conductors → position in coil

Knowing their coils: area of fields equality

Coils designers have to work on this parameter

Noise

Regularization before computing (in DAM-SP and for RF field correction)

Optimizing acquisition protocol to improve SNR

DAM-SP on each sample before quantitative imaging w_1^- mapping. How and why?

The MRI experiments were performed at the MR Platform for Biological Systems, INRA Center of Clermont-Ferrand, France.

Thanks to my colleagues, Jean-Marie Bonny

Thanks for your attention

