
HAL Id: hal-02739254
https://hal.inrae.fr/hal-02739254

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Properties of mendelian residuals when regressing
breeding values using a genomic covariance matrix

Rodolfo J.C. Cantet, Zulma Vitezica

To cite this version:
Rodolfo J.C. Cantet, Zulma Vitezica. Properties of mendelian residuals when regressing breeding
values using a genomic covariance matrix. 10. World Congress of Genetics Applied to Livestock
Production (WCGALP), Dec 2014, Vancouver, Canada. American Society of Animal Science, 2014,
Proceedings 10th World Congress of Genetics Applied to Livestock Production (WCGALP). �hal-
02739254�

https://hal.inrae.fr/hal-02739254
https://hal.archives-ouvertes.fr


Proceedings, 10th World Congress of Genetics Applied to Livestock Production 
 

Properties of Mendelian Residuals when regressing Breeding Values using a Genomic Covariance Matrix 
 

R. J.C. Cantet1 Z. G. Vitezica2 

1Universidad de Buenos Aires, Facultad de Agronomía – CONICET, Buenos Aires, Argentina 
2INRA, UMR1388, Toulouse, France

ABSTRACT: Properties of Mendelian residuals when 
predicting breeding values (BV) with a positive definite 
genomic covariance matrix are presented. It is well known 
that in an infinitesimal model with an additive relationship 
matrix built from pedigree data, the variance of the 
Mendelian residuals (MR) from the regression of BV on 
those from the ancestors, explains half the additive variance 
without inbreeding (F), and a little less than that if F of the 
parents is not zero. We show that: 1) the residual variance 
of BV regression using a genomic covariance matrix is 
always less or equal, than Mendelian variance obtained 
from predictions calculated without using genomic 
information; 2) MR are independent if BV of ancestors, 
parents and collateral related non-descendants animals (i.e. 
full and half-sibs, uncles, cousins) are included in the 
regression equation.  
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INTRODUCTION 
While celebrating a symposium in honor of D. 

Gianola, M. Soller stressed the fact that prediction of 
breeding values (BV) from an infinitesimal animal model 
can only explain a little less than 50% of the additive 
genetic variance if inbreeding is present, so that the 
accuracy of prediction of BV is limited when using 
individual phenotype and pedigree. On the other hand, 
genomic information from a large number of markers is 
nowadays available, so that reduction of residual variance 
from predictions using genomic data onto the covariance 
matrix of BV may be reduced when compared with those 
from the classical animal model. The fact that the residual 
additive variance in the regression of BV is reduced by the 
use of genomic information is recognized by Patry and 
Ducrocq (2011) when saying that “the usual assumptions on 
Mendelian sampling expected value and variance are no 
longer valid”. The Mendelian sampling expected value is 
no longer zero so that the resulting relationship matrix is no 
longer the correct one”. The goal of this note is to present 
the properties of Mendelian residuals from the regression of 
BV of an individual into the BV of ancestors, parents and 
related collateral non-descendants animals (i.e. uncles, full 
and half-sibs, cousins), when using a genomic covariance 
matrix.  

 
METHODS 

IBD and Additive Relationships  
when Genomic Markers are Available 

The infinitesimal model uses the additive genetic 
covariance between relatives, which in turn rests on the 
assumption of independent segregation of loci throughout 
the genome, so that the additive relationships involved can 

be calculated as probabilities of genes shared identical by 
descent (IBD) by relatives. However, genomes are inherited 
by segments rather than by individual bases, and there is 
variability among pairs of full and half-sibs in the fractions 
of genome shared IBD (Guo, 1995; Hill and Weir, 2011). 
Therefore, the usual calculation of additive relationships 
using pedigrees is just the expected value of the relationship 
matrix that results from the realized IBD process. Donnelly 
(1983) proposed to model the IBD process throughout the 
genome as a Markov process. Guo (1995) observed that the 
true probability function is difficult to obtain, but not its 
mean and variance. After him, we define the pairwise IBD 
relationship between two animals as the estimated expected 
value of the shared IBD process. The expectation can be 
estimated using a large number of markers such as SNPs. 
Animal breeders use the proportion of SNPs shared by two 
individuals (Van Raden, 2008), as an estimator of that 
expectation. 
 

Prediction of Breeding Values and the Additive 
Relationship Matrix under the Classical Setting 
To express the BV of any individual (say i) on the BVs 

of its parents S and D without genomic information, Foulley 
and Chevalet (1981) set up the following regression model 

i S S D D i b    b    = + +a a a φ     [1] 

where bS and bD are the regression coefficients of the BV of 
the father (aS) and of the mother (aD), on the BV of i (ai), 
respectively. The “error term” (φi, i.e. the MR) represents 
the deviation from the mid parental BVs, and originates in 
random Mendelian sampling of the grand-parental gametes 
present in the parents (segregation), possibly coupled to 
recombination of the grand-paternal gametes in the parents 
due to crossing over during meiosis.  Let b = [bS, bD]’ and  
aA = [aS, aD]’, Foulley and Chevalet (1981) estimated the 
regression coefficients as follows  
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After a bit of algebra, solutions for [2] are bS = bD 
= 0.5, and [1] becomes 

1 1
2 2i S D ia     a    a    = + + φ                       [4] 



Therefore, in classic theory without genomic 
information the BV of an individual is regressed to half its 
parental BV, plus the MR (i.e. Bulmer, 1985, page 125; 
Quaas, 1988). After [4], we can write φi = ai  − 0.5 [aS + 
aD], and obtain the variance of φi as the residual variance of 
the regression model [1], thus yielding 
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Bulmer (1985) observed that φi is independent of any other 
MR, so that it is also independent of the BV of any other 
individual. On recalling that Fi = 0.5 ASD, Foulley and 
Chevalet (1981) observed that: 
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In absence of inbreeding Var(φi) = 0.5 2

Aσ , i.e. the 
“within family” additive variance explained by the 
regression in the infinitesimal model (Walsh and Lynch, 
2013; chapter 22), is half the additive variance. However, 
marker data can help in reducing the value of Var(φi)  as we 
will shown below. 
 

Reduction of Residual Variance  
due to using Genomic Information 

Consider the regression of the BV of an individual in 
the BV of other animals in a pedigree. Without genomic 
information, the MR are uncorrelated. However, the use of 
genomic information introduces a lack of independence 
among those fractions of the genome that are shared IBD 
between individuals over the expected value of the 
relationship that is calculated only with the pedigree, i.e. the 
elements of A. In a regression setting this can be viewed as 
comparing two regression equations (Greene, 2012). The 
“short regression”, i.e. model [4], or the regression of the 
individual BV (a) on the parental BV (from now on the 2 × 
1 vector aP defined as aP´=[aS, aD]´. On the other hand, the 
second model is the “long regression” and corresponds to 
the regression of BV with a genomic covariance matrix that 
has as elements relationships from the fraction of genome 
shared IBD. In this case, a is regressed to both aP and aO. 
The latter vector comprises the BV of animals being either 
ancestors or contemporaries, save its parents and 
descendants. More formally the joint distribution of BV is 
taken to be 
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The “long regression” is represented as 

P P O O G  '   '   a = + + φb  a b  a            [8] 
In [8] the vectors of regression coefficients are bP for 

the parents and bO for the remaining non-independent BV 
from related individuals, whereas φG is the Mendelian 
residual of the “long regression” using genomic 
information, and is different from φ in [4].  

Alternatively, the “short regression” [4] is written as  

P  '   a = + φb a    [9] 

The 2 × 1 vector b has both elements equal to 0.5. We 
now prove that Var(φG) in [9] is always smaller to Var(φ)  
in [4], and is equal only if no genomic information is used.  

First, the values of the regression coefficients in the 
“long regression” are obtained as in [2] by solving the 
following linear system  
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Using standard results on the inverse of a 
partitioned matrix (Greene, 2008, expression [A.74]), the 
inverse of the matrix in [10] is equal to 
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Conditional variances in [11] are equal to 
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Equating both regression models allows obtaining 
the following expression that relates both Mendelian 
residuals: 

( )G P P O O    '   'φ = φ − − +  b b  a b  a
     [13] 

Notice that, unless G = A, bP will not be equal to b: 
the regression coefficients resulting from genome IBD 
sharing from both parents of the individual will not 
necessarily be equal to 0.5, as the 50% of the genes 
inherited from a parent can be expressed as a linear 
combination of genes shared IBD by the individual with the 
parents’ ancestors.  

After a lot of algebra, it can be proved that  
( ) ( )G O O P OVar  Var  ' |φ = φ − b G b   [14] 

The quadratic form bOʹGO|PbO is always positive as 
long as bO ≠ 0, which in turn can only happen if GPO = 0, 
i.e. if there is no shared IBD (genomic relationships 
reflecting common segregation) between the breeding 
values of parents and other individuals in the pedigree. 
Therefore, except for the latter case in which the variances 
will be equal, Var(φG)  <  Var(φ). 
 

Independence of the Mendelian residuals 
An important property of the Mendelian residuals is 

that they are independent. In the block regression setting 
with a genomic covariance matrix such as in the “long 
regression” model [7]-[8], this property is reproduced as 
long as the BV of all other descendants from parents and 
ancestors, born up to the birthdate of the animal (we assume 
that individuals are ordered by date of birth into a, as 
commonly used to build A−1 or  A) are included in the 
regression for animal i. To see this decompose bO for the 
remaining non-independent BV from related individuals 
into bOʹ = [bAʹ bCʹ]. The sub-indices A and C correspond to 
ancestors and relatives other than ancestors and parents (i.e. 
uncles, half and full sibs, cousins) of animal i. Observe that, 
up to the date i was born, its descendants are not yet in G. 
This will confer to G a similar triangular Cholesky root free 
decomposition as found in A. Without loss of generality we 
can write the vector of BV as aʹ = [aAʹ aPʹ aCʹ ai], and 
system [10] is now equal to 
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Using formulae from the inverse of a positive 
definite matrix partitioned in three blocks (Hrone, 2006), 
we can proved that all matrices in the off-diagonal blocks of 
G−1 are not zero unless GAC = 0 and GPC = 0. This implies 
that ancestors and parents do not have other descendants 
than i (and its parents). Therefore, one should be careful to 
include all descendants of ancestors and parents that 
precede i in G in such a way that the Mendelian residual 
covariance matrix be diagonal. 
 

The Genomic Covariance Matrix 
Let B be a triangular matrix of order q that relates BV 

of individuals to ancestors, parents and contemporaries in a, 
by associating the regression coefficients in b with ai, 
coefficients that are calculated using genomic relationships. 
Matrix B enters into G in the following manner 

( )    or  = + − =a B a I B  aφ φ     [16] 
Elements of B are such that −1 < Bij < 1 as 

inbreeding will enlarge parent-offpring regressions but 
selfing or cloning will not be allowed. It can be verified that 
all eigenvalues of B are equal to zero and the largest 
eigenvalue (or spectral radius) of B (ρ(B)) is less than one. 
Then, Lemma 2.1 in Berman and Plemmons (1994) 
indicates that ρ(B) < 1 if and only if (I − B)-1 exists and is 
equal to 
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The value of K is the number of generations (or 

matrix powers) in the largest path between an ancestor and 
a descendant, and is similar to what happens with A (Quaas, 
1988). The closer to 1 is the magnitude of any regression 
coefficient; the higher will be the value of K. This is a 
consequence of genomic data bringing information from all 
meiosis from a common ancestor in the base generation 
down to its last descendant, back and forth. This 
formulation allows taking the variance operator in [16] and 
obtaining 
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So that 

( ) ( )1 1   '− −
= − −G I  B D I  B  [19] 

The elements of D are Dii = Var(φG) / 2

Aσ , and the 
buildup of G parallels the one for A as in Quaas (1988). 
 

DISCUSSION 
To relate genomic selection with classical 

prediction of BV from animal models using BLUP, an 
infinitesimal model using genomic information is needed. 
Some properties of such a model are: 1) Normality of BV 
using genomic information, while taking into account 
linkage disequilibrium; 2) regression properties of BV 
among generations; 3) reduction of Mendelian variance due 
to using genomic information; 4) independence of 
Mendelian residuals when using genomic information. Item 
1) was dealt with by Dawson (1997) who found that only 
under extreme LD asymptotic normality was not attained. 
Our expression [8] characterizes 2), and we have given 
evidence that 3) and 4) hold. The reduction of Mendelian 
variance explains the increase in accuracy of BV prediction 
when using genomic data. Moreover, the increase in 
accuracy can be calculated with the following expression 
for prediction error variance (PEV; modified from 
Henderson, 1975): 

( ) ( )1 1 2

A
ˆVar aa aa aa− −− = + − σa  a C C A G A A C  

and Caa is PEV under the animal model without 
genomic information. Finally, independence of the 
Mendelian residuals is useful to invert G in [19] 
avoiding direct inversion, i.e. by employing rules 
similar to the ones used to calculate 1−A . 
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