Coupling root dynamics with reactive transport processes in soil-method and example application to phosphorus acquisition from a mineral source in alkaline soils

Frédéric Gérard, Céline Blitz, Philippe Hinsinger, Loïc Pagès

To cite this version:
Frédéric Gérard, Céline Blitz, Philippe Hinsinger, Loïc Pagès. Coupling root dynamics with reactive transport processes in soil-method and example application to phosphorus acquisition from a mineral source in alkaline soils: Method and example application to phosphorus acquisition from a mineral source. 5. International EcoSummit: Ecological Sustainability: Engineering Change, Aug 2016, Montpellier, France. 2016. hal-02739636

HAL Id: hal-02739636
https://hal.inrae.fr/hal-02739636
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Coupling root dynamics with reactive transport processes in soil

Method and example application to phosphorus acquisition from a mineral source

Frédéric Gérard1, Céline Blitz1, Philippe Hinsinger1, and Loïc Pagès2

1. INRA, UMR Eco&Sols, 34060 Montpellier; gerard@supagro.inra.fr, 2. INRA, UMR PSH, 84914 Avignon

Introduction

Numerical models that couple root systems and related functions with soil processes are limited with respect to the description of reactive transport processes in soil, particularly with respect to soil chemistry. For example, aqueous speciation is not taken into account (e.g. Dunbabin et al., 2013). This lack precludes with a comprehensive modelling of soil chemistry using chemical thermodynamic and kinetic principles (e.g. law of mass action, chemical affinity).

Our objectives were two-fold (Gérard et al., 2016):

1. To develop a soil-plant model that comprehensively describe geochemical processes.
2. To illustrate its relevance for studying soil-plant interactions. We investigated for illustration purposes the problem of P acquisition from a mineral P source as mediated by nutrient uptake and pH changes in the rhizosphere. This is an important ecological process for the sustainable intensification of agro-ecosystems (e.g. Richardson et al. 2011).

Methods

Model Min3P-ArchiSimple

The root system model ArchiSimple (Pagès et al., 2014)

- Macroscopic approach - Root segments converted into a root surface density in each grid block.
- Sequential coupling + data exchange at a daily time step

The reactive transport model Min3P (e.g. Mayer et al., 2012)

Modelling conditions

Alkaline soil

Low P availability (0.1 µM)

Equilibrium with hydroxyapatite

Cation and anion adsorption/desorption

Results

Root-induced alkalinization

Root-induced acidification

Conclusions

We developed an innovative soil-root system model that comprehensively describes chemical processes (reaction thermodynamics and kinetics) coupled with mass transport processes.

The present application showed that most of the plant P can be issued from hydroxyapatite when root-induced alkalinization occurs, thanks to the influence of Ca and P uptake, and confirmed that acidification is much more efficient.

Acknowledgements: The coupling of Min3P and ArchiSimple was performed thanks to the financial support of SYNGENTA Crop protection (Stain, Sussex) within the framework of the project ‘PeasDynassoil’ with INRA. The authors are indebted to N. Moitrier for his technical advises on Fortran-C++ interoperability.

References

