

# A database to understand tissue growth processes contributing to body or muscle composition

<u>Jérémy Tournayre</u>, Isabelle Cassar-Malek, Matthieu Reichstadt, Brigitte Picard, Nicolas Kaspric and Muriel Bonnet



Journées Ouvertes en Biologie, Informatique & Mathématique 7th of July, 2015









## Context



#### Genomics generates a huge amount of data



Oncomine: biomarkers of cancer

ONCOMINE: A Cancer Microarray Database and Integrated Data-Mining Platform (*Daniel R Rhodes*, 2004)

EURRECA (EURopean micronutrients RECommendations Aligned): Assessing potential biomarkers of micronutrient status by using a systematic review methodology: methods (*Lee Hooper et al.*, 2009)

## Context



Genomics generates a huge amount of data



Objective: In the context of carcass and meat qualities we hypothesised that aggregating data could help to understand mechanisms underlying fat and muscle hypertrophy and hyperplasia

Fat&MuscleDB

# Workflow of the development of Fat&MuscleDB







Select Extract Classify Visualise Aggregate

# Keywords

#### Cellular and tissular traits linked to muscle and adipose tissue growth (86)

e.g. Adipose tissue, muscle, marbling, double-muscled, carcasses, meat qualities...

#### Species and cell lines (26)

e.g. Bovine, 3T3-L1, C2C12...

#### Methods (12)

e.g. Transcriptome, proteome...

#### Keywords to exclude

e.g. Diseases, carcinoma...



WEB OF SCIENCE™





# Keywords

#### Cellular and tissular traits linked to muscle and adipose tissue growth (86)

e.g. Adipose tissue, muscle, marbling, double-muscled, carcasses, meat qualities...

#### Species and cell lines (26)

e.g. Bovine, 3T3-L1, C2C12...

#### Methods (12)

e.g. Transcriptome, proteome...

~28,000 combinations

#### Keywords to exclude

e.g. Diseases, carcinoma...

#### Number of references:

~18,000 publications



WEB OF SCIENCE

~2,500 transcriptomic data







# Keywords

#### Cellular and tissular traits linked to muscle and adipose tissue growth (86)

e.g. Adipose tissue, muscle, marbling, double-muscled, carcasses, meat qualities...

#### Species and cell lines (26)

e.g. Bovine, 3T3-L1, C2C12...

#### Methods (12)

e.g. Transcriptome, proteome...

~28,000 combinations

#### **Keywords to exclude**

e.g. Diseases, carcinoma...

#### Number of references:

~18,000 publications



WEB OF SCIENCE

Cone Expression Omnibus

~410 Publications

Curators

~170 Transcriptomics data

~2,500 transcriptomic data

# Data extraction from publications





Select Extract Classify Visualise Aggregate

Target genes of myostatin loss-of-function in muscles of late bovine fetuses. Isabelle Cassar-Malek et al., 2007

#### Examples of up-regulated genes in DM semitendinosus

| Gene symbol        |       | Gene name                                 | ī   | old chang | e Homology |
|--------------------|-------|-------------------------------------------|-----|-----------|------------|
| 26 10 10 3N 1 4Rik |       | Slc I 6a I 0 Solute carrier family 16     |     | 2.76      | 53%        |
| 2410044K02Rik      |       | Thoc3 THO complex 3                       |     | 2.64      | 96%        |
| SURFI              |       | Surfeit I                                 |     | 2.54      | 88%        |
| LOC58504 H         | lypot | hetical protein from clones 23549 and 237 | 762 | 2.52      | 86%        |
| Slc26a4            |       | Solute carrier family 26, member 4        |     | 2.48      | ND         |
| FLJI 3855          |       | Hypothetical protein FLJ 13855            |     | 2.36      | 94%        |

Semi-automatic extraction with these tools: Tabula, Pdf2text

# **Data extraction from GEO**





Select

**Extract** 

Classify

Visualise

Aggregate

What are the transcripts differentially expressed between two conditions?

Double-muscled Charolais (260 days post coitum)





Control Charolais (260 days post coitum)

(source on GEO: GSE5456)

Muscular hypertrophy from genetic origin

Variance mixture from Anapuce (R library) (J. Aubert) (http://cran.r-project.org/web/packages/anapuce/index.html)

up-regulated genes
Lists of: down-regulated genes
stable genes

# Classification





# Criteria

#### Muscle or adipose tissue growth from both in vivo and in vitro experiments

e.g. Muscular hypertrophy from genetic origin, 3T3-L1 differentiating into adipocytes...

#### Physiological traits

e.g. Double-muscled, high marbled, obese...

#### **Cell lines**

e.g. C2C12, 3T3-L1, C3H/10T1/2...

#### **Tissues**

e.g. Semitendinosus muscle, white adipose tissue...

#### **Breeds**

e.g. Charolais, holstein, piedmontese...

#### Data source

Publication name, chip(s), author(s)

# Classification



Select Extract Classify Visualise Aggregate

# Criteria

#### Muscle or adipose tissue growth from both in vivo and in vitro experiments

e.g. Muscular hypertrophy from genetic origin, 3T3-L1 differentiating into adipocytes...

#### Physiological traits

e.g. Double-muscled, high marbled, obese...

#### **Cell lines**

e.g. C2C12, 3T3-L1, C3H/10T1/2...

#### **Tissues**

e.g. Semitendinosus muscle, white adipose tissue...

#### **Breeds**

e.g. Charolais, holstein, piedmontese...

#### Data source

Publication name, chip(s), author(s)

| First condition                          | Second<br>condition | State                        | Species | Breed                | Tissue                   | Cell | Reference                                                                                            | Authors                                                                         |
|------------------------------------------|---------------------|------------------------------|---------|----------------------|--------------------------|------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Muscular hypertrophy from genetic origin | Reference           | Double-muscled<br>VS Control | Bovine  | Charolais (260 Days) | Semitendinosus<br>muscle | NA   | Target genes of myostatin loss-of-function in muscles of late bovine fetuses.  Link DOI  Link Pubmed | Cassar-Malek I ;<br>Passelaigue F ;<br>Bernard C ;<br>Léger J ;<br>Hocquette JF |

# **Data visualisation**



Select Extract Classify Visualise Aggregate

| First condition                          | Second<br>condition | State                        | Species | Breed                | Tissue                   | Cell | Reference                                                                                            | Authors                                                                     |
|------------------------------------------|---------------------|------------------------------|---------|----------------------|--------------------------|------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Muscular hypertrophy from genetic origin | Reference           | Double-muscled<br>VS Control | Bovine  | Charolais (260 Days) | Semitendinosus<br>muscle | NA   | Target genes of myostatin loss-of-function in muscles of late bovine fetuses.  Link DOI  Link Pubmed | Cassar-Malek I;<br>Passelaigue F;<br>Bernard C;<br>Léger J;<br>Hocquette JF |

Transcripts - Increased abundance

**Transcripts - Decreased abundance** 

| Analysed by Fat&MuscleDB | Uniprot conversion | Gene Symbol   | Gene name                                        | Fold |
|--------------------------|--------------------|---------------|--------------------------------------------------|------|
| No                       | Q3U9N9             | 2610103N14Rik | Slc16a10 Solute carrier family 16                | 2.76 |
| No                       | Q29RH4             | 2410044K02Rik | Thoc3 THO complex 3                              | 2.64 |
| No                       | F1N6P2             | SURF1         | surfeit 1                                        | 2.54 |
| No                       | NA                 | LOC58504      | Hypothetical protein from clones 23549 and 23762 | 2.52 |
| No                       | E1BMB2             | SLC26A4       | solute carrier family 26, member 4               | 2.48 |
| No                       | 17G9K3             | FLJ13855      | hypothetical protein FLJ13855                    | 2.36 |
| No                       | Q9Y236             | C8orf1        | Chromosome 8 open reading frame 1                | 2.27 |
| No                       | G3X6W9             | MYBPH         | myosin binding protein H                         | 2.27 |
| No                       | Q13495             | CXorf6        | chromosome X open reading frame 6                | 2.19 |
| No                       | A7MB74             | ACCN2         | amiloride-sensitive cation channel 2, neuronal   | 2.17 |

# **Data visualisation**



Select Extract Classify Visualise Aggregate

# Search accessions



#### Presence

| First<br>condition                               | Second<br>condition                              | Molecule | State                                                              | Species | Breed (age)                   | Biological<br>sample         | Reference                                                               | Authors                                                                                                             |
|--------------------------------------------------|--------------------------------------------------|----------|--------------------------------------------------------------------|---------|-------------------------------|------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Proteins<br>secreted<br>by<br>adipose<br>tissues | Proteins<br>secreted<br>by<br>adipose<br>tissues | Proteins | [NA]                                                               | Rat     | Sprague-Dawley Male (5 Weeks) | Gonadal<br>adipose<br>tissue | Secretome analysis of rat adipose tissues shows location-specific roles | Roca-Rivada, Arturo ; Alonso, Jana ; Al-Massadi, Omar ; Castelao, Cecilia ; Ramon Peinado, Juar Maria Seoane. Luisa |
| Proteins<br>secreted<br>by<br>adipose<br>tissues | Proteins<br>secreted<br>by<br>adipose<br>tissues | Proteins | Undergoing<br>laparotomy<br>to remove<br>an<br>intramural<br>myoma | Human   | (39 Years)                    | Omental                      | Comparison of isotope-labeled amino acid incorporation rates            | Roelofsen H; Dijkstra M; Weening D; de Vries MP; Hoek A; Vonk RJ                                                    |

# **Current contents Fat&MuscleDB**



~170 Publications

To be implemented

~100 Gene Expression Omnibus series



The number of publications and GEO relative to species

# **Aggregation**



Select Extract Classify Visualise Aggregate

What are the transcripts and proteins involved in muscular hypertrophy from genetic origin?



# **Aggregation**



Select Extract Classify Visualise Aggregate

What are the transcripts and proteins involved in muscular hypertrophy from genetic origin?



#### 30 pairwise comparisons

| Selected | Muscular<br>hypertrophy<br>from<br>genetic<br>origin | Adipose<br>hypertrophy<br>from<br>genetic<br>origin | Proteins    | Higher intramuscul fat developmei | Bovine | Korean (27 Months)                            | Longissimus<br>dorsi | NA | Differentially expressed proteins during fat accumulation in bovine | Zhang Q; A<br>Lee HG;<br>Han JA;<br>Kim EB;<br>Kang SK;<br>Yin J: |
|----------|------------------------------------------------------|-----------------------------------------------------|-------------|-----------------------------------|--------|-----------------------------------------------|----------------------|----|---------------------------------------------------------------------|-------------------------------------------------------------------|
| Selected | Muscular<br>hypertrophy<br>from<br>genetic<br>origin | Adipose<br>hypertrophy<br>from<br>genetic<br>origin | Transcripts | Control                           | Bovine | Piedmontese (3 Months) VS<br>Wagyu (3 Months) | Longissimus<br>dorsi | NA | GSE25554                                                            | Reverter A ;<br>Hudson N                                          |

| Decreased abundance     | Increased abu | ındance | Stable abunda | ince        |
|-------------------------|---------------|---------|---------------|-------------|
| Analysed by Fat&MuscleD | B Uniprot     | Entry N | ame Review    | red Count ▼ |
| No                      | Q0P571        | MLRS_B  | OVIN Yes      | 2           |
| No                      | Q3SWW8        | TSP4_B0 | OVIN Yes      | 2           |
| No                      | A7MBI7        | COMT_B  | OVIN Yes      | 2           |
| No                      | Q5KR47        | TPM3_B  | OVIN Yes      | 2           |



ProteINSIDE to Easily Investigate Proteomics Data from Ruminants: Application to Mine Proteome of Adipose and Muscle Tissues in Bovine Foetuses (*Kaspric N et al.*, 2015)



Search in ProteINSIDE

Decreased

Increased

Submit in Basic Analysis

Submit in Custom Analysis

ProteINSIDE to Easily Investigate Proteomics Data from Ruminants: Application to Mine Proteome of Adipose and Muscle Tissues in Bovine Foetuses (Kaspric N et al., 2015)

(Realised by A. Perot)

## **Conclusions**





# **Perspectives**

- Continue to feed Fat&MuscleDB
- Address research questions: e.g. what are the proteins involved in the cross-talk between adipose tissues and muscles (secretome)

Minimise unnecessary redundancy in research efforts by a better use of available data

Muriel Bonnet



Isabelle Cassar-Malek



Matthieu Reichstadt



Brigitte Picard



Nicolas Kaspric



**Antoine Perot** 



Anne de la Foye



# Thank you for your attention



Rejected

Not seen

Selected







168 Gene Expression Omnibus series