Aerial imagery for site specific weed management
Marine Louargant, N. Vigneau, Gawain Jones, Sylvain Villette, Christelle Gée

To cite this version:
Marine Louargant, N. Vigneau, Gawain Jones, Sylvain Villette, Christelle Gée. Aerial imagery for site specific weed management. Workshop: Weed control with less reliance on herbicides. Designing resilient cropping systems, Ecole Supérieure d’Agricultures d’Angers (ESA d’Angers). Angers, FRA., May 2014, Angers, France. hal-02739534

HAL Id: hal-02739534
https://hal.inrae.fr/hal-02739534
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Aerial imagery for site specific weed management

Marine Louargant - UMR 1347 Agroécologie, AgroSup Dijon – AIRINOV
marine.louargant@airinov.fr

Weed control with less reliance on herbicides
Workshop 26-28 May 2014
Contents

Introduction

I. New technologies for weed detection: image acquisition by UAV

II. A method based on spatial analysis to localize weeds

III. Spectral analysis to get more information

IV. Practical application

Conclusion
Introduction

• Impact of weeds on yields and crop quality
 → Control mainly based on the use of herbicides

• Environmental and health effects of herbicides
 → Reduction policies (i.e. Ecophyto)

• Increase of herbicide cost
 → Toward herbicide reduction
Identifying weed distribution for a better control

A need to localize weeds in a field:

• For farmers, to adapt their agricultural practices
• For researchers, to monitor trial plots

Using an Unmanned Aerial Vehicle (UAV):

• Image acquisition of the whole field
• High resolution to identify weeds
• Information in real time
The project: weed localization by UAV

Collaboration between:

• AIRINOV, specialized in aerial image acquisition and processing for agriculture

• Team of Agricultural machinery engineering, AgroSup Dijon, works on imagery for weed detection

→ To evaluate a spectral imagery method for agro-system observation

→ To develop a new service of weed management
Introduction

I. New technologies for weed detection: image acquisition by UAV
 I. Acquisition system
 II. Orthoimage characteristics
 III. Studied species
 IV. A method based on spatial analysis to localize weeds

II. Spectral analysis to get more information

III. Practical application

Conclusion
Acquisition system

• UAV : flying wing of 1m

• Optical sensors for image acquisition :
 – Red Green Blue camera
 – Multispectral camera (4 filters)

• Positioning sensors : GPS, inertial unit
 → Automated flight
 → Georeferenced images
Orthoimage characteristics

• Orthoimage:
 – Image corrected from distortions and light variations
 – Flat image of the whole field

• Colors:
 – Red, Green, Blue
 – Multispectral: Green, Red, Red Edge zone, Infra-Red

• Spatial resolution: up to 1 cm/pixel
Studied species

Crops: maize, sunflower, sugar beet, wheat and rape

Weeds encountered on these crops

Characteristics:

• Seedling of row-crops:
 – distinct parallel lines
 – constant inter-row

• Weeds: mainly distributed in patches

• With a specific spectral signature (varies with the species and the physiologic state)
Contents

Introduction

I. New technologies for weed detection: image acquisition by UAV

II. A method based on spatial analysis to localize weeds
 I. A method based on row crop detection
 II. Results

III. Spectral analysis to get more information

IV. Practical application

Conclusion
A method based on row crop detection
A method based on row crop detection

Main steps:
- Cutting in sub-images
A method based on row crop detection

Main steps:
- Cutting in sub-images
- Soil/vegetation separation
A method based on row crop detection

Main steps:
- Cutting in sub-images
- Soil/vegetation separation
- Row detection
A method based on row crop detection

Main steps:
- Cutting in sub-images
- Soil/vegetation separation
- Row detection
- Crop and weed discrimination
A method based on row crop detection

Main steps:
- Cutting in sub-images
- Soil/vegetation separation
- Row detection
- Crop and weed discrimination
- Sub-image gathering

Workshop 26-28 May 2014
Results

Algorithm tested on RGB and multispectral images

Limits:

• Crop rows are supposed to be straight lines
• Weed detection is possible in the inter-row only
• This algorithm is only adapted to crops sowed in distinct rows
• Impact of the resolution on the detection

→ Improvement with spectral information
Contents

Introduction

I. New technologies for weed detection: image acquisition by UAV

II. A method based on spatial analysis to localize weeds

III. Spectral analysis to get more information

 I. Understanding the processing chain

 II. Spectrum acquisition

 III. Wavelength selection

IV. Practical application
Spectral analysis

How to complete this spatial method with spectral analysis?

Can we discriminate soil, crops and weeds according to their reflectance spectrum?

Which filters to use to detect weeds in the fields?
Understanding the processing chain

- Multispectral image of the field
- Sensor characteristics
- Processing
- Filter selection
- Which filters allow the best discrimination between crops and weeds?

Spectrum acquisition in laboratory

<table>
<thead>
<tr>
<th>Reflectance (%)</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
</table>

Workshop 26-28 May 2014
Spectrum acquisition

Spectrometer:

→ Full spectrum from 350nm to 2500 nm

→ Reflectance spectrum

Spectrum acquisition of soil, crop and weed

• At different stages

• Pure spectrum of the whole plant
 → Spectrum unmixing process

• Spectrum in the field
Spectrum acquisition – Studied species

<table>
<thead>
<tr>
<th>Dicotyledonous weeds</th>
<th>Crop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb’s quarters (chenopodium album)</td>
<td>Maize</td>
</tr>
<tr>
<td>Wild buckwheat (Fallopia convolvulus)</td>
<td>X</td>
</tr>
<tr>
<td>Goosegrass (Galium aparine)</td>
<td></td>
</tr>
<tr>
<td>Barnyard Grass (Echinochloa crus-galli)</td>
<td>X</td>
</tr>
<tr>
<td>Black grass (Alopecurus myosuroides)</td>
<td></td>
</tr>
<tr>
<td>Rye grass (Lolium multiflorum)</td>
<td></td>
</tr>
<tr>
<td>Volunteers</td>
<td>Wheat</td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
</tr>
<tr>
<td>Rape</td>
<td></td>
</tr>
<tr>
<td>Sunflower</td>
<td></td>
</tr>
</tbody>
</table>
Wavelength selection

Assessment of each combination of bands → classification

Combination of 4 spectral bands (≃ pixel)

Classification of each pixel

<table>
<thead>
<tr>
<th>Predicted class</th>
<th>Crop</th>
<th>Weed</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop</td>
<td>? %</td>
<td>? %</td>
<td>? %</td>
</tr>
<tr>
<td>Weed</td>
<td>? %</td>
<td>? %</td>
<td>? %</td>
</tr>
<tr>
<td>Soil</td>
<td>? %</td>
<td>? %</td>
<td>? %</td>
</tr>
</tbody>
</table>
Introduction

I. New technologies for weed detection: image acquisition by UAV

II. A method based on spatial analysis to localize weeds

III. Spectral analysis to get more information

IV. Practical application

Conclusion
Practical application

- Field assessment
- Multispectral aerial images
- Spectrum acquisition in laboratory

Reflectance

- Filter selection
- Acquisition model

Crops/weed discrimination

- Infestation map

Weeding strategy

- Method validation
- Other AIRINOV services:
 - prescription map
 - recommendation

Modelisation

- Farming practices evaluation

Spectrum acquisition
Practical application

• Weed localization
• Weed identification (monocot/dicot, family, species)
• Annual or inter-annual monitoring of the fields

• Adapted recommendation to the field characteristics and to the equipment (i.e. precision spraying)
Conclusion

• New technologies for weed localization
• Ability to localize weeds with a UAV on crops sowed in rows
• Using spectral information to improve this method
 → Filter selection
 → Pixel classification
• Map production for recommendation or weed monitoring
Thank you for your attention

Marine Louargant
marine.louargant@airinov.fr

www.airinov.fr