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Résumé. Les graphes (souvent appelés réseaux) ont connu un intérêt croissant
ces dernières années car on les retrouve de manière naturelle dans un nombre impor-
tant d’applications en sciences sociales, biologie, informatique... Cet article propose une
méthode de fouille de données pour visualiser et classer les sommets d’une classe parti-
culière de graphes, les graphes bipartis. La méthode proposée est basée sur un algorithme
de carte auto-organisatrice et s’appuie sur une extension de cette approche à des données
décrites par une matrice de dissimilarité.

Mots-clés. graphe, graphe biparti, classification non supervisée, visualisation, carte
auto-organisatrice (SOM)

Abstract. Graphs (also frequently called networks) have attracted a burst of atten-
tion in the last years, with applications to social science, biology, computer science... The
present paper proposes a data mining method for visualizing and clustering the nodes of a
peculiar class of graphs: bipartite graphs. The method is based on a self-organizing map
algorithm and relies on an extension of this approach to data described by a dissimilarity
matrix.

Keywords. graph, bipartite graph, clustering, visualization, self-organizing map
(SOM)

1 Introduction

Graphs (also frequently called networks) have attracted a burst of attention in the last
years, with applications to social science, biology, computer science... A significant class
of graphs arises naturally in a number of real-life applications: bipartite graphs. In such
graphs, vertices are labeled by two distinct labels (say, “1” and “2”), such that no pair of
vertices with the same label share an edge. Examples of such graphs are people attending
events, scientists publishing articles, actors playing in movies, people working in firms.

Combining clustering and visualization has been proven a useful tool to help the
user decipher the main characteristics of a graph [12]. Several approaches have been
developed so far to perform this task: (i) using a node clustering prior to visualizing
the graph induced by the clustering, which is a simplified representation of the graph in
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which clusters are symbolized by a single node; (ii) visualizing the whole graph by adding
constraints on the node locations [6] that can be derived from a prior node clustering
or (iii) combining in one step clustering and visualization by using topology preserving
methods such as self-organizing maps (SOM) [3, 14]. In the present article, we propose
to extend SOM to bipartite graphs. This approach is based on a combination of the
so-called relational SOM that can handle data described by a dissimilarity matrix (see
Section 2.1) with ideas taken from the “korresp” algorithm which is designed to process
contingency tables (see Section 2.2). The following section describes more precisely the
SOM algorithm and its extension to non-vectorial data. It finally describes the “bipartite
SOM” approach.

2 SOM for bipartite graphs

2.1 SOM for numeric data and extensions to data described by
a dissimilarity matrix

The Self-Organizing Map (SOM) algorithm aims at mapping n input data x1, . . . , xn ∈ Rd

into a low dimensional grid composed of U neurons. A prototype pu, taking values in the
same space as the input data, is associated to each unit u ∈ {1, . . . , U} of the grid. The
grid is equipped with a distance d between neurons (usually chosen as the length of the
shortest path on the grid). The algorithm aims at clustering together similar observations
while preserving the original topology of the data set on the map (i.e., close observations
are clustered into close neurons on the map). The original algorithm for numerical vectors
iterates over the two steps below:

• an assignment step in which one observation (on-line version) is picked at random
and is affected to the closest prototype: f(xi) = arg minu=1,...,U ‖xi − pu‖,

• a representation step in which all prototypes are updated according to the new
assignment by mimicking a stochastic gradient descent scheme: pnewu = poldu +
µH (d (f(xi), u))

(
xi − poldu

)
, where H is the neighborhood function verifying the

assumptions H : R+ → R+, H(0) = 1 and limx→+∞H(x) = 0, and µ is a training
parameter. Generally, H and µ are supposed to be decreasing with the number of
iterations during the training procedure.

In the case where (xi)i do not take value in Rd but are described by a dissimilarity
matrix D = (δii′)i,i′=1,...,n that contains a measure of pairwise dissimilarities between
entities (xi)i, several approaches have been proposed to extend the SOM algorithm: some
choose to use prototypes that take values in (xi)i [10, 4], leading to a discrete optimization
scheme. However, this method, called “median SOM” increases the computational time,
while prototypes remain restricted to the original data set and may generate possible
sampling or sparsity issues. Relational SOM [9, 13] overcomes this difficulty by defining

2



the prototypes as (implicit) “convex combinations” of the original data: pu ∼
∑n

i=1 γuixi
1.

More precisely, the two steps of the algorithm described above are modified by:

• assignment step:

f(xi) = arg min
u=1,...,U

(Dγu)i −
1

2
γTuDγu (1)

which is exactly equivalent to the assignment step in the standard SOM if the
dissimilarity matrix D is the squared Euclidean distance;

• representation step:

γnewu ← γoldu + µH(d(f(xi), u))
(
1i − γoldu

)
(2)

where 1i is a vector with a single non null coefficient at the ith position, equal to
one. Once again, this modification is exactly equivalent to the representation step in
the standard SOM if the dissimilarity matrix D is the squared Euclidean distance.

The following section explains how to use the relational SOM algorithm for clustering the
nodes of bipartite graphs.

2.2 Bipartite SOM for bipartite graphs

In this section, the following notations will be used: G = (V,E, L,W ) denotes a bipartite
graph for which

• V = {x1, . . . , xn} is the set of vertices of the graph;

• L = (ci)i=1,...,n is a set of labels ci ∈ {1, 2} for the nodes xi. The number of vertices
labeled “1” is denoted by n1 and the number of vertices labeled “2” is denoted by
n2 (and thus n1 + n2 = n). For the sake of simplicity, the vertices will then be
supposed to be ordered according to their labels: c1 = c2 = . . . = cn1 = 1 and
cn1+1 = . . . = cn1+n2 = 2;

• E is the set of edges, which is a subset of {(xi, xj) : ci = 1 and cj = 2};

• W (optionally) is a n1 × n2-dimensional weight matrix that possibly encodes the
strength of the link between two nodes (Wij ≥ 0 and Wij = 0⇔ (xi, xn1+j) /∈ E).

When faced with such data, a common approach is to define the univariate projections
of the graph, i.e., the graphs Gl (l = 1, 2) with vertices (x

(l)
i )i=1,...,nl

:= {xi : ci = l}2,
1Note that

∑n
i=1 γuixi has no real meaning since, as in the case of graphs, the sum might not be

defined between entities xi which a priori take values in any (possibly non-vectorial) space. However the
notation is used symbolically in reference to a pseudo-euclidean space embedding, as defined in [7].

2In the following, we will, depending on the context, use the notation xi or x
(1)
i (i = 1, . . . , n1) for

nodes labeled “1” and xj or x
(2)
j−n1

(j = n1 + 1, . . . , n1 + n2) for nodes labeled “2”.
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linked by edges that are weighted by the number of common neighbors shared by the two
edges in the bipartite graph. However, [8] shows that a clustering based on one of the
two projections gives unreliable results. Since then, several methods have been proposed
to handle the peculiar case of bipartite graph clustering [1, 17, 16], most of them being
based on a modification of the modularity quality criterion [11] for fitting the structure
of bipartite graphs.

Our approach is rather different since we intend to simultaneously perform clustering
and visualization using SOM, as explained in the introduction. The problem at hand
is very similar to the one solved with the so-called “korresp” algorithm [5] in which
the values of two factor variables summarized by a contingency table are simultaneously
clustered. This method is based on a modification of the standard SOM that is similar
to factor correspondence analysis. Using a similar idea, we propose to deal with bipartite
graphs by defining a augmented profile for the prototypes. Unlike the “korresp” case,
the update of the augmented profiles is not based on the row/column profiles but on the
bipartite structure of the graph itself. As in the “korresp” algorithm, the vertices labeled,
respectively, “1” and “2” are iteratively processed. More precisely,

• first, a dissimilarity measure is computed for all pairs of nodes in the two projection
graphs Gl, l = 1, 2, denoted by (δ

(l)
ii′ )i,i′=1,...,nl

. This dissimilarity measure can be,
for instance, the shortest path length between two nodes or the distance induced by
one of the numerous kernels for graphs:

δ
(l)
ii′ =

√
K(x

(l)
i , x

(l)
i ) +K(x

(l)
i′ , x

(l)
i′ )− 2K(x

(l)
i , x

(l)
i′ )

with K being e.g., a kernel based on a regularization of the graph Laplacian
(see [15]). The dissimilarity measure defines the reduced profile of (x

(l)
i ), which

is the nl-dimensional vector
(
δ
(l)
i,1, . . . , δ

(l)
i,nl

)
;

• then, similarly as in the relational SOM algorithm, prototypes are initialized as
(symbolic) convex combinations of the original inputs, with two parts (each specific

to one of the two labels): pu =
(
p
(1)
u , p

(2)
u

)
with p

(l)
u =

∑nl

i=1 γ
(l)
ui x

(l)
i , γ

(l)
ui ≥ 0 and∑nl

i=1 γ
(l)
ui = 1 for l = 1, 2. As in the “korresp” algorithm, the method iterates over

the following steps:

– a node x
(1)
i is picked at random within the nodes labeled “1” and is affected

to its closest prototype using the distance calculation of relational SOM based
on the corresponding reduced prototypes (p

(1)
u )u, as in Equation (1);

– the full prototypes are then updated using their augmented profiles and a
gradient-descent like step as in Equation (2). More precisely, the part of the
prototype that corresponds to label “1” is updated as usual:

∀ j = 1, . . . , n1, γ
new
uj = γolduj + µH (d (f(xi), u))

(
1ji − γ old

uj

)
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(with 1ji = 1 if j = i and 0 otherwise) and the part of the prototype that

corresponds to label “2” is updated using the neighborhood of the node x
(1)
i :

∀ j = n1+1, . . . , n1+n2, γ
new
uj =

γolduj + µH (d (f(xi), u))
(∑

k∈N (xi)
1jk − γ old

uj

)
1 + µH (d (f(xi), u)) (di − 1)

where N (xi) is the set of neighboring nodes and di is the degree of node

x
(1)
i . The constant 1

1+µH(d(f(xi),u))(di−1) is used so that the sum over j =
n1 + 1, . . . , n1 + n2 of the γuj is still equal to 1.

– the last two steps are symmetric to the first two and concern the nodes la-
beled “2”.

3 Conclusion and perspectives

The present paper introduces a novel approach to handle clustering and visualization
of bipartite graphs. The method is currently being tested on a large dataset of board
members of CAC 40 firms. Relational SOM and the “korresp” algorithm are implemented
in the R package SOMbrero3, the extension described in this paper is scheduled to be
included in a future release of the package.
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