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1. Mitigation options involving cropping systems

Technical options Expected effect

N fertilisation More legumes in crop rotations NIN20O
Adjust N mineral fertiliser application rates & dates, make
better use of organic fertiliser, use nitrification inhibitors,
incorporate fertilisers (to reduce losses)

Soil tillage Reduce tillage (direct seeding, occasional tillage, shallow NCO2 (fuel)
tillage) A C storage

Cover crops and More cover crops in arable cropping systems, in vineyards A C storage

residue and orchards NIN20

management Grass buffer strips

Trees in Agroforestry (low planting density) /1C storage

agrosystems (Re)-planting field hedgerows

Grassland Extend the grazing period, increase the lifespan of A C storage

management temporary grazing, extensify the most intensive grasslands, \yN20
make unproductive grasslands more intensive

Paddy rice Promote aeration of rice-growing soil to reduce \JCH4

management fermentation reactions: reduce the depth of paddy fields,

empty them several times a year,...
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In temperate, intensive agricultural contexts a major part of the cost-
effective abatement potential is related to N management

A recent advanced study by INRA on French
agriculture (Pellerin et al., 2013)

26 proposed technical measures to reduce
agricultural GHG emissions :

« Calculation of the abatement potential
(Mtons of CO,e avoided per year)
« Calculation of the cost to the farmer (€ per

HOW CAN FRENCH AGRICULTURE CONTRIBUTE

TO REDUCING GREENHOUSE GAS EMISSIONS? ton Of C O 26 avo | d ed )

Short summary of the study report conducted by INRA
on behalf of ADEME, MAAF and MEDDE — July 2013

SINRA ] = » 26% of the cumulated abatement potential
was related to N management (N
fertilization, legumes, cover crops,...)

C“’V‘Aféﬁmfl https://www6.paris.inra.fr/depe/Projets/Agriculture-et-GES
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Most measures targeting a reduction of N,O emissions were characterised
by a negative cost (input savings, no yield losses) — “win-win measures”

Annual cost (€/mt CO2e avoided)

However, the
assessment of their
potential abatement
was characterized
by a very high
uncertainty
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Management practices that
Increase effectively SOC are
based on :

- areduction of mineralisation rate
(e.g reduced tillage)

- anincrease of C inputs in soils
(e.g. organic fertilisers, cover
crops, agroforestry...)

additional C storage MtC

£ ¢ & éf . France (2030) :
S S

& & & & 30% abatement

& < potential



Recent meta-analyses have shown that

No-Till (NT) vs Full-Inversion Tillage (FIT)

additional C storage is not always observed

under reduced tillage

Changes in soil C stocks depend on:

* biomass production (and subsequent C inputs as crop

residues) under reduced tillage

« climatic context (more C storage under dry conditions)

Even where no additionnal C storage is oberved, reduced tillage
reduces GHG emissions thanks to less energy consumption

0.2 02— . -0.1_6?_‘ 01 01 02 02

+ 0%
0.3

Relative C input difference between NT and IT plots
(Dlrel)

Virto et al. (2012)

Relative SOC stock difference
between NT and IT plots
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2. Adaptation options involving cropping systems

Technical options

Crop species & * (stress escape) more appropriate thermal time and vernalization
varieties requirements
» (stress tolerance) increased tolerance to heat shock, drought, low
temperature, emergent pests and diseases...
» (stress avoidance) lower water needs, optimal water use pattern

Crop * (escape) shifting sowing date to escape water and thermal stresses

management » (avoidance) nutrient applications, planting density and spatial
arrangements (e.g skip row) adjusted to precipitation patterns and
yield goals

» (attenuation) supplementary/deficit irrigation if available
* (conservation) soil tillage and residue management to maximize
soil water storage, reduce evaporation, runoff and erosion

Cropping * Diversify crops & cultivars to increase resilience (rotation,
pattern landscape) ; variety mixtures and intercropping ; agroforestry ;
flexible systems

Information & * Use seasonal weather forecasting ; model-based decision support
decision system systems (DSS)
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3. Some trade-offs in cropping system design

Adaptation Mitigation Food
Production
reduce increase
N20O SOC
+ -

Reduce the use of mineral N + (W) o/-
fertilizer
No till and mulching @) 0 + )
Legumes in crop rotations - (W) + 0 0
Catch crops, multiple cropping @ o) + )
Agroforestry, intercropping .|.('|')’ -(W) 0 + +
Bioenergy crops -/O (W) 0 + 0/_
Temperature (T) Impact : +, 0, -

CLMATE-SMART
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Some benefits of conservation agriculture in the tropics

Runoff reduction factor (-)

Scopel, E., F.A.M. Da Silva, M. Corbeels, F. Affholder, and F. Maraux. 2004.
Modelling crop residue mulching effects on water use and production of
maize under semi-arid and humid tropical conditions. Agronomie 24(6-7):

383-395.
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A case-study of multiple trade-offs:
rainfed rice in Madagascar (hillsides)
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Rainfed rice in Madagascar : livestock as a priority
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Agriculture [ Context ] 4. DESIGNING CS from Pelzer et al.(2012)



Methods for designing cropping systems
in the context of climate change

New Multiple More Actors to
variables solutions | uncertainty involve
to assess | to explore | to consider
(e.g N,0)

Cropping system experiments +++ + + +
Simulation & optimization ++ +4+ +++ +
studies (in silico)

Prototyping methods + + + ++
Participatory modelling (games) + ++ ++ +++

Coupled with assessment methods
(indicators,multi-criteria decision-aid)

I-Phy
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CropSyst model implemented within the
BioMA modelling platform of the European
Commission (JRC): e.g wheat

Donatelli et al. (2012), IEMSs

Simulation studies concluded to
successful adaptation but :

- A subset of adaptation measures :
sowing dates and hypothetical varieties

- Decision rules, feasability (workable
days) and resource availability (water)
are not considered

- Some important limiting factors are
omitted : e.g. invasive pests and
diseases
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Simulation models for assessing and designing
cropping systems with a CSA perspective

Crop models generally do not consider yield impacts from extreme frost
and heat events (Barlow et al., 2015). Intercomparison of crop models
(e.g. AgMip) revealed uncertainties in simulating yield under CO2 and high
temperatures (Asseng et al., 2013) ;

Major CS models (e.g CropSyst, DSSAT, EPIC, Stics...) can theoretically
simulate a wide range of adaptation options at field level (e.g conservation
agriculture with residue management and minimum tillage) but
plurispecific stands still need new modelling achievements ;

The ability of simulation models to account for the effect of cropping
systems on N,O emissions must be better assessed ;

Some progress is also expected concerning the emergence, incidence and
damage of weeds, pests and diseases under future agriculture (only a few
contributions)
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Hybrid design methods have been developed combining both
participation and research based-models (via serious games) in
order to develop the adaptive capacity of farmers on real-world
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Summary

Cropping systems offer numerous actionnable options for CSA

Multiple trade-offs to consider when designing cropping
systems for CSA objectives

A range of methods for designing and assessing CS (based on
multicriteria decision-aid) that could be combined

Underlying simulation models have to be completed to widen
the set of options to explore

Farm constraints should be considered explicitly when testing
the adaptation and mitigation solutions
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