

Seasonal variations in soil carbonic anhydrase activity in a pine forest ecosystem as inferred from soil CO18O flux measurements

Jérôme Ogée, Lisa Wingate, Alexandre Bosc, Régis Burlett

▶ To cite this version:

Jérôme Ogée, Lisa Wingate, Alexandre Bosc, Régis Burlett. Seasonal variations in soil carbonic anhydrase activity in a pine forest ecosystem as inferred from soil CO18O flux measurements. EGU 2015, European Geosciences Union General Assembly, European Geosciences Union (EGU). DEU., Apr 2015, Vienne, Austria. hal-02739331

HAL Id: hal-02739331 https://hal.inrae.fr/hal-02739331

Submitted on 2 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Seasonal variations in soil carbonic anhydrase activity in a pine forest ecosystem as inferred from soil CO¹⁸O flux measurements

Jerome Ogee (1), Lisa Wingate (1), Alexandre Bosc (1), Régis Burlett (1,2)

(1) INRA, UMR1391 ISPA, 33140 Villenave d'Ornon, France (jerome.ogee@bordeaux.inra.fr), (2) Now at Université de Bordeaux, UMR1202 BIOGECO, 33405 Talence, France

Quantifying terrestrial carbon storage and predicting the sensitivity of ecosystems to climate change relies on our ability to obtain observational constraints on photosynthesis and respiration at large scales (ecosystem, regional and global). Photosynthesis (GPP), the largest CO₂ flux from the land surface, is currently estimated with considerable uncertainty (1-3). Robust estimates of global GPP can be obtained from an atmospheric budget of the oxygen isotopic composition (δ^{18} O) of atmospheric CO₂, provided that we have a good knowledge of the δ^{18} O signatures of the terrestrial CO₂ fluxes (1,4). The latter reflect the δ^{18} O of leaf and soil water pools because CO₂ exchanges "isotopically" with water [CO₂+ $H_2^{18}O \Leftrightarrow H_2O+CO^{18}O$]. This exchange can be accelerated by the enzyme carbonic anhydrase (CA). In leaves, where CA is present and abundant, this isotopic equilibrium is reached almost instantaneously. As a consequence, and because soil and leaf water pools have different δ^{18} O signatures, CO₂ fluxes from leaves and soils carry very distinct δ^{18} O signals and can thus be tracked from the fluctuations in the δ^{18} O of atmospheric CO₂ (δ_a). There is growing evidence that the accelerated isotopic exchange between CO2 and water due to CA activity is a widespread phenomenon in soils as well (4). At the global scale, accounting for soil CA activity dramatically shifts the influence of soil and leaf fluxes on δ_a , thus changing the estimates of terrestrial gross CO_2 fluxes (1,4). In this talk we will briefly present the current state of understanding of the environmental and ecological causes behind the variability in CA activity observed in soils and illustrate, using field data from a temperate pine forest, how soil CA activity varies over a single growing season and how it responds to soil surface environmental variables.

References

1. L. R. Welp et al., Interannual variability in the oxygen isotopes of atmospheric CO_2 driven by El Niño, Nature 477, 579–582 (2011).

2. C. Beer et al., Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate, Science 329, 834–838 (2010).

3. C. Frankenberg et al., New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity, Geophys. Res. Lett. 38 (2011), doi:10.1029/2011GL048738.

4. L. Wingate et al., The impact of soil microorganisms on the global budget of δ^{18} O in atmospheric CO₂, Proceedings of the National Academy of Sciences 106, 22411–22415 (2009).