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ABSTRACT  11 

Genomic selection is a promising marker assisted selection based application for quantitative traits 12 

improvement. In this study, the genomic estimated breeding values (GEBVs) were estimated by the ridge-13 

regression best linear unbiased prediction (rrBLUP) statistical model with a training set of 122 accessions 14 

(122/163 - 75%) from an available dataset representing a broad-based tomato population. Methionine and 15 

proline contents were randomly picked as representative of low heritability (h2<0.5) and high heritability 16 

(h2>0.7) metabolomics traits, respectively. The goals are to minimize mean-squared error (MSE) and to see 17 

the potential of using low marker density (250≤m≤1500). Results showed that shrinkage intensity was 18 

affected by the number of markers used in the model; and it ranged from 1% to 7% (the lower number of 19 

markers, the higher shrinkage intensity). In this tomato population, accuracies predicted by shrinked approach 20 

revealed benefit of shrinkage over non-shrinked approach, in methionine but not proline fruit contents, when 21 

used small number of marker (m=250). This suggests that shrinkage should be applied to low heritability 22 

traits to improve prediction accuracy in a board-based tomato population. 23 

 24 
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 26 

INTRODUCTION  27 

 Genomic selection (GS) is an approach utilizing information from molecular markers covering the 28 

whole genome of organisms. The aim of this technique is to shorten the selection by using genotypic 29 

information to predict the performance of individuals in the form of genomic estimated breeding value 30 

(GEBV), and finally to select for the elite individuals to be used in the breeding program (Borém and Fritsche-31 

Neto, 2014). 32 

 In the past decade, GS was conducted in many species of animals [e.g. cattle (Hayes et al., 2009), 33 

chicken (Wang et al., 2013), and pig (Tribout et al., 2012)] and plants [e.g. maize (Owens et al., 2014), wheat 34 

(Storlie et al., 2013), apple (Kumar et al., 2012)]. With the availability of high-throughput sequencing 35 

technology, it is practicable for researchers and breeders to use information from dense genetic markers to 36 

benefit from genetic and breeding studies.  37 
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 The effectiveness of many factors in GS have been tested (Asoro et al., 2011; Würschum et al., 1 

2013), mostly aim to improve accuracy in prediction. Besides, attempt to use less markers in order to reduce 2 

genotyping cost was made (Wang et al., 2013). It has been found that prediction accuracy dropped when 3 

fewer markers were used in GS. However, increasing the number of markers was not always improving the 4 

prediction (i.e. accuracy reached a plateau when 3000 markers were fitted in the model) (Duangjit et al., 5 

under review). In addition, when minimizing markers number, it is possible that the number of individuals 6 

exceed the number of markers. This causes high mean-squared error (MSE) which can be fixed by 7 

performing shrinkage (Stein, 1956). In the rrBLUP R package, shrinkage was implemented (Endelman, 2011; 8 

R Development Core Team, 2014). It has been previously shown that shrinkage estimation improved 9 

accuracy of GEBVs using rrBLUP (Endelman and Jannink, 2012; Zhao et al., 2013).  10 

 In this study, we want to test the effect of shrinkage of methionine and proline fruit contents from 11 

publicly available data of tomato. Here, we assessed shrinkage intensity that minimizes the expected MSE 12 

when different ranges of low marker density used in the rrBLUP model. We also evaluated the effect of 13 

shrinkage on the prediction accuracy. 14 

 15 

MATERIALS AND METHODS  16 

Statistical Model in Genomic Selection  17 

 Genotypic and phenotypic data used in this study is available publically, from a broad-based 18 

population of tomato accessions (Sauvage et al., 2014). Previous cross-validation study of genomic selection 19 

with different sizes of training set has revealed the potential of genomic selection using ridge-regression best 20 

linear unbiased prediction (rrBLUP) statistical model (Asoro et al., 2011). The study showed that the high 21 

number of individuals in training step resulted in high accuracy of prediction. Therefore, from the population 22 

of 163 tomato accessions, 122 (75%) accessions were used to fit the model, and 41 (25%) accessions were 23 

used as a criterion in validation step in this study. The analyses were performed in rrBLUP package in R 24 

software published by Endelman (2011) (see also: https://cran.r-project.org/web/packages/rrBLUP/index.html). 25 

 Mixed model for prediction of breeding values were implemented with the model Y = 1µ + Xg + e 26 

where Y is vector of observed phenotypic value, µ is overall mean of the training set fitted as fixed effect, g 27 

is a vector of random SNP effect, X is an incidence matrix g, constructed from covariates based on the 28 

genotype, and e is residual effect. Genomic estimated breeding value (GEBV) was predicted using genotypic 29 

information, and SNP effects obtaining from mixed.solve function in rrBLUP (Endelman, 2011). 30 

Shrinkage Estimation in rrBLUP 31 

Marker matrix (X) was created by decoding bi-allelic loci to be X ∈ {-1, 0 ,1}. Shrinkage estimation was 32 

performed with A.mat function in the rrBLUP package. Estimations were repeated with different number of 33 

markers, which were randomly selected from a set of 5995 SNP markers (Sim et al., 2012). Shrinkage 34 

intensities when 250 markers were randomly picked and fitted into the rrBLUP model were estimated from the 35 

software. The averages of intensities which lead to minimal mean square errors were calculated from 1000 36 

iterations. Calculations were made for different sets of markers (i.e. 500, 1000, and 1500). 37 

 38 
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Breeding Value Prediction 1 

Population accuracy was predicted using 75% (122 accessions) of tomato population. The shrinkage 2 

intensity used in this analysis was ranged based on results from the first part (i.e. at 1.0, 2.0, 3.6, and 7.0%), 3 

and also at zero as a non-shrinked estimation. In order to assess effects of shrinkage in genomic selection, 4 

accuracies from shrinked and non-shrinked estimations were compared.  5 

Finally, prediction accuracies were evaluated by correlating values between predicted breeding 6 

values (GEBVs) and measured phenotypic data of methionine and proline fruit contents as reported in 7 

Sauvage et al. (2014). Average values and standard deviations were calculated from 1000 iterations. 8 

Statistical significant difference between i) shrinked and non-shrinked methods and ii) shrinkage intensities were 9 

evaluated using t-tests. 10 

 11 

RESULTS AND DISCUSSION  12 

Estimated Optimal Shrinkage  13 

Shrinkage intensity values under the criteria to minimize the expected MSE were obtained from this 14 

study. The optimal shrinkage intensity increased when smaller number of markers were randomly selected 15 

from a set of 5995 markers. The minimum (0.01±6.938x10-18) was obtained from using 1500 markers, while 16 

the highest intensity was found when a set of random 250 markers was used (0.07±0.007) (Figure 1). 17 

The results were estimated from random set of 250, 500, 1000, and 1500 out of a total set of 5995 18 

markers. As the size of marker set is bigger, the shrinkage intensity is closer to zero. Difference in shrinkage 19 

intensity between 250 and 500 markers was significantly greater than that between 1000 and 1500 markers 20 

(P<0.05). A similar trend was also found in rice, maize, barley, and pig populations as studied by Endelman 21 

and Jannick (2012) where approximate 10% shrinkage was found, when a set of 96 markers was used. 22 

However, very low number of markers (less than 250 markers) was not tested here as it was assumed to 23 

cause poor prediction ability. 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 
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Figure 1 Optimal shrinkage intensity predicted by rrBLUP.  Boxplot of shrinkage intensity estimated by using 122 1 

accessions in training step with different sets of markers. Midbar and dot indicate average and median from 1000 2 

imputations. M250, M500, M1000, and M1500 indicate number of markers used in statistical model training step. 3 

 4 

Effects of Shrinkage on Prediction Accuracy  5 

 The accuracies from shrinked and non-shrinked approaches were compared in the two traits. When 6 

shrinkage was performed, in methionine fruit content, accuracy was 0.136±0.150 when 250 markers were 7 

included in the model. Accuracy increased to 0.143±0.143 and 0.147±0.148 when 500 and 1000 markers 8 

were used, respectively. Although, the accuracy slightly dropped when used 1500 markers, they were not 9 

significantly different from accuracy calculated from 1000 markers (Table 1). Similar trends were observed in 10 

proline fruit content; the larger the number of markers, the higher the accuracy of predicting breeding value. 11 

Accuracy increased from 0.337±0.104 (used 250 markers) to 0.369±0.096 (used 1500 markers). This can be 12 

explained by the fact that markers with higher effect were fitted into the model. 13 

 When compared to the accuracies obtained from non-shrinked approach, for both traits, in most 14 

cases, accuracy values were higher when shrinkage was performed (Table 1 and Figure 2). When 250 15 

markers were included in the model, accuracy was 0.129±0.148 without shrinkage. When shrinked with 16 

intensity of 7% (average shrinkage intensity when used 250 markers), accuracy increased to 0.136±0.150. 17 

The difference was significant at P<0.05. This trend was not observed when more markers were added, and 18 

similar result was not found in proline fruit content.  19 

 20 

Table 1 Prediction ability in methionine and proline traits obtained from genomic selection with rrBLUP model. 21 

 22 

Traits Methionine Proline 

Heritability  0.427 0.773 

Shrinked 
(mean±SD) 

250 0.136±0.150* 0.337±0.104 
500 0.143±0.143 0.355±0.098 
1000 0.147±0.148 0.355±0.103 
1500 0.144±0.145 0.369±0.096 

Non-shrinked 
(mean±SD) 

250 0.129±0.148* 0.343±0.104 
500 0.134±0.149 0.354±0.098 
1000 0.147±0.144 0.357±0.103 
1500 0.141±0.145 0.358±0.096 

Mean and standard deviation (SD) are shown. Mean accuracies are the average correlation values 23 

of GEBVs and measured phenotypic values. Prediction was performed using 122 accessions in training step 24 

with different numbers of markers (1000 imputations). Heritability of each trait is from Sauvage et al. (2014). 25 

Significant difference assessed by t-test is indicated by asterisk (*). 26 
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Although with a low number of markers used (m≤1500), proline fruit content with high heritability 1 

(h2=0.773) had higher accuracy than methionine fruit content (h2=0.427), as shown above. This result agreed 2 

with previous study of traits with different heritability (Wimmer et al., 2013) supporting that trait with high 3 

heritability is the trait underlined with big proportion of genetic component. The results showed that significant 4 

increase of accuracy of GEBV, for most cases, cannot be obtained from shrinkage in this structured tomato 5 

population, particularly for the methionine and proline fruit content, which agreed with results from Endelman 6 

and Jannick (2012) where shrinkage can significantly increase GEBV only in unstructured population. 7 

However, the significant accuracy gain was found when shrinked at 7% only in a low heritability trait 8 

(methionine). This revealed that, in trait with high heritability, shrinkage does not help improving accuracy, as 9 

reported by Endelman and Jannick (2012).  10 

 11 

Figure 2 Impact of shrinkage on prediction accuracy. Boxplot of prediction accuracy estimated by rrBLUP 12 

model using 122 accessions in training step with different sets of markers. Midbar and dot indicate average 13 

and median from 1000 imputations. n and s represent non-shrinked and shrinked calculation; numbers (i.e. 14 

250, 500, 1000, and 1500) indicate number of markers used in statistical model training step. 15 

 Overall, as using methionine and proline fruit contents as case studies, factors such as numbers of 16 

markers and shrinkage affect genetic prediction using the rrBLUP method. Moreover, genetic background (i.e. 17 

heritability) of each trait also plays important role. This study showed that shrinkage benefits GS in trait with 18 

low heritability when the marker number is low. In tomato, the low-cost (due to small number of markers use) 19 

and the most efficient number of markers need to be revealed. 20 
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