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Foreword 

Application domains that entail planning and scheduling (P&S) problems present a set of 

compelling challenges to the AI planning and scheduling community, from modeling to 

technological to institutional issues. New real-world domains and problems are becoming more 

and more frequently affordable challenges for AI. The international Scheduling and Planning 

Applications woRKshop (SPARK) was established to foster the practical application of 

advances made in the AI P&S community. Building on antecedent events, SPARK'15 is the 

ninth edition of a workshop series designed to provide a stable, long-term forum where 

researchers and practitioners can discuss the applications of planning and scheduling 

techniques to real-world problems. The series webpage is at http://decsai.ugr.es/~lcv/SPARK/ 

 

We are once more very pleased to continue the tradition of representing more applied aspects 

of the planning and scheduling community and to perhaps present a pipeline that will enable 

increased representation of applied papers in the main ICAPS conference. 

 

We thank the Program Committee for their commitment in reviewing. We thank the ICAPS'15 

workshop and publication chairs for their support. 

 

The SPARK’15 Organizers  
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Planning and Scheduling Actions in a
Computer-Aided Music Composition System

Dimitri Bouche and Jean Bresson
STMS: IRCAM-CNRS-UPMC

1, place Igor Stravinsky, Paris F-75004
{bouche,bresson}@ircam.fr

Abstract

This paper presents a scheduling model for computer music
systems. We give an overview of planning and scheduling
issues in computer-aided music creation and rendering, and
propose strategies for executing actions and computations in
music composition or performance contexts.

Introduction
It is well known that the notion of scheduling can imply dif-
ferent levels and complexity in planning tasks and sharing
resources (Lawler et al. 1993). Minimizing the resources and
optimizing the timing of a process requires a strategy to de-
termine the best ordering of tasks, and every task or comput-
ing instruction may itself require a careful planning of oper-
ations. In this paper we highlight some specificities of the
planning and scheduling processes involved in a computer
music application.

Music is a prolific field for computer systems and domain-
specific programming environments. Many of them have
been developed to support composition and other interac-
tive tasks related to music writing and performance (Dan-
nenberg, Desain, and Honing 1997). Therefore, a variety
of applications and computing paradigms exist within com-
puter music environments, implying different perspectives
and concerns regarding the notion of scheduling.

We consider a particular subset of computer music sys-
tems dedicated to computer-aided composition (Assayag
1998). These systems focus on the production and transfor-
mation of musical structures, which can be read as scores
or rendered by audio players or synthesizers. In computer-
aided composition systems the planning (generation and or-
dering of musical actions) and the execution (or “rendering”)
are usually two separate processes which operate sequen-
tially. In this context real-time constraints only concern the
execution phase. In the planning phase, musical data can be
computed following simple best-effort strategies.

Other types of musical systems are more oriented towards
interaction, and process events and audio streams in real-
time during music performances (Puckette 1991). In these
systems the musical rendering is the output of periodic com-
putations driven by interruptions or callbacks from audio
drivers or external systems, which results are produced in
bounded and minimal time intervals. Usually in this case,

preliminary planning is very basic and complex temporal
scenarios can hardly be developed.

Between these two archetypal cases, a number of current
projects and software are challenged by the joint manage-
ment of real-time interaction and the planning of musical
structures organised on the longer term (Echeveste et al.
2013; Agostini and Ghisi 2013; Bresson and Giavitto 2014).

In this paper we describe the characteristics and design
of a scheduling engine for computer music systems con-
forming with both compositional applications (i.e. static
and independent planning and execution processes) and dy-
namic/interactive situations (where planning operations oc-
cur continually and concurrently with the execution). We in-
troduce a two-fold representation connecting the low-level
sequence of actions and the higher-level musical structures
involved in score editing and rendering. We successively de-
scribe the score planning and scheduling models, and show
how they can be made dynamic, allowing planning opera-
tions to be part of the execution process.

Score Representations and Planning
The score is a central notion in music composition, consid-
ered both as a musical object and as a working environment
for composers (see Figure 1). During the process of ren-

Figure 1: Example of a traditional score.

dering, it is reduced to a sequence of timed actions (notes
and other instructions). This process is performed mentally
and naturally by musicians interpreting a score, but it has
to be carefully designed in an computer rendering system.
A planning algorithm (or planner) must translate the score
into this sequence of actions, by mapping the musical data
(pitch, dates etc.) to rendering primitives (functions produc-
ing sound from the data).

As contemporary music scores usually include varied
kinds of musical data and actions (e.g. sounds, gesture no-
tations, automations for controllers etc. – see Figure 2), the
planning strategy must be designed with open and generic
representations of both data and actions.
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Figure 2: Heterogeneous musical data and controls in a score
– extract from Nachleben by J. Blondeau (2014).

Planning Model
Let P (the plan) be a list of actions containing rendering op-
erations (e.g. instructions to the audio system, transmission
of MIDI1 messages, or any kind of user-defined actions).
Each element in P is an action a : < ta, ida, fa > where:

• ta is a time-stamp,

• ida is a unique identifier,

• fa is a function to execute.

P is a low-level representation optimized for scheduling
the rendering process. It must be updated at every modifica-
tion of the score occurring in the system (for instance from
the score editing front-end) and must remain sorted by in-
creasing time-stamps. Three main operations are allowed:

• schedule(P, a) ≡ inserts a at the adequate position in P ,

• unschedule(P, a) ≡ removes a from P ,

• reschedule(P, a, t′) ≡ changes the position of a in P .

Hierarchical Representation
Composers or compositional processes running in a
computer-aided composition environment manipulate musi-
cal objects with a high degree of structure and hierarchy. A
note for instance, which can be considered the minimal spec-
ification unit of a musical score, requires at least two distinct
actions to be rendered via a MIDI synthesizer: a key-on, and
a key-off action. The key-on action must be scheduled at the
actual time of the note, and the key-off at the time + du-
ration of the note. Between these two actions, continuous
controllers can also be transmitted to specify the variation
of some parameters such as the volume, pitch bending, or
other effects implemented in the synthesizer.

One musical object is therefore interpreted as a set of ac-
tions. Nevertheless, these actions need to be gathered to-
gether in some way in order to ease musical manipulations
(a time modification of the note may require the whole set
of corresponding actions to be rescheduled). Following the

1MIDI (Musical Instrument Digital Interface) is a standard pro-
tocol and file format for transferring scores and instructions be-
tween musical software and digital instruments. MIDI messages
can be seen as instructions sent to external synthesizers (play/stop
note, set volume or effect parameters, etc.)

same principle, higher-level musical objects aggregate other
objects (e.g. a chord gathers several simultaneous notes, a
sequence gathers a number of chords under a common time
referential) and a hierarchy of musical objects emerges. Hi-
erarchical structures are therefore natural representations for
time structures in music (Barbar, Desainte-Catherine, and
Miniussi 1993).2

The planning model we propose is based on this hierarchi-
cal conception, where every musical object has a container
and/or a set of children objects. It allows to maintain a cor-
respondence between arbitrarily complex structures manip-
ulated at the musical level and the linear sequence of timed-
actions in P .

We consider a musical structure S: < tS , idS , CS >
where:

• tS is a time-stamp relative to the container of S,

• idS is a unique hierarchical identifier,

• CS is a list of children objects.

The hierarchical identifiers are constructed by appending
a local unique identifier i to the container’s id:

SX ∈ CSY → idSX = idSY .i

Figure 3 shows a graphical representation of a structure S
with the following structure:

S = < 0, 0, [S1, S2] >
S1 = < t1, 1, [S1.1, S1.2] >
S2 = < t2, 2, ∅ >
S1.1 = < t1.1, 1.1, [S1.1.1, S1.1.2, S1.1.3] >
S1.1.1 = < 0, 1.1.1, ∅ >
...

Figure 3: Example of a hierarchical musical structure and
conversion to a plan (timed list of actions). S1 is a sequence
structured as a 3-levels hierarchy (sequence/chords/notes).
S2 is a sequence of 3 actions (e.g. parameter changes in a
synthesizer’s effect controller).

2Similar models have been proposed as well as in other do-
mains, see for instance (Balaban and Murray 1998).
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We call AS is a list of actions ai directly related to a struc-
ture S (not including the ones corresponding to its children).
AS must be specified by the system designer, depending on
the type and value of S.

The planner retrieves the set of actions AS correspond-
ing to a hierarchical musical structure S through a recursive
traversal of the children tree CS :

P = AS = append(AS ,
⋃

Si∈CS

ASi) | A∅ = ∅

In this process for each aj =< taj , idaj , faj > ∈ ASi :

• The functions faj depend on the type and value of Si and
are independent from the planning and scheduling model.
Their determination is the main task of the system pro-
grammer using this model.

• The time-stamps taj of the actions must be expressed
as absolute time values in P . They can be partially de-
rived from the hierarchy of the top-level structure S;
for instance, the absolute time of S1.1 in Figure 3 is
tS1 + tS1.1 = t1 + t1.1.3
The specific properties of Si may also be taken into ac-
count to determine taj for aj ∈ ASi ; for instance to a
“note” structure N of duration dN correspond two actions
respectively at times tN and (tN + dN ).

• The action identifiers idaj are automatically derived
from idSi . For instance, three actions directly related to a
structure with identifier idSi = a.b will be assigned iden-
tifiers ida1 = a.b.1, ida2 = a.b.2 and ida3 = a.b.3. This
correspondence allows to maintain and retrieve informa-
tion about the musical structure and hierarchy of S from
the planning and scheduling processes.

The basic scheduling operations mentioned previously
can then be applied to any musical structure S:

• schedule(P, S) ≡ schedule(P, a) ∀ a ∈ AS

• unschedule(P, S) ≡ unschedule(P, a) ∀ a ∈ AS

• reschedule(P, S, t′) ≡ reschedule(P, a, t′a) ∀ a ∈ AS

with t′a = ta + (t′ − tS)

Score Rendering and Scheduling
A scheduler must execute the plan P derived from the score
(or more exactly, from the musical structure represented in
the score), executing all actions ai ∈ P on due time. This
execution of P can be implemented using standard schedul-
ing and optimization strategies.

Basic Execution model
We note aj = P [j] the action at position j in P (j ∈ N+)
and we define a virtual “cursor” position jP so that ajP =

P [jP ] is the next action in P that the scheduler will execute.
At all time t, as P is sorted by increasing tai , we will verify
that:

3In the same example, notice for instance that the note’s relative
time-tags tS1.i.j = 0 since these objects are synchronized with
their respective containers (the chords S1.1 and S1.2).

jP = min(i ∈ N+ | tai ≥ t).

The scheduler loop below checks periodically tajP

against the current clock time and executes actions from the
last time interval at each iteration:

Algorithm 1 RENDER(P )
loop

while tajP ≤ CLOCK TIME( ) do
CALL(fa)
jP ← jP + 1

end while
SLEEP(T )

end loop

Note that past actions (i.e. actions ai | tai < t that are
already executed at time t) are not removed from P , so that
backward modifications and jumps of the cursor remain pos-
sible at any time.

With a period T in the order of a millisecond, this simple
algorithm will support and render most of the standard mu-
sical scores. However, it may be challenged with scores in-
cluding complex or high-rate sampled data, or if the actions
involve computations with execution times that can not be
neglected as compared to T . Some strategies for optimizing
its execution are discussed further on.

Dealing with Long-term Executions
The system described so far is mostly suitable for dealing
with instantaneous actions. In musical systems however (and
in particular in the dynamic context we will consider in the
next section), we must take into account actions that build or
modify musical structures, which might involve arbitrarily
complex computations. The execution time can then become
a critical point for the correct rendering of the score.

The estimation of this execution time (or of the worst-case
execution time – WCET) and its consideration in scheduling
systems has been broadly discussed in the literature (Wil-
helm et al. 2008). In our case we will consider that either the
approximate execution time of an action is known and con-
sidered null, or this action falls into the category of “long-
term” execution actions. In order to have the renderer loop
performing as fast as possible, we will delegate the execu-
tion of long-term actions to a separate background process.

The execution strategy adopted for an action a is deduced
from fa: the action is instantly executable if fa ∈ AZT ,
where AZT is a finite set of functions considered instan-
taneous in our system (ZT standing for “zero-time”). The
macro CALL in Algorithm 1 is therefore defined as follows:

Algorithm 2 CALL(a)
if fa ∈ AZT then

EXECUTE(fa)
else

PROCESS(a)
end if

The call PROCESS(a) in Algorithm 2 sends the execution
of the action a outside the scope of the scheduler: the ac-

SPARK 2015 - Scheduling and Planning Applications woRKshop - 08/06/2015

ICAPS 2015

3



tion is wrapped into a task structure and stored in a FIFO
queue. The FIFO queue is managed by a thread-pool (Krie-
mann 2004), which dispatches the tasks to worker threads: if
a worker is available, the task is executed immediately, oth-
erwise it remains in the queue until a worker thread becomes
available. Most of the time, the length of the queue remains
very small: accumulation happens only when many actions
are scheduled in a same, very short time interval.

Tasks are therefore executed as non preemptible in sepa-
rate threads (Henzinger, Horowitz, and Kirsch 2003) and do
not impact the timing of the rendering process.

In a musical software, AZT contains for instance MIDI
and external control message senders. In the next sections
we will consider examples of more complex actions that are
not in AZT .

Dynamic Planning and Scheduling
In its traditional form, a score is a static structure result-
ing from a compositional process. It is said static for it does
not undergo any modification while being performed or ren-
dered. In computer music systems however it is possible to
imagine that an action triggered during the score rendering
modifies its own structure (the initial plan). We will speak
of an interactive, or dynamic score (Desainte-Catherine and
Allombert 2005).

Dynamic Scores
In a dynamic score, actions or external events can redefine
the plan during its own execution. In this case the scheduling
and planning are concurrent processes. The planning is said
“continual” (desJardins et al. 1999).

In our model, this dynamic characteristics amounts to al-
lowing the functions fai attached to the actions ai ∈ P to
perform changes on the structure S, and thereby to request
updates of P . In other words, actions can invoke the basic
scheduling operations schedule, unschedule and reschedule,
which respectively schedule new actions, remove and mod-
ify previously planned actions. The overall architecture of
the system is sketched in Figure 4.

Planner

High-Level

Scheduler

Thread-pool

Output

Tasks

Plan

User front-end
Rendering 

Loop

S
S1

S2 S2.1
S3 S3.1

Musical
Data

S4 S4.1 S4.1.1 ...
Actions

Workers

Figure 4: Dynamic architecture. Interactions between high-
level structures, planning and scheduling.

The concurrent planning and scheduling operations in the
dynamic model require the use of a lock mechanism to se-

cure the concurrent read/write operation on P , as well as ef-
ficient sort strategies to be called at adequate moments when
the plan is modified.

Extension of the Model
The dynamic score model allows user actions to modify the
score S, leading the modification or scheduling of other ac-
tions. The result of an action execution if fa /∈ AZT may
therefore affect a musical structure in the middle of its ren-
dering process, and new planning operations may be re-
quired immediately when this execution finishes. For this
purpose the tasks sent to the thread pool are assigned an
optional callback returning data to the high-level structure
upon completion (see the Thread-pool to High-Level arrow
on Figure 4).

A number of other situations are to be taken into account,
such as actions being unscheduled while their associated
task is running in the thread pool. This case can be handled if
the scheduler stores a pointer to the task in the action struc-
ture at transferring it to the thread pool. Scheduling opera-
tions on the action can then easily change the state or abort
the associated task.

The dynamic model also makes it possible that musical
structures be only partially known while the rendering pro-
cess starts running, which requires considering the availabil-
ity of the data before to perform actions. It is therefore use-
ful in the score execution to separate functions and data.
For this purpose we extend our definition of an action as:
< ta, ida, fa, Da > where Da is a piece of data used by the
function fa attached to the action (in the general case Da is
a description of the musical structure S). We must then con-
sider the case where the data Da1 required by fa1 and set by
fa2 is not available (e.g. if the computation of fa2 does not
finish on time). The availability of Da can be checked by the
scheduler prior to the creation of a task for an action a, and
behaviours can be determined to react accordingly (e.g. the
action a may be skipped, or sent to a thread that will sleep
until Da becomes available). The implementation of such
behaviours, though not described here, is done by extending
the definition of the action tuple.

Of course this architecture does not guarantee that com-
putations will finish and make any data available on time.
However, the score rendering process can run safely dele-
gating actions to the thread pool and reacting to task termi-
nation (or non-termination) with predefined behaviours.

Example
In this section we propose a simple score example making
use of the dynamic scheduling operations described in the
previous sections. The score on Figure 5a contains the fol-
lowing objects:

• A hierarchical sequence of chords and notes (S) rendered
as a sequence of MIDI messages,

• An audio file (A) rendered through a standard audio
player,

• Two continuous controllers (C1, C2) sending values to ex-
ternal audio systems at a high rate (in the order of 100Hz),
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SCORE

C2

S

C1

2

A

31

(a) Initial state

SCORE

S

1
C1

2

A

3
C2

(b) reschedule(P,C2, t
a1)

SCORE

C1

2

A

3

S

1

(c) unschedule(P,C2)

SCORE

C1

2

A

3
C3

S

1

(d) schedule(P, BUILD(C3))

Figure 5: Score example.

• Special events labelled 1©, 2© and 3© which respectively:
– reschedule C2 to the event’s position,
– unschedule (remove) C2,
– build and schedule a new controller (C3).
We can see this score as a dynamic system controlling

sound synthesizers and audio effects. We can imagine for
instance that C1 acts on a parameter of the synthesizer re-
ceiving the MIDI notes, and that C2 and C3 control audio
effects applied to the general audio output. In order to make
this dynamic score an interactive one we can also imagine
that the events 1©, 2© and 3© appear dynamically during the
execution of the score as the consequences of external events
(e.g. performer inputs, sensors, etc.)

The functions fa1 , fa2 and fa3 corresponding to the
events 1©, 2© and 3© can be defined as:
• fa1 : reschedule(P,C2, t

a1)

≡ reschedule(P, ai, t
a1 + tai) for each ai ∈ AC2

• fa2 : unschedule(P,C2)

≡ unschedule(P, ai) for each ai ∈ AC2

• fa3 : schedule(P, BUILD(C3))

≡ BUILD(C3) then schedule(P, ai) for each ai ∈ AC3

The successive execution states after each event are dis-
played on Figure 5b, 5c and 5d.

The execution of a score like the one in this example re-
mains continuous despite the dynamic plan modifications.
Still, we can notice artefacts in the rendered output. In situ-
ations like 3© where an object is computed and immediately

scheduled, we can observe a latency between the time a3
is executed and the time C3 is effectively scheduled. This
latency seems hard to manage due to the unpredictability
of the OS-controlled preemptive scheduling environment in
which the system runs. It is important to precise however
that the previous remark is due to an object being scheduled
on the fly at the exact action time, and would not hold (or
would not be detectable) if a reasonable delay is secured be-
tween the action time and the newly scheduled objects’ date.
Defining operations feasible on time is part of the responsi-
bility of the composer (or of the musical system designer);
nevertheless, the estimation and consideration of such delays
and constraints in the action planning and execution could be
an interesting direction for future works.

Conclusion and Perspectives
The scheduling engine we described implements dynamic
features, including the execution of actions with non-
deterministic behaviours or execution times, in a musical
score renderer system (that is, the kernel of a score-based
musical software). The hierarchical structure we propose
permits manipulations at the musical level to be propagated
at the low-level of the scheduler, and the scheduler actions
to modify the top-level musical representations. At the dif-
ference of models such as the Hierarchical Task Network
planning (Georgievski and Aiello 2015), the hierarchy here
is considered at the level of the user (musical) representa-
tions and related planning operations, but remains out of the
scope of task executions.
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The straightforward approach described in this paper un-
veils planning and scheduling problematics in computer sci-
ence applied to music. We are currently comparing it to
a number of different approaches, for instance using tree-
structured action lists and shorter-term planning.

The system is implemented in the OpenMusic environ-
ment (Bresson, Agon, and Assayag 2011). This environment
has a wide user base in the contemporary/computer music
community, which shall soon provide real-sized situations
and use cases to assess its efficiency and reliability.

At a higher, musical level, our future work will concern
the interfaces and tools proposed to the musicians that will
allow them to take full advantage of the system, for instance
for choosing or defining dynamic (re)scheduling actions,
or specifying the behaviours of the scheduler regarding the
availability of data.
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Abstract

Real world temporal planning often involves dealing with
uncertainty about the duration of actions. In this paper, we
describe a sound-and-complete compilation technique for
strong planning that reduces any planning instance with un-
certainty in the duration of actions to a plain temporal plan-
ning problem without uncertainty.
We evaluate our technique by comparing it with a recently-
presented technique for PDDL domains with temporal uncer-
tainty. The experimental results demonstrate the practical ap-
plicability of our approach and show a complementary behav-
ior with respect to the previous techniques. We also demon-
strate the high expressiveness of the translation by applying
it to a significant fragment of the ANML language.

1 Introduction
For most real world planning problems there is uncertainty
about the duration of actions. For example, robots and rovers
have transit times that are highly uncertain due to terrain,
obstacle avoidance, and traction. There is also uncertainty
in the duration of manipulation and communication tasks.
For cars and trucks, transit times are uncertain due to traffic,
road conditions and traffic signals. Any actions to be exe-
cuted by humans are also likely to have uncertain durations.
While there are domains in which the variability on the ac-
tion duration is small enough that it can be ignored, there are
many others where it can be significant, such as transit times
during rush hour.

When there are no time constraints, no required concur-
rency, and plan duration is unimportant, this uncertainty can
often be ignored to find a feasible plan. However, if there
are exogenous events that affect action conditions, or time-
constrained goals, the uncertainty on action durations must
be considered.

In general, temporal conditional planning is very hard,
particularly for actions with duration uncertainty (Younes
and Simmons 2004; Mausam and Weld 2008; Beaudry, Ka-
banza, and Michaud 2010). In practice, most practical plan-
ners take one of two much simpler approaches:
1. Plan using expected action durations, and rely on runtime

replanning and plan flexibility to deal with actions that
take more or less time than expected.
∗A shorter version of this paper appears in IJCAI 2015.

2. Plan using worst case action durations.

The first of these approaches is risky – there is no guar-
antee that the plan will succeed or that runtime replanning
can achieve the goals. The second approach, while gener-
ally more conservative, can also fail if there are time con-
straints or goals with lower bounds (e.g. an action should
not be completed, or a goal should not be completed before
some particular time). For space applications where any fail-
ure during plan execution is potentially very costly, having a
plan that is guaranteed to execute successfully is often criti-
cal.

Recently, Cimatti, Micheli, and Roveri (2015) addressed
these issues by extending PDDL2.1 to explicitly model du-
ration range for actions, and devised a planner that soundly
reasons to produce robust plans. In that work, the authors in-
troduced the “Strong Planning Problem with Temporal Un-
certainty” (SPPTU) as the problem of finding a sequence of
action instances and fixed starting times, such that for ev-
ery possible duration of each action in the plan, the plan is
valid and leads to the goal. In this work, we address the same
problem. However, to make it more relevant to real-world
applications, we consider a much richer language for rep-
resenting temporal planning domains. Specifically, we use
and support: (i) a variable-value language; (ii) durative con-
ditions over arbitrary sub-intervals of actions; (iii) effects at
arbitrary time points during an action, (iv) exogenous events;
(v) disjunctive conditions; and (vi) temporal constraints on
goals. We address the SPPTU by automatically translating a
planning instance with uncertainty on action durations into
a plain temporal planning problem with controllable action
durations. We exploit all the features in the planning lan-
guage to cast the temporal uncertainty in action durations
into discrete uncertainty over the problem variables. This
compilation enables existing off-the-shelf techniques and
tools for temporal planning to find strong plans for SPPTU.

We also present two sets of experimental evaluations of
the compilation technique showing that it can be practically
applied on expressive domains:

• On existing PDDL2.1-extended benchmarks: comparing
against the techniques proposed in (Cimatti, Micheli, and
Roveri 2015)

• On a set of problems modeled in ANML (Smith, Frank,
and Cushing 2008), which enables modeling realistic tem-
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poral planning domains more naturally.

2 Related Work
Temporal uncertainty is a well-understood concept in
scheduling and has been widely studied (Morris 2006;
e Assis Santana and Williams 2012; Muise, Beck, and McIl-
raith 2013; Cimatti, Micheli, and Roveri 2014). The problem
we address can be seen as a generalization of Strong Con-
trollability for Temporal Problems (Vidal and Fargier 1999;
Peintner, Venable, and Yorke-Smith 2007) to planning rather
than scheduling. Dealing with planning is much harder be-
cause the actions (and thus the time points associated with
them) in a plan are not known a-priori and must be searched
for. Moreover causal relationships between actions are much
more complex.

In temporal planning, duration uncertainty is a known
challenge (Bresina et al. 2002), but few temporal planners
address it explicitly. Some temporal planners (Frank and
Jónsson 2003; Cesta et al. 2009) cope with this issue by
generating flexible temporal plans: instead of fixing the ex-
ecution time of each action, they return a (compactly repre-
sented) set of plans that must be scheduled at run-time by
the plan executor. This approach cannot guarantee plan ex-
ecutability and goal achievement at runtime, because there
is no formal modeling of the boundaries and contingencies
in which the system is going to operate. In addition, this re-
quires that the executor be able to schedule activities at run-
time. In fact, flexibility and controllability are complemen-
tary: controllability provides guarantees with respect to the
modeled uncertainty, while flexibility allows the plan to be
adjusted during execution. In principle, we can use any tem-
poral planner that can generate flexible plans (e.g., VHPOP)
in combination with our compilation to generate a flexible
strong plan.

IxTeT (Ghallab and Laruelle 1994) was the first attempt
to apply the results in temporal reasoning under uncertainty
to planning, but the planner demanded the scheduling of a
Simple Temporal Network with Uncertainty (STNU) (Vidal
and Fargier 1999) by the plan executor. Here, we aim at gen-
erating plans that are guaranteed to work regardless of the
temporal uncertainty. Nonetheless, IxTeT provides dynamic
controllability: it generates a strategy for scheduling the ac-
tions depending on contingent observations. Although dy-
namic plans indeed can work in more situations than strong
plans, they are also complex to generate, understand, and ex-
ecute. When safety is paramount (e.g., space applications),
dynamic plans might not be permitted because they require
run-time computation that is hard to certify and to execute
on-board in real-time. Strong plans are simple to execute and
to check, and are suitable for safety critical systems where
guarantees are needed for the uncertainty and sub-optimality
is an acceptable price to pay.

In contrast to Beaudry, Kabanza, and Michaud (2010) we
are concerned with qualitative uncertainty, meaning that we
are not dealing with probability distributions, but only with
durations that are bounded in convex intervals. In addition,
we aim to guarantee goal achievement, while Beaudry, Ka-
banza, and Michaud maximize the probabilistic expectation.

There is a clear parallel between the problem we are solv-
ing and conformant planning (Ghallab, Nau, and Traverso
2004). In this sense, our work is similar to (Palacios and
Geffner 2009) in which the authors transform conformant
planning into deterministic planning, although the transla-
tion is very different.

The closest work to ours is that of Cimatti, Micheli, and
Roveri (2013, 2015). Cimatti, Micheli, and Roveri (2013)
present a logical characterization of the SPPTU for timelines
with temporal uncertainty, as well as a first-order encoding
of the problem having bounded horizon. Cimatti, Micheli,
and Roveri (2015) cast the same idea in PDDL by extending
state-space temporal planning. In this paper, we generalize
both these frameworks, as we do not impose any bounded
horizon for the problem and we consider a more expressive
language allowing disjunctive preconditions, effects at arbi-
trary time points during actions and durative conditions on
arbitrary sub-intervals. In Section 5 we provide a compari-
son with the techniques proposed in (Cimatti, Micheli, and
Roveri 2015).

3 Modeling Duration Uncertainty
In (Cimatti, Micheli, and Roveri 2015), the authors propose
an extension of PDDL 2.1 to model actions with uncontrol-
lable duration. In this paper we use a richer language that
includes timed-initial-literals (PDDL 2.2), durative goals
(PDDL 3.0), and multi-valued variables (PDDL 3.1). In ad-
dition, we extend the language to allow conditions expressed
over sub-intervals of actions, and effects at arbitrary time
points during an action. These features turn out to be par-
ticularly useful for encoding many problems of interest, and
for encoding our translation.1 We first provide some brief
background on PDDL 2.x and then describe our extensions.

In PDDL 2.2, a planning problem P is represented by a
tuple P =̇ 〈V, I, T,G,A〉 where:

• V is a set of propositions.
• I is the initial state: a complete set of assignments of val-

ues T or F to all propositions in V .
• T is a set of timed-initial-literals, which are tuples 〈[t]f :=
v〉 with f ∈ V and t ∈ R+ is the wall-clock time at which
f will be assigned the Boolean value v.
• G ⊆ V is a goal state: a set of propositions that need to

be true when the plan finishes executing.
• A is a set of durative actions a, each of the form
a =̇ 〈da, Ca, Ea〉 where:

– da ∈ R+ is the action duration. Let sta and eta be the
start and end times of action a then da =̇ eta − sta.

– Ca is the set of conditions; each p ∈ Ca is of the form
〈(stp, etp) f = v〉 where stp and etp indicate the start
and end time points of the condition p and are restricted
to be equal to sta or eta. When stp = etp = sta or
stp = etp = eta then p is an instantaneous at-start or

1To simplify the presentation, we exclude some features of
PDDL that are orthogonal to our approach of handling temporal
uncertainty, such as numeric variables and domain axioms. Our
techniques will work whether or not those features are included.
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at-end condition holding at the stp time point. When
stp = sa and etp = ea then p is an overall durative
condition holding in the open interval (stp, etp). f ∈ V
is a proposition with value v = T or v = F over the
specified time period.

– Ea is a set of instantaneous effects, each e ∈ Ea is of
the form 〈[te] f := v〉 where te =̇ sta or te =̇ eta is the
time at which the at-start or at-end effect e occurs.

We allow disjunctive action conditions p of the form
〈(stp, etp)

∨n
i=1 fi = vi〉 in which p is satisfied if at least

one disjunct is satisfied for every time point in (stp, etp).
A plan π of P is a set of tuples 〈ta, a〉, in which actions

a ∈ A are associated to wall-clock start times ta. π is valid
if it is executable in I and achieves all goals in G.

We extend the above features of PDDL 2.2 to include the
following features from PDDL 3.0 and 3.1:

• Multi-valued variables: introduced in PDDL 3.1, allow
variables f in V to have domains Dom(f) with arbitrary
values, instead of just T and F.

• Durative goals: which can be modeled as constraints in
PDDL 3.0, allow each goal g ∈ G to be associated with an
interval [stg, etg] specifying when the goal must be true.
In this setting, we allow the time constant etπ that indi-
cates that the goal must be reached at the end of the plan.

Beyond PDDL. Additionally, the key features in our
framework that go beyond PDDL are: (1) actions can have
uncontrollable durations, and (2) action conditions and ef-
fects are not restricted to action start or end time points.
Specifically:

1. Action duration da is replaced by an interval [dlba , d
ub
a ]

specifying lower- and upper-bound values on action du-
ration: dlba ≤ da ≤ duba . We further divide the set of ac-
tions A into two subsets:

• Controllable actions Ac, where the duration can be
chosen by the planner within the bounds [dlba , d

ub
a ].

• Uncontrollable actions Au, where the duration is not
under the planner’s control.

2. Instead of constraining the times stp and etp of each con-
dition p or the time te of effect e to be either sta or
eta, we allow each of them to take an arbitrary value:
sta + δ or eta − δ, with δ ∈ R+ (the temporal constraint
stp ≤ etp should still be satisfied). We require δ to be
positive and less than or equal to the action minimal du-
ration to prevent effects before the start or after the end
of the action. Analogously to PDDL, If stp = etp the
condition is instantaneous and is required to hold at the
single point stp, otherwise, the condition is required to
hold in the open interval (stp, etp).

A (strong) plan πu for a planning problem with uncer-
tainty Pu is valid iff each instance of πu, obtained by fixing
the duration da for each uncontrollable action a ∈ πu to any
value within [dlba , d

ub
a ], is a valid plan.

Figure 1: A graphical representation of the running example.

Example. A rover, initially at location l1, needs to trans-
mit some science data from location l2 to an orbiter that is
only visible in the time window [14, 30]. The rover can move
from l1 to l2 using an action move (abbreviated µ) that has
uncontrollable duration between 10 and 15 time units. The
data transmission action transmit (abbreviated τ ) takes be-
tween 5 and 8 time units to complete. The goal of the rover is
to transmit the data to the orbiter. Because of the harsh day-
time temperatures at location l2 the rover cannot arrive at l2
until the sun goes behind the mountains at time 15. Figure 1
illustrates this scenario, which we encode as:

V =̇ {pos : {l1, l2}, visible : {T, F}, hot : {T, F}, sent : {T, F}}
I =̇ {pos = l1, visible = F, sent = F, hot = T}
T =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G =̇ {〈[etπ, etπ] sent = T〉}
Ac =̇∅
Au =̇ {〈[10, 15], Cµ, Eµ〉, 〈[5, 8], Cτ , Eτ 〉}
Cµ =̇ {〈(stµ, stµ) pos = l1〉, 〈(etµ, etµ) hot = F〉}
Cτ =̇ {〈(stτ , etτ ) pos = l2〉, 〈(stτ , etτ ) visible = T〉}
Eµ =̇ {〈[etµ] pos := l2〉}
Eτ =̇ {〈[etτ ] sent := T〉}

Figure 2 graphically shows a valid plan:

πu =̇ {〈6,move(l1 → l2)〉, 〈22, transmit〉}

Note that all the actions in πu have uncontrollable duration.

Discussion. In general, finding a strong plan for a prob-
lem with duration uncertainty is different from simply
considering the maximum or the minimum duration for
each action. Consider our rover example and its strong
plan shown in Figure 2. The µ (i.e., move) action must
terminate before the transmit action can start and, at the
same time, µ cannot terminate before time 15 due to the
temperature constraint. If we only consider the lower-bound
on the duration of µ (i.e., planning with dlbµ = 10) then one
valid plan is: πlb =̇ {〈11, µ〉, 〈22, τ〉}. However, because
of the uncertainty in the actual execution duration of µ, it
may actually take 14 time units to arrive at l2. Thus, the
rover would start transmitting at time 22 before it actually
arrives at l2 at time 11 + 14 = 25. Thus, plan πlb is invalid.
Similarly, if we consider only the maximal duration (i.e.,
planning with dubµ = 15), then one possible plan would

SPARK 2015 - Scheduling and Planning Applications woRKshop - 08/06/2015

ICAPS 2015

9



move transmit

visible = F visible = T visible = F

hot = T hot = F

time
...

6 16 21 22 271514 30

Figure 2: Graphical execution of πu. Striped regions repre-
sent the uncertainty in the action duration.

be: πub =̇ {〈1, µ〉, 〈22, τ〉}. However, during the actual
execution of µ, it may again take only 11 time units (and
not the planned maximum 15 time units) to arrive at l2. This
would violate the constraint that it should arrive at l2 after
t = 15 to avoid the sun, so πub is also not a valid plan2.

Disjunctive Conditions: In contrast to ordinary temporal
planning, it is not possible to compile away disjunctive
conditions using the action duplication technique (Gazen
and Knoblock 1997), because the set of satisfied disjuncts
in the presence of uncertainty can depend on the contin-
gent execution. For example, consider an action a start-
ing at time t where two Boolean variables p1 and p2 are
F. a has uncontrollable duration in [l, u], an at-start effect
e1=̇〈[sta]p1 := T〉 and two at-end effects e2=̇〈[eta]p1 := F〉
and e3 =̇ 〈[eta]p2 := T〉. An at-start condition p1 ∨p2 of an-
other action b is satisfied anywhere between the start of the
action a and the next deletion of p2. Thus, b can start any-
time within d =̇ (t+ l, t+ u]. However, if we compile away
this disjunctive condition by replacing b with two actions b1
and b2: one with an at-start condition p1 and the other with
an at-start condition p2, then b1 is not executable within d
because there is no time point in d in which we can guar-
antee that p1 = T (because a may take the minimum dura-
tion l and thus the at-end effect e2 will occur at t + l to set
p1 = F). Similarly, we cannot start b2 within d because we
also cannot guarantee that p2 = T at anytime point within
d (because a may take the maximum duration u and thus e3
that set p2 = T will not happen until t + u). Thus, com-
piling away disjunctive conditions leads to incompleteness
when there are uncontrollable durative actions. For this rea-
son it is important to explicitly model disjunctive conditions
in our language.

4 Compilation Technique
In this section, we present our compilation technique, which
can be used to reduce any planning instance P having du-
ration uncertainty into a temporal planning instance P ′ in
which all actions have controllable durations. The transla-
tion guarantees that P is solvable if and only if P ′ is solv-
able. Moreover, given any plan for P ′ we can derive a plan
for P . This approach comes at the cost of duplicating some
of the variables in the domain, but allows for the use of off-
the-shelf temporal planners.

2In some cases it is possible to soundly consider only the max-
imal duration for an action but this special-case optimization is not
sound in general.

The overall intuition behind the translation is the follow-
ing. Consider the transmit (i.e., τ ) action in our example,
and suppose it is scheduled to start at time k. Let v be the
value of sent at time k + 5; since transmit has an at-end
effect 〈[etτ ] sent := T〉, we know that the value of the vari-
able sent during the interval (k + 5, k + 8] will be either
v or T depending on the duration of the action. After time
k + 8 we are sure that the effect took place, and we are sure
of the value of sent until another effect is applied.3 Since
we are not allowed to observe anything at run-time in strong
planning, we need to consider this uncertainty in the value of
sent and produce a plan that works regardless. Since sent
could appear as a condition of another action (or as a goal
condition, as in our example) we must rewrite such condi-
tions to be true only if both T and v are values that satisfy
the condition.

To achieve this, we create an additional variable sentσ
(the shadow variable of sent). This secondary variable
stores the alternative value of sent during uncertainty peri-
ods. When there is no uncertainty in the value of sent, both
sent and sentσ will have the same value. In this way, all the
conditions involving sent can be rewritten in terms of sent
and sentσ to ensure they are satisfied by both the values.

In general, our translation works by rewriting a planning
instance P =̇ 〈V, I, T,G,A〉 into a new planning instance
P ′ =̇ 〈V ′, I ′, T ′, G′, A′〉 that does not contain actions with
uncontrollable duration.

Uncertain Variables. The first step is to identify the set of
variables L ⊆ V that appear as effects of uncontrollable
actions and are executed at a time depending on the end of
the action.

L =̇ {f | a ∈ Au, 〈[t] f := v〉 ∈ Ea, t =̇ eta − δ}

Intuitively, this is the set of variables that can possibly have
uncertain value during plan execution. A variable that is
modified only at times linked to the start of actions or by
timed initial literals, cannot be uncertain as neither the start-
ing time of actions nor the timed initial literals can be uncer-
tain in our model. In our running example, the setL becomes
{sent, pos}.

We now define the set V ′ as the original variables V plus
a shadow variable for each variable appearing in L.

V ′ =̇ V ∪ {fσ | f ∈ L}

We use the pair of variables f and fσ to represent uncer-
tainty: if f = fσ we know that there is no uncertainty in the
value of f , while if f 6= fσ we know that the actual value of
f in the original problem is either f or fσ .

Disjunctive Conditions. At the end of Section 3, we out-
lined the reason why existing approaches of compiling away
disjunctive conditions will not work with uncontrollable ac-
tion durations. In order to rewrite a disjunctive condition
p =̇ 〈(stp, etp)

∨n
i=1 fi = vi〉 we need to ensure that the

3Note that there cannot be another concurrent action in the plan
having an effect on sent during the interval [k+5, k+8] because
this would allow for the possibility of two concurrent effects on the
same variable.
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result is satisfied if and only if both the values of f and fσ
for each f ∈ L are satisfying values for p. For this rea-
son, we define an auxiliary function χ(ψ) that takes a single
disjunctive condition in P and returns a set of disjunctive
conditions in P ′.

χ(ψ)=̇


{〈f = v〉} if ψ =̇ 〈f = v〉, f 6∈ L

{〈f = v〉, 〈fσ = v〉} if ψ =̇ 〈f = v〉, f ∈ L

{r ∨ s | r ∈ χ(ψ1), s ∈ χ(ψ2)} if ψ =̇ ψ1 ∨ ψ2

For example, the condition of the τ action, pos = l2, is
translated as the two conditions pos = l2 and posσ = l2.
Analogously, assuming that both f and g are in L, a given
condition (f = T)∨ (g = F) in P is translated by function χ
as the set of conditions {(f = T)∨(g = F), (fσ = T)∨(g =
F), (f = T) ∨ (gσ = F), (fσ = T) ∨ (gσ = F)} in P ′.

Uncertain Temporal Intervals. We also need to identify the
temporal interval in which the value of a given variable can
be uncertain. Given an action a with uncertain duration da
in [l, u], let λ(t) and ν(t) be the earliest and latest possible
times at which an at-end effect at t =̇ eta − δ may happen.
Thus: λ(t)=̇sta+l−δ and ν(t)=̇sta+u−δ. Both functions
are equal to t if t =̇ sta+ δ. For example, consider the effect
e1 =̇〈[etτ ]sent := T〉 of action τ . We know that the duration
of transmit is uncertain in [5, 8], therefore the effect can be
applied between λ(etτ ) =̇ stτ +5 and ν(etτ ) =̇ stτ +8 and
the sent variable has an uncertain value within that interval.

Uncontrollable Actions. For each uncontrollable action
a =̇ 〈[l, u], Ca, Ea〉) in Au in the original model we create a
new action a′ =̇〈[u, u], Ca′ , Ea′〉 inA′

c. Specifically, we first
fix the maximal duration u as the only allowed duration for
a′ and then insert appropriate effects and conditions during
the action to capture the uncertainty.

The effects Ea′ are partitioned in two sets Ela′ and Eua′ to
capture possible values within the uncertain action execution
duration. The conditions Ca′ are also composed of two ele-
ments: the rewritten conditionsCRa′ and the conditions added
to protect the new effects CEa′ (thus C ′ =̇ CRa′ ∪ CEa′ ).

Rewritten conditions CRa′ : are obtained by rewriting existing
action conditions by means of the χ function. The intervals
specifying the duration of the conditions are preserved; since
the action duration is set to its maximum, the intervals of the
conditions are “stretched” to match their maximal duration.

CRa′ =̇ {〈(λ(t1), ν(t2)) α〉 | α ∈ χ(ψ), 〈(t1, t2) ψ〉 ∈ Ca}

For example, the set CRτ for the τ action is: {〈(stτ , stτ +
8) pos = l2〉, 〈(stτ , stτ + 8) posσ = l2〉, 〈(stτ , stτ +
8) visible = T〉}. This requires variables visible, pos and
posσ to be true throughout the execution of τ .

Compiling action effects: The effects of the original action
are duplicated: both the affected variable f and its shadow
fσ are modified, but at different times. We first identify the
earliest and latest possible times at which an effect can hap-
pen due to the duration uncertainty (see earlier discussion on
λ(t) and ν(t)). We then apply the effect on fσ at the earliest
time point λ(t), and at the latest time point ν(t) we re-align

transmit

at l2, visible

sent← T

transmit′

at l2, visible, at l2σ
sentσ

sentσ ← T sent← T

Figure 3: Graphical view of the original transmit action
instance (top) and its compilation (bottom).

f and fσ by also applying the effect on f :

Ela′ =̇ {〈[λ(t)] fσ := v〉 | 〈[t] f := v〉 ∈ Ea}

Eua′ =̇ {〈[ν(t)] f := v〉 | 〈[t] f := v〉 ∈ Ea}
For example, the τ action hasElτ =̇{〈[stτ +5]sentσ := T〉}
and Euτ =̇ {〈[stτ + 8] sent := T〉}.

Additional conditions CEa′ : let t =̇ eta − δ be the time of an
at-end effect that affects the value of f . In order to prevent
other actions from changing the value of f during the inter-
val (λ(t), ν(t)] where the value of f is uncertain, we add a
condition in CEa′ to maintain the value of fσ throughout the
uncertain duration (λ(t), ν(t)].

CEa′ =̇ {〈(λ(t), ν(t)) fσ = v〉, | 〈[t] f := v〉 ∈ Ea} ∪
{〈(ν(t), ν(t)) fσ = v〉 | 〈[t] f := v〉 ∈ Ea}

We are in fact using a left-open interval (λ(t), ν(t)] by spec-
ifying the same condition on the open interval (λ(t), ν(t))
and the single point [ν(t)]. Since the effect on fσ (belong-
ing to Ela′ ) is applied at time λ(t), the condition is sat-
isfied immediately after the effect and we want to avoid
concurrent modifications of either f or fσ until the uncer-
tainty interval ends at ν(t). For example, the τ action has
CEτ ′ =̇ {〈(stτ +5, stτ +8) sentσ = T〉}. Compilation of the
τ action is depicted in Figure 3.

Controllable actions: are much simpler. For each
a =̇ 〈[l, u], Ca, Ea〉 ∈ Ac we introduce a replacement action
a′ =̇ 〈[l, u], Ca′ , Ea′〉 ∈ A′

c, in which: (1) each condition in
C is rewritten to check the values of both the variables and
their shadows, and (2) each effect is applied to a variable and
its shadow, if any.

Ca′ =̇ {〈(λ(t1), ν(t2)) α〉 | α ∈ χ(ψ), 〈(t1, t2) ψ〉 ∈ Ca}

Ea′ =̇ Ea ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ Ea}

Initial state I: is handled by initializing variables and their
corresponding shadow variables in the same way as in the
original problem.

I ′ =̇ I ∪ {fσ = v | f ∈ L, f = v ∈ I}

For example, the initial state of our running problem is the
original initial state plus {sentσ = F, posσ = l1}.

Timed Initial Literals: T ′ are set similarly to the effects.

T ′ =̇ T ∪ {〈[t] fσ := v〉 | f ∈ L, 〈[t] f := v〉 ∈ T}

SPARK 2015 - Scheduling and Planning Applications woRKshop - 08/06/2015

ICAPS 2015

11



In our example, we do not have timed initial literals operat-
ing on uncertain variables, thus T =̇ T ′.

Goal conditions:G is augmented to consider both the origi-
nal and shadow variables, without modifying the application
times, since they are fixed and cannot be uncertain.

G′ =̇G ∪ {〈[t1, t2] fσ = v〉 | f ∈ L, 〈[t1, t2] f = v〉 ∈ G}

In our example, the set G′ becomes {〈[etπ, etπ] sent = T〉,
〈[etπ, etπ] sentσ = T〉}.

Example. The compilation for our example problem is:

V ′ =̇ V ∪ {posσ : {l1, l2}, sentσ : {T, F}}
I ′ =̇ I ∪ {posσ = l1, sentσ = F}
T ′ =̇ {〈[14] visible := T〉, 〈[30] visible := F〉, 〈[15] hot := F〉}
G′ =̇ {〈[etπ, etπ] sent = T〉, 〈[etπ, etπ] sentσ = T〉}
A′c =̇ {〈[15, 15], Cµ′ , Eµ′〉, 〈[8, 8], Cτ ′ , Eτ ′〉}
Cµ′ =̇ {〈(stµ, stµ) pos = l1〉, 〈(stµ, stµ) posσ = l1〉,

〈(etµ, etµ) hot = F〉, 〈(stµ + 10, stµ + 10) posσ = l2〉,
〈(stµ + 10, stµ + 15) posσ = l2〉}

Cτ ′ =̇ {〈(stτ , etτ ) pos = l2〉, 〈(stτ , etτ ) posσ = l2〉,
〈(stτ , etτ ) visible = T〉, 〈(stτ + 5, stτ + 8) sentσ = T〉,
〈(stτ + 5, stτ + 5) sentσ = T〉}

Eµ′ =̇ {〈[stµ + 10] posσ := l2〉, 〈[stµ + 15] pos := l2〉}
Eτ ′ =̇ {〈[stτ + 5] sentσ := T〉, 〈[stτ + 8] sent := T〉}

Discussion. This compilation is sound and complete. Thus,
the original problem is solvable if and only if the result-
ing problem is solvable Any plan for the rewritten temporal
planning problem is automatically a strong plan for the orig-
inal problem (with the obvious mapping from the rewritten
to the original actions).

Theorem 1. Let P =̇ 〈V, I, T,G,A〉 be a planning instance
andR=̇〈V ′, I ′, T ′, G′, A′〉 be its translation. P has a strong
plan π if and only if R has a temporal plan σ.

Proof. (Sketch) Let π be a strong plan for P . Let σ be the
plan starting a′ at time t for each a starting at time t in π. σ
is a valid temporal plan for R because:

• It achieves the goal G′ of R: all original goals in G are
achieved by π and by σ in the same way, and the goals
on the shadow variables must be achieved because π is
a strong plan. Given that π achieves the goals regardless
of the concrete durations of the actions, it achieves them
outside of the uncertainty intervals, where the variables
and the shadow variables are aligned.

• Each action a′ is executable in R, because each a ∈ π is
executable in P regardless of the action durations. Thus
the possible uncertainty introduced by the durations is ir-
relevant for the executability of a (all the conditions are
satisfied). In the translated instance R, all the conditions
are also satisfied because the conditions are imposed via
the χ function that only checks that both the variable and
its shadow fulfill the original condition.

• No conflicting effects are possible: the conditions added
in CEa′ prevents any modification of the interested shadow
variables during the uncertainty intervals.

Similarly, let σ be a plan for R. Let π be the plan for P
starting a at time t for each a′ starting at time t in σ. π is a
valid strong temporal plan for P because:

• It achieves the goal G, because σ achieves the goal G′

that is a super-set of G and each translated action has all
effects of the original actions.

• Each action a is executable in P regardless of the action
duration, because each a′ ∈ σ is executable in R and the
conditions in the translated actions are a super-set of the
ones in the original action, due to the χ function.

• No conflicting effects are possible regardless of the un-
certain duration, because each effect at time t can be un-
certain only between λ(t) and ν(t) and we guarantee no
other effect is possible in that interval by means of CEa′ .

The compilation produces a problem that has: (i) at most
twice the number of variables of the original problem, (ii) at
most twice the initial and timed assignments and (iii) exactly
the same number of actions. The only point in which the
compilation might produce exponentially large formulae is
in the application of the χ function, which is exponential in
the number of disjuncts constraining variables appearing in
L. Since this only happens for disjunctive conditions, and
the number of disjuncts is typically small, this is normally
not a serious issue.

5 Implementation and Experiments
We conducted two sets of experiments. In the first, we
compare our approach against the techniques proposed
in (Cimatti, Micheli, and Roveri 2015). This is the only
domain-independent planner that we are aware of that can
find strong plans for PDDL 2.1 problems with uncontrol-
lable durations. For this experiment, we use an extension
to PDDL 2.1 that includes actions with uncontrollable du-
rations (but none of the other extensions that we described
in Section 3 such as preconditions and effects at arbitrary
times, multi-valued variables, timed-initial-literals, or dis-
junctive preconditions).

In the second set of experiments, we show the applica-
bility of our technique on a very expressive fragment of
the ANML language (Smith, Frank, and Cushing 2008) ex-
tended with uncertainty in action durations. Except for ac-
tion duration uncertainty, ANML natively supports all the
other features described in Section 3.

PDDL with duration uncertainty. Cimatti, Micheli, and
Roveri (2015) extended the COLIN planner (Coles et al.
2012) to solve SPPTUs by replacing the STN scheduler
with a solver for strong controllability of STNUs. This
yields a sound but incomplete SPPTU planner. The authors
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Figure 4: Experimental results for the PDDL with duration uncertainty comparison. The left picture shows the cumulative time
plot of the solving time for the PDDL benchmarks. The right picture reports the scatter plot of the running time in seconds for
the compilation approach (solved using the COLIN planner) against the DR approach.

then proposed two techniques to overcome the incomplete-
ness: (1) “Last Achiever Deordering” (LAD) is a sound-
but-incomplete technique that tries to limit the incomplete-
ness by building the partial orderings in STNU using the last
achiever for each condition that needs support; (2) “Disjunc-
tive Reordering” (DR) is a sound-and-complete technique
obtained by considering, at each step, all the possible valid
action reorderings using a disjunctive form of STNU.

We compare against this approach by first compiling away
temporal uncertainties and then using both the COLIN and
POPF planners to solve the compiled instances4. We com-
pared our sound and complete technique against both the
complete DR and the incomplete LAD. We used a timeout
of 600 seconds, a memory limit of 8 GB and the full bench-
mark set of 563 problems described in (Cimatti, Micheli,
and Roveri 2015).

The left plot of Figure 4 reports the cumulative time of
the three techniques and the “Virtual Best” solver, obtained
by picking the best solving technique for each instance. The
right scatter-plot compares our technique (instantiated with
COLIN) with the DR approach. The left plot shows that
the compilation technique cannot solve as many instances
as DR or LAD. However, we note that the “Virtual Best”
solver solves many more problems than both the DR and
LAD. This shows that the techniques are complementary:
problem instances that cannot be solved by LAD or DR are
solved quickly by our compilation, and vice-versa. This sit-
uation is also visible in the scatter plot: there is a clear subdi-

4Our approach allows the use of any PDDL2.1 planner that can
handle required concurrency. Unfortunately, many temporal plan-
ners such as LPG and TemporalFastDownward do not support this,
and therefore cannot find solutions to the problems generated by
our compilation.

vision of the problem instances solved by these two different
planners.

Our investigation indicates that the main factor that hin-
ders the performance of our approach is the “clip-action”
construction (Fox, Long, and Halsey 2004) that is needed to
reduce our compilation to PDDL 2.1. In particular, our com-
pilation generates actions with conditions and effects that
occur at intermediate times. Compiling this to PDDL 2.1 re-
quires three PDDL 2.1 actions for each action in Au: a con-
tainer action, and two actions inside the container action that
are clipped together. This deepens the search and lengthens
the plans for COLIN and POPF.

ANML with duration uncertainty. As described in Sec-
tions 3 and 4, our framework handles many useful fea-
tures beyond PDDL 2.1. Some of these can be represented
in higher levels of PDDL (e.g., multi-valued variables),
some cannot (e.g., arbitrary timed action conditions and ef-
fects). While comparing against current state-of-the-art in
PDDL2.1 shows the feasibility of our approach, it restricts
us to a subset of features that can be handled by our compila-
tion. Moreover, as discussed above, the limitation of PDDL
2.1 adversely impacts the performance of our approach.

To show the full expressive potential of our approach,
we used the Action Notation Modeling Language (ANML)
(Smith, Frank, and Cushing 2008), which can natively
model all those constraints. ANML is a variable-value lan-
guage that allows high-level modeling, complex conditions
and effects, HTN decomposition and timeline-like tempo-
ral constraints. Our only addition to ANML is the capabil-
ity to model uncertain action durations: duration :in
[l, u] where l and u are constant values specifying the
lower and upper bounds on the duration of a. We name our
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Planning Instance Controllable Uncontrollable
match 1 0.517 0.626
match 2 0.522 0.637
match 3 0.593 1.115
rovers 1 1.196 1.293
rovers 2 1.497 1.810
rovers 3 1.190 2.009

handover 1 0.800 1.081
handover 2 2.302 4.043
handover 3 2.863 32.484

Table 1: Results of the ANML comparison. The table reports
the solving time in seconds for the two analyzed configura-
tions. The Controllable column reports the runtime for the
instances in which the durations are considered as control-
lable by the planner. The Uncontrollable column reports the
runtime for solving SPPTU using our compilation in combi-
nation with the FAPE planner.

ANML extension: ANuML.
We implemented our compilation approach in an auto-

matic translator that accepts an ANuML planning instance
and produces plain ANML. We then use the FAPE (Dvo-
rak et al. 2014) planner to produce a plan for the compiled
ANML problem instance. To the best of our knowledge no
other approach is able to solve the problems we are dealing
with in ANML.

We considered two domains adapted from the FAPE dis-
tribution namely “rover” and “handover”. The former mod-
els a remote rover for scientific operations, similar to our
running example, while the latter models a situation in
which two robots must synchronize to exchange items. Ad-
ditionally, we model a “match” domain derived from the
“matchcellar” domain used in IPC 2011. For each domain,
we tested with three different configurations: different initial
states, goals, and variable domains.

Table 1 compares the time needed for FAPE to produce
a plan ignoring the temporal uncertainty (i.e. considering
the environment to be completely cooperative) with the time
needed to solve the compiled problem. Although the perfor-
mance of the encoding depends on the planning instance, the
results show that the slowdown is acceptable for the tested
instances. An exception is “handover 3”, in which the trans-
lation shows a significant slowdown. We remark that this
is not a comparison between two equivalent techniques, as
the two columns correspond to results in solving very differ-
ent problems: plain temporal planning vs. strong planning
with temporal uncertainty. Instead, this is an indication of
the slowdown introduced by the translation compared to the
same problem without uncertainty. Even though the results
are preliminary, we can infer that our approach is more than
a theoretical exercise and can be practically applied for tem-
poral planning domains modeled natively in ANML.

6 Future Work
While the preliminary results are promising, we are consid-
ering several possible extensions.

Model simplification: it is sometimes possible to simplify a
strong planning problem with temporal uncertainty by con-
sidering the maximal or minimal duration of an action hav-
ing uncertain duration. As we discussed in Section 3, this
“worst-case” approach is in general unsound; nonetheless,
it is possible to recognize some special cases in which it is
sound and complete. This simplification can be done upfront
and could be beneficial for both our compilation and the ap-
proaches in (Cimatti, Micheli, and Roveri 2015). Precisely
understanding when and how this simplification can be ap-
plied is an open problem, but a preliminary analysis sug-
gests that an action a with uncertain duration [l, u], having
conditions involving variables in VC and effects involving
variables in VE , can be considered as being controllable in
[u, u] (without changing its conditions or effects) if all the
following conditions hold:
• A is mutually exclusive with any other action that has an

effect on a variable in VE ∪ VC .
• No Timed Initial Literal modifies a variable in VE ∪ VC .
• Every action with a condition involving VC is mutually

exclusive with A.
These strict requirements are sufficient to guarantee that the
action can be considered to last for its maximal duration as
it is impossible to impose a “lower-bound” constraint in any
valid execution of the actions.

Increase expressiveness: Even though the formalization
we presented is quite expressive and general, the ANML
language has many features that are not covered. A promi-
nent example is the support of conditional effects, which
cannot be expressed in our language but are possible in both
ANML and PDDL. We note that, analogously to disjunctive
preconditions, the common compilation of conditional
effects is unsound in the presence of temporal uncertainty,
because it transforms a possibly uncontrollable effect into
a controllable decision for the planner. Nonetheless, our
translation (with some modifications) is still applicable
in the presence of conditional effects, but it sacrifices
completeness. The intuitive reason is that we represent
uncertainty as a pair of variables (original and shadow) with
the assumption that the value of the variable in the original
execution is either of the two values. With conditional
effects, it is possible to design models in which the variable
can actually be uncertain between more than two values.

Improve performance: Finally, we would like to study
ways to overcome the disappointing performance of the
compilation into PDDL by hybridizing the “native” DR
and LAD techniques with our approach to exploit their
complementarity. Another possibility is to modify a tempo-
ral planner so that it understands the clip-action construct
and avoids useless search when dealing with the instances
produced by our translation.
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Abstract

Incident management aims to save human lives, miti-
gate the effect of accidents, prevent damages, to men-
tion a few of their benefits. Efficient coordination of
rescue team members, allocation of available resources,
and appropriate responses to the realtime unfolding of
events is critical for managing incidents successfully.
Coordination involves a series of decisions and event
monitoring, usually made by human coordinators, for
instance task definition, task assignment, risk assess-
ment, etc. Each elementary decision can be described by
a named action (e.g. boarding an ambulance, assigning
a task). Taken as a whole, the team coordinating an inci-
dent response can be seen as a decision-making system.
In this paper, we discuss how invaluable assistance can
be brought to such a system using automated planning.
In consultation with experts we have derived a set of re-
quirements from which we provide a formal specifica-
tion of the domain. Following the specification, we have
developed a prototype domain model and evaluated it
empirically. Here we present the results of this evalua-
tion, along with several challenges (e.g uncertainty) that
we have identified.

Introduction
Automated planning is a research discipline that addresses
the problem of generating a totally- or partially-ordered se-
quence of actions that transform the environment from some
initial state to a desired goal state. Automated planning has
been successfully applied for decades in several areas, in-
cluding space exploration (Ai-Chang et al. 2004) or machine
tool calibration (Parkinson, Longstaff, and Fletcher 2014), to
mention a couple.

Incident management consists of time- and resource-
critical operations that aim to save human lives, mitigate
the effect of traffic or industrial accidents, prevent excessive
damages, to mention a few of their benefits. In other words,
incident management involves groups of people who need
to achieve close coordination to carry out one or more time-
critical tasks. Carrying out such tasks may be very stress-
ful even for well trained professionals. Efficient coordina-
tion of rescue team members, as well as efficient allocation
of available resources, are key determinants of success. In-
cident management is typically planned, coordinated, and

monitored from rescue centres by human coordinators. Res-
cue operation planning involves a series of decisions such
as which team member will do what task, whether a team
should reach an incident location by car or by helicopter,
and so on. Making these decision “manually” can be inef-
ficient and error prone, even for well experienced profes-
sionals. Automated rescue operation planning can both be
used to assist people during an actual live incident and to
provide simulation for training exercises. The technological
requirements for either case are more or less the same; the
system must be able to represent objects with various static
and temporal properties, i.e., anything from an unchanging
building or a vehicle whose only change is from position x to
y (and associated energy consumption) to an accident victim
whose vitals are continuously changing via highly complex
processes and a tornado causing vast changes to the envi-
ronment and conditions in a short amount of time. Planning
thus involves making decisions about events over which res-
cue teams have control, while being constrained by those out
of their control.

Existing approaches for rescue operation planning (and
execution) consist of coordination of (heterogeneous) au-
tonomous vehicles to perform given tasks (e.g. surveillance
of some area) (Doherty and Heintz 2011; George, Sujit,
and Sousa 2011). Plans are often sequences of waypoints
that are passed to the autonomous vehicles, and emphasis
is given on “low-level” planning, i.e., planning of elemen-
tary vehicles’ manoeuvres. For incident management plan-
ning, “high-level” planning (e.g. releasing a trapped victim)
is sufficient. The most related “high-level” planning work is
about road traffic incident management (Shah et al. 2013),
which also inspired our work. Incident management is more
general, although abstract concepts are similar to those in
traffic incident management.

In this paper, we present our ongoing work involving
automated planning in incident management. Typically, in-
cidents are managed by coordinators whose decisions are
based on experience and are made in a semi-reactive way.
Automated planning can provide a complete overview on
the incident management task, i.e., from the initial situ-
ation when incident(s) are reported to the goal situation
when incidents are successfully dealt with. This is espe-
cially useful when the coordinator has to deal with situa-
tions that are unusual or when training of some specific skills
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of rescue teams is designed. Automated planning can be
straightforwardly used in incident management since each
elementary decision the incident coordinator must take (e.g.
a paramedic1 boards the ambulance2) can be formalised
as an action. Plans generated by planning engines provide
the coordinator (partially ordered) sequences of elementary
decisions that must be taken during the rescue operations.
However, these plans must be provided quickly (a few sec-
onds latency at most) and in a good quality (nearly opti-
mal), otherwise it might have a negative impact on success
of these operations. We have derived a set of requirements,
in consultation with experts, from which we provide a for-
mal specification of the domain. Following the specification
we have developed a prototype domain model using which
we are able to generate plans quickly and in reasonable qual-
ity as we empirically verified. Of course, incident manage-
ment control requires a complex system involving planning
and execution episodes overseen by human coordinators. We
have designed an architecture of such a system and have
identified several challenges, mostly due to uncertainty, that
we also discuss in this paper.

Related Work

Search and Rescue (SAR), which can be understood as a
subset of incident management, is the search for and provi-
sion of aid to people in need (often after a disaster). SAR
is a well established research topic. The research in this
area is promoted by the Robocup-Rescue project1 that was
motivated by earthquake in Kobe in 1995. This led to the
RoboCup Rescue Robot and Simulation competitions that
have been held since 2000 (Akin et al. 2013). Most of the
SAR approaches consist of (semi)-autonomous robotic sys-
tems that are especially useful in “high-risk” areas such
as Fukushima after the 2011 incident (Sato, Muraoka, and
Hozumi 2014). Besides systems coordinating multiple het-
erogeneous vehicles (Doherty and Heintz 2011), a system
supporting human-robot teams in disaster management sce-
narios has been recently developed and deployed (Kruijff
et al. 2014). SAR often takes place in military operations.
Comirem (Smith, Hildum, and Crimm 2005), a system in-
corporating mixed-initiative planning and scheduling in or-
der to allocate resources more efficiently and with strong
emphasis to the user interface, has been applied to Special
Operational Forces planning.

Traffic accident management, which deals with situa-
tions after traffic accidents in order to provide aid to in-
volved victims as well as to restore the situation into nor-
mal, can be also understood as a subset of incident man-
agement. Here, the need is to coordinate a team of human
agents (paramedics, policemen etc.) rather than robots, so
there might not be a need for “low level” control. Apply-
ing AI planning in Traffic accident management has been
studied from the perspective of stochastic integer program-
ming (Ozbay et al. 2013) as well as of “classical” domain-
independent planning (Shah et al. 2013).

1http://www.robocuprescue.org/

Figure 1: An architecture of an incident management system

Incident Management and Control

A system for incident management and control requires a
planning/execution platform that is overseen by a human co-
ordinator. Similar existing platforms such as T-REX (Rajan
and Py 2012), which is run on-board of autonomous vehi-
cles, or NEPTUS (Dias et al. 2006), which is a command and
control system for autonomous vehicles, provide a frame-
work for planning and executing operations for these vehi-
cles. In our case, we do not need a “low-level” planning and
control for coordinating autonomous vehicles, since human
agents (rescue team members) are able to autonomously ex-
ecute “high-level” actions (e.g. drive from one place to an-
other). Our system architecture, depicted in Figure 1 is in-
spired by the architecture of T-REX.

The Planner component consists of one or more plan-
ning engines and one or more domain models. It receives
the planning problem descriptions from the Controller com-
ponent and provides solution plans back to it.

The Executor component consists of rescue team mem-
bers who execute actions provided by the Controller compo-
nent or the human coordinator (the Operator component).
During the operation (executing the actions) rescue team
members inform the Controller about their progress (e.g.
whether the action has been successfully completed) as well
as about the state of the environment (e.g. whether an inci-
dent victim is seriously injured).

The Operator component refers to a human expert who
monitors the operations, setting up goals and, eventually,
gives orders to the rescue team members (the Executor com-
ponent). The latest gives the human coordinator to overrule
the system in case of some unexpected event, emergency or
error in the system.

The Controller component is the ‘brain’ of the system. It
receives information about the operation progress from the
Executor component and stores information about the cur-
rent state of the environment. It accepts mission descriptions
(goals) from the Operator component from which it gener-
ates planning problems that are sent to the Planner compo-
nent. Plans retrieved from the Planner component are dis-
patched to the Operator and Executor components. The Con-
troller component also monitors whether execution of plans
matches what has been planned. In case of discrepancies,
or intervention from the Operator component, re-planning is
triggered.
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Domain Specification
Given the requirements from experts, we provide a formal
conceptualisation of the incident management domain. The
way how the conceptualisation is made was inspired by work
of Shah et al. (2013). The ontology has three main cate-
gories: object types, relation and function types, and action
types. The incident management domain is specified on an
abstraction and expressiveness level that is relatively inde-
pendent of specific scenarios and planning engines. We will
consider time in our specification, so hereinafter let T be a
set of time-stamps that refer to a given scenario (a planning
episode). Hereinafter, the constant ⊥ will refer to an ‘unde-
fined value’.

The main abstract object types in the incident manage-
ment domain are as follows:

• Assets X = Xs ∪ Xm are divided into two cate-
gories, static assets Xs (e.g. buildings) and mobile assets
Xm (e.g. vehicles). Assets can accommodate artefacts or
agents (see below).

• Agents A are intelligent entities that can interact with as-
sets or artefacts (e.g rescue team members).

• Artefacts Y are various objects that cannot act on their
own (e.g. incident victims, first aid kits). Artefact can be
loaded to assets or carried by agents.

• Locations L are ‘points of interest’ (e.g towns, incident
locations).

Notice that agents were not considered in work of Shah et
al., since it was assumed that agents are “connected” to as-
sets (e.g. a paramedic is always in an ambulance). Here, we
distinguish between agents and assets, since an asset can ac-
commodate agents of various capabilities (e.g. a helicopter
can take paramedics, policemen or rescuers).

The main abstract relation and function types in the inci-
dent management domain are as follows:

We define a relation conn ⊆ (Xm∪A)×L×L for deter-
mining whether a mobile asset or agent can move between
locations. We define a function at : (X ∪ A ∪ Y ) × T →
L ∪ {⊥} referring to a position of an object in a given time-
stamp. Clearly for a static asset the function at is constant
(does not change its value with time). We define a func-
tion in : Y × T → (X ∪ A ∪ {⊥}) referring to sit-
uations when an artefact is loaded to an asset or carried
by an agent (or ⊥ if not). Similarly, we define a function
inside : A×T → X ∪{⊥} referring to whether an agent is
inside some asset or not (⊥). Each asset or agent may have
a limited capacity which, informally said, stands for a max-
imum number (or weight) of loaded or carried artefacts (or
agents) in the same time. Formally, a capacity is defined as
a function cap : X ∪ A → N, volume of agents or artefacts
is represented by a function vol : A ∪ Y → N, and, finally,
fullness of agents or assets in a given time-stamp is defined
as a function full : (X ∪A)× T → N.

We also define properties as functions characterising a
state of an object in a given time-stamp. Properties can reach
values that are specific for a given class of objects. For ex-
ample, a ‘status’ of an incident victim might have one of the

following values: GREEN (no injury), YELLOW (minor in-
juries), RED (severe injuries), BLACK (dead). Agents have
knowledge about the environment that can be obtained by
observation or communication with other agents. Let a finite
set K be an universal knowledge base. We define a function
k : A× T → 2K referring to a knowledge of agents.

The environment specified by object, relation and func-
tion types can be modified by actions, specified via precon-
ditions (what must be met in order to apply the action) and
effects (what is changed in the environment after applying
the action). We define the following action types which mod-
ify the environment of the incident management domain. We
assume that the action is applied in a time-stamp t and lasts
for ∆t time.
move(e, l1, l2) moves a mobile asset or agent e ∈ Xm ∪ A

from a location l1 to a location l2 (l1, l2 ∈ L). As a
precondition it must hold that (e, l1, l2) ∈ conn and
at(e, t) = l1. The effect of applying the action is that
at(e, t + ∆t) = l2 and ∀t′ ∈ (t, t + ∆t) : at(e, t′) = ⊥.

load(z, x, l) loads an artefact or agent z ∈ Y ∪A to an asset
x ∈ X in a location l ∈ L. As a precondition it must hold
that at(z, t) = l, ∀t′ ∈ [t, t+∆t] : at(x, t′) = l and ∀t′ ∈
[t, t + ∆t) : full(x, t′) ≤ cap(x) − vol(z). The effect
of applying the action is that in(z, t + ∆t) = x (resp.
inside(z, t + ∆t) = x), ∀t′ ∈ (t, t + ∆t) : in(z, t′) = ⊥
(resp. inside(z, t′) = ⊥), ∀t′ ∈ (t, t+∆t] : at(z, t′) = ⊥
and full(x, t + ∆t) = full(x, t) + vol(z).

unload(z, x, l) unloads an artefact or agent z ∈ Y ∪A from
an asset x ∈ X in a location l ∈ L. As a precondi-
tion it must hold that ∀t′ ∈ [t, t + ∆t] : at(x, t′) = l
and in(z, t) = x (resp. inside(z, t) = x). The ef-
fect of applying the action is that at(z, t + ∆t) = l,
∀t′ ∈ (t, t+∆t] : in(z, t′) = ⊥ (resp. inside(z, t′) = ⊥)
and full(x, t + ∆t) = full(x, t)− vol(z).

fetch(y, a, l) allows an agent a ∈ A to fetch an artefact y ∈
Y in a location l ∈ L. As a precondition it must hold
that at(y, t) = l, ∀t′ ∈ [t, t + ∆t] : at(a, t′) = l and
∀t′ ∈ [t, t + ∆t) : full(a, t′) ≤ cap(a) − vol(y). The
effect of applying the action is that in(y, t + ∆t) = a,
∀t′ ∈ (t, t + ∆t) : in(y, t′) = ⊥ and ∀t′ ∈ (t, t + ∆t] :
at(y, t′) = ⊥.

drop(y, a, l) drops an artefact y ∈ Y carried by an agent
a ∈ A in a location l ∈ L. As a precondition it must hold
that ∀t′ ∈ [t, t + ∆t] : at(a, t′) = l and in(y, t) = a.
The effect of applying the action is that at(y, t+∆t) = l,
∀t′ ∈ (t, t + ∆t] : in(y, t′) = ⊥ and full(a, t + ∆t) =
full(a, t)− vol(y).

communicate(a1, a2,m) sends a message m ∈ K from an
agent a1 to an agent a2 (a1, a2 ∈ A). As a precondition it
must hold that m ∈ k(a1, t) and communication must be
possible between a1 and a2 in a time interval [t, t + ∆t].
The effect of applying this action is that k(a2, t + ∆t) =
k(a2, t) ∪ {m}.

observe(a,m) allows an agent a ∈ A to get an elemen-
tary knowledge m ∈ K by observing the environment.
The effect of applying this action is that k(a, t + ∆t) =
k(a, t) ∪ {m}.
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(:durative-action firstaid
:parameters (?p - paramedic

?f - firstaidkit
?v - victim
?l - location)

:duration (= ?duration 20)
:condition (and

(over all (at ?p ?l))
(over all (at ?v ?l))
(over all (in ?f ?p))
(at start (available ?p))
(at start (injured ?v)))

:effect (and
(at start (not (available ?p)))
(at end (available ?p))
(at end (not (injured ?v)))
(at end (aided ?v)))

)

Figure 2: The First-aid action in PDDL.

interact(a, l, . . . ) changes a property (or properties) of an
object (or objects). At least one agent (a ∈ A) must
be involved and be present in a location l (l ∈ L), i.e.,
∀t′ ∈ [t, t + ∆t] : at(a, t′) = l. Also, a cannot be simul-
taneously involved in another interact action.

From the description of the action types we can derive the
following invariants: ∀y ∈ Y, ∀t ∈ T : at(y, t) = ⊥ ⇔
in(y, t) 6= ⊥, ∀a ∈ A,∀t ∈ T : inside(a, t) 6= ⊥ ⇒
at(a, t) = ⊥ (the opposite implication does not hold be-
cause the agent might be ‘on the way’), ∀z ∈ A ∪ X,∀t ∈
T : full(z, t) ≤ cap(z), and ∀z ∈ A ∪ X,∀t ∈ T :
full(z, t) =

∑
{x|in(z,t)=x∨inside(z,t)=x} vol(x).

Clearly, the above specification does not include all possi-
ble constraints – further constraints relate to specific assets,
agents or artefacts. For example, incident victims (as a sub-
class of artifacts) can be loaded to ambulances and cannot be
loaded to fire trucks (both are subclasses of mobile assets).
The interact action type is specified in a very general way
here, generalising a heterogeneous set of actions (e.g. giving
first aid, extinguishing fire etc.)

A fundamental challenge in incident management is deal-
ing with the situation immediately after an incident (or inci-
dents) has been reported. The goal of a incident management
team or coordinator is to restore the situation to the normal
order (e.g. providing first aid to incident victims and trans-
porting them to hospitals).

Prototype Domain Model
Following the domain specification given above we have
developed a prototype domain model. The domain is de-
veloped in PDDL 2.1 (Fox and Long 2003), following the
same requirements as in the Temporal Track on the Inter-
national Planning Competitions, as these requirements are
widely supported by temporal planning engines.

In our domain model, we consider the following types of
static assets: Hospital, Fire station, Rescue station, Police

...
0.09: (move ambulance0 reykjavik hella) [50]
1.10: (board policeman0 helicopter0 reykjavik) [1]
1.11: (fetch paramedic0 firstaidkit2 reykjavik) [1]
1.12: (fetch paramedic1 firstaidkit0 reykjavik) [1]
1.13: (fetch rescuer0 rope0 reykjavik) [1]
1.14: (fetch rescuer1 rope1 hella) [1]
2.15: (move helicopter0 reykjavik landmanalaguar) [15]
2.16: (firstaid paramedic0 firstaidkit2 victim4 reykjavik) [20]
2.17: (firstaid paramedic1 firstaidkit0 victim1 reykjavik) [20]
2.18: (rescue rescuer0 rope0 victim0 reykjavik) [20]
2.19: (rescue rescuer1 rope1 victim2 hella) [20]
17.20: (debark policeman0 helicopter0 landmanalaguar) [1]
18.21: (move helicopter0 landmanalaguar hekla) [5]
18.22: (secure policeman0 landmanalaguar) [10]
...

Figure 3: A fragment of a sample plan.

station and Building; mobile assets: Ambulance, Police car,
Fire truck, Rescue car and Helicopter; agents: Paramedic,
Fireman, Policeman, Rescuer; and, finally, artefacts: Victim,
First-aid-kit, Extinguisher, Rescue equipment.

We have also defined the following properties that come
on top of the relations and function defined in the previous
section. Assets can be onfire or extinguished. Locations can
be unsecured or secured. Finally, victims can be injured or
aided, and trapped or released.

Actions are derived from the action types introduced in
the previous section. In case of action types move, unload,
fetch and drop, actions in our domain model are encoded
straightforwardly according to descriptions of the action
types. For the action type load we have implemented two
variants of actions. One is specific for victims, i.e., victim
can be loaded to a mobile asset only if the victim is re-
leased and aided; the other is general and encoded straight-
forwardly from the load action type. We have implemented
four actions that extends the interact action type:

secure(p, l) allows a policeman p to secure a location l, i.e.,
the property of l changes from unsecured to secured.

extinguish(f, e, x, l) allows a fireman f to extinguish an as-
set x by an extinguisher e in a location l. It must hold that
∀t′ ∈ [t, t + ∆t] : at(x, t′) = l ∧ in(e, t′) = f . The
effect is that the property of x changes from onfire to ex-
tinguished.

firstaid(p, fa, v, l) allows a paramedic or rescuer p to give a
first aid to a victim v using a first-aid-kit fa in a location
l. It must hold that ∀t′ ∈ [t, t + ∆t] : at(v, t′) = l ∧
in(fa, t′) = p. The effect is that the property of v changes
from injured to aided. The PDDL encoding of this action
is depicted in Figure 2.

release(r, re, v, l) allows a rescuer r to release a victim v
using a rescue equipment re in a location l. It must hold
that ∀t′ ∈ [t, t + ∆t] : at(v, t′) = l ∧ in(re, t′) = r. The
effect is that the property of v changes from trapped to
released.

Notice that action types sense and communicate are not
implemented. This is due to the requirements for a deter-
ministic and fully observable environment. Clearly, sensing
and communication are needed for environments that are
partially observable. Moreover, it creates contingency (non-
deterministic action effects). Such issues are discussed later.
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LPG-td Yahsp3-MT
T Q T Q

Small 0.62±0.42 116±24 0.16±0.18 143±27
Medium 3.22±1.82 178±63 0.11±0.10 249±63
Large 5.45±1.79 419±83 0.39±0.39 384±86

Table 1: Results showing runtime of the planners in seconds
(T) and quality (make-span) of the firstly generated plans
(Q) with respect to different size of problems.

Small Medium Large
Time 1.35±2.10 4.25±3.38 3.60±2.54
Quality 109±20 197±41 313±47

Table 2: Results showing runtime of Yahsp3-MT in seconds
and quality (make-span) of the highest quality generated
plans with respect to different size of problems.

Our prototype domain model deals with the following in-
cidents: an asset in fire, a location to be secured from public,
and injured and/or trapped victims. The goal is to manage
these incidents such that: the asset in fire is extinguished,
the location is secured, and the victim is rescued and even-
tually transported to the hospital (if his/her injury is serious).
A fragment of a sample plan is depicted in Figure 3.

Experimental Evaluation
For the experimental evaluation of our approach we used a
scenario consisting of: 5 locations, 1 hospital, 1 ambulance,
1 helicopter, 2 of each of the remaining types of assets, 2 of
each agents, 3 first-aid-kits, 2 extinguishers and 2 units of
rescue equipment. Each agent is ‘loaded’ to “its” asset (e.g.
a police man is in the Police station) and mobile assets are in
the same locations as “their” static assets (e.g. an ambulance
is in the same location as the hospital). Then, we randomly
select some locations where we set their property to ‘un-
secured’, generate n victims and distribute them randomly
along the locations with randomly assigned properties to in-
jured and/or trapped. Finally, we generate k buildings ran-
domly distributed along the locations with properties set to
onfire. The goal is to change all unsecured locations to se-
cured, buildings being on-fire to extinguished, victims being
trapped to released, and finally, victim changed from being
injured to aided and some of them to be delivered to the hos-
pital.

We defined 3 classes of problems: “Small” (n = 5,
k = 2), “Medium” (n = 10, k = 3) and “Large” (n = 20,
k = 5). We generated 5 problems per each class and for
solving them we used four state-of-the-art planning engines:
Yahsp3-MT (Vidal 2014), LPG (Gerevini, Saetti, and Serina
2003), Popf2 (Coles et al. 2010) and Optic (Benton, Coles,
and Coles 2012). We have observed that Popf2 as well as
Optic do not scale well in our domain model, so the time
needed to find solutions considerably increases with prob-
lem size. On the other hand, LPG as well as Yahsp scales
well and time needed to extract the first solution is within a
few seconds even for the large instances as shown in Table 1.
LPG and Yahsp thus comply with one of the required criteria

– obtain solutions in at most a few seconds. However, quality
of first solutions is often not very good. On the other hand,
both LPG and Yahsp can incrementally improve solutions,
so it is possible to obtain solutions of better quality. We took
a closer look on Yahsp, where we have observed that solu-
tions can improve considerably, as depicted in Table 2, even
while keeping quite strict cutoff of 10 seconds.

Our domain model does not require concurrency, so it
is possible to solve problems as classical ones and then
schedule actions from the plans in order to minimise make-
span. This seems to be the main reason that extended clas-
sical planners (LPG and Yahsp) performed much better than
“purely” temporal planners (Popf2 and Optic).

Given the performance of Yahsp, we can obtain solutions
in reasonable quality (however, sub-optimal) in a very little
time even for relatively large problems. Generated plans to
large extent comply with expectations of the domain experts.
This gave us a promising outlook for applying AI planning
in incident management. Clearly, it applies for “standard”
situations where it is not necessary to involve a large number
of entities and/or consider complex cooperative actions (e.g.
releasing the victim while giving him/her first aid). For dis-
aster management, where thousands of entities are involved,
we might use a different domain model, which is more ab-
stract. For considering cooperative actions, a modified do-
main model is also required.

Challenges
We have identified several challenges related to application
of AI planning in incident management. These challenges
can be divided into three categories, namely Task Complex-
ity, Uncertainty and Goal prioritisation. Most of these chal-
lenges can possibly be overcome without necessarily chang-
ing the domain model we have presented, or introducing
more expressiveness (e.g. conformant planning). Testing this
belief is planned in our future work.

Task Complexity
In real world scenarios, it is common to have a huge amount
of objects being possibly in a plenty of different relations.
Hence, we might have an excessive number of possible ac-
tions do deal with. AI planning is generally intractable, so
it is impossible to handle very large models. However, we
do not have to represent everything in very detail, we can
either abstract or relax. For example, the firstaid action is
a good example of abstraction. Although there are various
ways how to give the first aid to incident victims, which
mostly depends on what sort of injuries they have, profes-
sional paramedics know how to give the first aid (i.e. execute
the firstaid action) without need to provide details. Also, we
do not have to, for example, consider road traffic, so we can
relax it. In normal conditions, it can marginally affect the
driving time of rescue vehicles. If traffic is very heavy, we
might consider, in the worst case, the road being blocked,
and if there is no alternative that we might assume that rele-
vant locations are not connected for the rescue vehicles (we
apply abstraction).

Our prototype domain model, therefore, does not have
to deal with an excessive number of objects. Problems are
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thus relatively easy to solve. Possible issues are related to
accuracy of the model and understanding the correct rep-
resentation of the objects. In our case, most of actions are
restricted to a single agent. However, in some case having
more agents to perform an action might be more appropri-
ate. For instance, if a victim has a serious injury, then more
paramedics might give the victim the first aid. Also, an ac-
tual meaning of “rescue equipment” might vary regarding
the situation in which it is used. Rescuers might use a differ-
ent equipment for rescuing a victim in the mountains than in
the forest. While the latter issue can be tackled by some sort
of meta-reasoning, the former needs an enhanced domain
model.

Unsolvable Problems
Solvability of the problem cannot be guaranteed. The prob-
lem might become unsolvable if, for example, some location
is unreachable, or some kind of artefact is not present (e.g.
fire extinguisher). In these cases the system can easily find
the reason and notify the mission coordinator, so s/he can
remove problematic goals.

Similarly, we cannot guarantee that the solution will be
retrieved in a given time limit. The reason might be that the
problem is too large (too many goals), or there are some spe-
cific constraints that makes the problem too hard for a plan-
ner. Although we believe that this is an unlikely scenario, if
it occurs, the coordinator has to take over the control. In par-
ticular, the coordinator might decide to control the mission
manually, or remove some (less important) goals in order to
make the problem easier.

Uncertainty
In real world scenarios, unexpected situations may arise just
before, or during, the operation being carried out. While
there is always a human coordinator who can overrule the
system, the system must be able to appropriately react on
such situations.

Bad weather is often an issue for incident management.
Although weather might be rather unpredictable in long term
(days), it can be well predictable for short-term (hours).
Since incident management is usually of short-term, weather
be considered in the problem description by providing some
restrictions (e.g. a helicopter cannot fly to locations affected
by T-storms).

It might not be known how long some actions will take.
For example, giving first aid to a victim with minor injuries
will take much less time than first aid to a victim with se-
vere injuries. However, severity of victim’s injuries might
not be very well known, since incidents are often reported
with many inaccuracies. Therefore, several plans consider-
ing different action durations (e.g. optimistic, realistic and
pessimistic estimation) might be generated. If these plans
vary widely the human coordinator may decide which plan
will be executed.

Often, complete information about the environment may
not be available and thus we need sensing actions (e.g. “ob-
serve location X”). Sensing actions lead to non-deterministic
contingencies. To make it deterministic we might consider

the most likely outcome of the sensing action. If the ac-
tual outcome is different we might re-plan. Alternatively, we
might provide plans for every outcome of the sensing actions
(unless there are too many possible outcomes).

Goal Prioritisation
Another problem might be prioritising of some goals. It
might be the case, for example, that life of one of the victim
is in danger, so the victim has to be rescued as quickly as
possible. If there are more victims in different locations the
planner might not consider priorities while planning when
it optimises for ‘make-span’. Of course, there is a possi-
bility to put priorities into the problem definition and force
the planner to optimise for them. However, such a feature
is not widely supported by planners. A possible solution to
the prioritisation issue is to isolate goals with a very high
priority and generate plans achieving only these goals. The
remaining goals can be achieved in a separate plan, where,
of course, objects (e.g. agents) that are involved in the for-
mer plan will not be used.

Conclusion
In this paper, we have derived a set of requirements from
which we have conceptualised a formal specification of the
incident management domain. Following the specification
we have developed a prototype domain model and evaluated
it by using state-of-the-art planning engines. We have shown
that it is possible to solve “common-size” problems in a rea-
sonable time (up to a few seconds) and in decent quality
(short ‘make-span’), so the preliminary results indicated a
promising direction of our work. We have identified several
challenges, most of them related to uncertainty issues, and
showed how to deal with most of them without the neces-
sity to extend our model as it stands to support more ex-
pressive features. On the other hand, in situation with higher
level of uncertainty it might be useful to exploit probabilis-
tic planning (state-of-the-art probabilistic planning engines
accept domain and problem specification in RDDL (Sanner
2011)). Developing an RDDL domain model will be our fu-
ture work.

This work being intended as part of a larger system, we
plan to integrate our domain model (and some planning en-
gines) into a planning and execution simulation framework.
Then we plan to test it on some real cases in order to de-
termine how plans retrieved by planning engines using our
domain model differ from plans provided by mission coordi-
nators. We believe that it will provide us with further insights
that will help us to develop and deploy the system.
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‡ ONERA (DCSD) - 2 avenue É. Belin, 31000 Toulouse, France - name.surname@onera.fr

Abstract

Maps of plant pests are widely used to support farmer de-
cisions to manage production at the scale of crop fields.
Such maps are generally obtained manually, by human an-
notators or with human-controlled Unmanned Aerial Vehicles
(UAVs), but this process is slow and costly. We propose an AI
planning approach to fly fully autonomous UAVs equipped
with on-line sequential decision-making capabilities for pests
sampling and mapping in crop fields. We use a Markov Ran-
dom Field framework to represent knowledge about the un-
certain map and its quality, in order to compute an optimised
pest-sampling policy. Since this planning problem is PSPACE
hard, thus too complex to be solved exactly, we thus inter-
leave planning and execution, generating plans from a subset
of sampling sites selected.
This approach has already been proved to be successful (Al-
bore et al. 2015), favourably comparing with existing meth-
ods, but encounters some computation limits due to this divi-
sion of tasks, considering that the planning execution frame-
work is not adapted to the anytime-like behavior needed by
real-world applications. We discuss the next steps in devel-
oping our approach, namely integrating the planning process
and calculus of probabilities distribution in a framework able
to deal with task management and execution under time con-
straints. Such extension, and integration within the AMPLE
robotic execution framework, is promising as it associates the
success of the replanning approach to the flexibility of an any-
time executing architecture.

Introduction
An important tool in precision agriculture for supporting the
management of production in crop fields is a map of pest
abundance spatial distribution, i.e. a map of the spatial dis-
tribution of the observed species. Such maps are costly to
obtain since they require intensive surveys of pests in the
field, until now mainly performed by human annotators; un-
der these conditions, the whole field cannot generally be in-
spected and a complete abundance map is estimated from
samples in sub areas of the field. Remote sensing tools are
emerging as a promising alternative due to their flexibility
to gather information on large areas. So far, the primary
remote platforms for collecting images in agriculture have
been piloted aircraft and satellites, but they are giving way

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to Unmanned Aerial Vehicles (UAVs) that provide a better
spatial and temporal resolution for the image analysis at a
lower cost, and offer an ideal point of view for the acqui-
sition of ground-based data. Moreover, UAVs can operate
below cloud covers – which is impossible for higher altitude
aircraft and satellites – and can be deployed quickly and re-
peatedly, which permits an almost continuous monitoring of
an area. Even with UAVs, a sampling strategy has to be
determined because of the limited flight time, and the exten-
sion of the area to map, generally too big for an exhaustive
survey.

Autonomous systems are well-suited to exploit dynamic
information from images and to in-flight optimisation of
navigation between areas to sample. The same operations
cannot be easily performed by piloted UAVs, as computa-
tions and heuristic evaluations to choose the best trajectory
and altitude for optimal pest sampling are generally non triv-
ial. So, the next challenge is to use completely automated
UAVs with on-board computation capabilities. These UAVs
should be deployed on demand, without requiring heavy lo-
gistics as side effects of autonomy capabilities; this includes
expensive ground computational units, training, or optimi-
sation of exploration strategies before the flight. Therefore,
strategy optimisation must be conducted on-board, during
the flight, at a low computational cost: farmers actually ex-
pect automated techniques to be as easy as possible, with
UAVs ready to be used.

Adaptive sampling techniques have been developed in the
context of manual sampling done by humans, with the pur-
pose of mapping invasive species or weeds in large areas
(Peyrard et al. 2013; Bonneau et al. 2014). These approaches
rely on a Markov Random Field model (MRF) (Geman and
Geman 1984) of the abundance map to estimate, and on
methods for sequential decision-making under uncertainty.
Existing techniques that deal with the task of crop mapping,
and that as well make use of MRFs, fail in two main aspects,
motivating our approach based on automated planning. In
(Peyrard et al. 2013), observations result from sampled sites
chosen greedily, without considering the future sampling
steps, which result in a fast adaptive method where the next-
to-be-applied action depends on the history of previous ob-
servations, but that does not optimise resources such as re-
maining flying time, which in turn have an impact on the
quality of the resulting map, and has no lookahead capaci-
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ties whatsoever.
The Reinforcement Learning approach proposed by

(Bonneau et al. 2014) extends the previous one by including
in the adaptive sampling design the full sampling horizon
and the sampling budget; the problem is cast as a Markov
Decision Processes (MDPs) with state variables correspond-
ing to the list of observed variables so far, and consequently
requires very long off-line computation time to preliminarily
compute the parameters of the sampling policy. This does
not match our needs for UAVs to be deployed on-demand,
efficiently performing pest sampling and mapping with light
logistics.

The planning approach that we adopted and describe
here has gathered good results compared to these preexist-
ing techniques (Albore et al. 2015), showing an efficient
trade-off between quality of selected sampling sites, and
planned navigation within the flight-time limits imposed by
the battery life. In order to achieve this challenging time-
constrained objective, we dissociated the problem of select-
ing the observation sites from the one of planning their visit-
ing order. The result is a non-greedy method for sampling in
MRFs, in opposition to (Peyrard et al. 2013), that neverthe-
less does not require as much computation time as (Bonneau
et al. 2014).

Note that the planning model we adopt is still not a vari-
ant of the well-known travelling salesman problem, even if
there are some points in common; here, the information ob-
tained when sampling a plot has the side effect of reducing
the expected rewards from neighbouring plots. This impact
is to be considered when producing a visiting order, and a
planner is more suitable to heuristically consider such causal
links: namely, observing a given site prevents from explor-
ing nearby locations because it may not substantially im-
prove the knowledge of the map.

Even if the resulting framework based on interleaving
planning and execution has been successful in the task of
mapping pests with an autonomous UAV, there are certain
limitations due to the decoupling approach adopted. In fact,
the elaboration of the expected quality gains from the MRF,
which is required to select informative enough sampling
sites, is an expensive operation that often interrupts the flight
of the UAV, besides slowing down the task. We plan to over-
come this hindrance in two ways. First, by reimplement-
ing the Loopy Belief-Propagation (LBP) algorithm (Mur-
phy, Weiss, and Jordan 1999) to approximate inference in
the MRF, restricting the marginal updates only to those vari-
ables actually affected by any perturbation in the MRF. Sec-
ond, by adopting an execution model that allows to contin-
ually improve an incomplete partial policy over time, like
in anytime probabilistic methods, but enforcing to query the
policy before completion of the optimisation at any time and
stop the current planning instance in order to replan from a
new execution state, or plan from possible future outcomes
of the plan while executing the current action. This would
mean to elaborate the expected gains from sampling sites,
and therefore select the most interesting sites, while contin-
uing to move and gather new observations, and to dispose of
several planning strategies to switch between, depending on
the UAV’s status. The approach relies on AMPLE (Chanel,

Lesire, and Teichteil-Königsbuch 2014), a configurable any-
time meta-planner that drives our framework, dealing with
all pending and time-bounded planning requests sent by the
execution layer from many reachable possible future execu-
tion states, in anticipation of the probabilistic evolution of
the system.

In the following, we first recall the modelling of the prob-
lem of optimal pest sampling for mapping in MRF as de-
scribed in (Bonneau et al. 2014) and see why the existing
solutions are not suitable for on-line mapping with UAVs.
We then present our original approach based on interleav-
ing planning and execution, and show its performances, em-
pirically illustrated on a problem of weeds sampling in crop
fields, comparing favourable in terms of quality and resource
consumption to the greedy approach, which is the only ex-
isting on-line solution to this problem. We finally describe
the AMPLE robotic execution framework and our integration
of the automated crop mapping architecture within it.

Modelling UAV-based sampling as a sequential
decision-making problem under uncertainty

A map is divided into a regular grid of N plots of ground
(or sites) of small area. Observing a plot provides the weed
abundance there (discretised in K classes) and we assume
no measurement error. Getting observations from all the
sites of the field is impossible, because of the UAV’s lim-
ited battery capacity, so only a sample of the total plots
can be observed, and from this sample we want to pro-
vide a full map of the field by estimating the value at un-
observed sites. To do so, we design an adaptive sequence
of sampled plots (an adaptive plan) that maximises the qual-
ity of the estimated map, reconstructed from the gathered
observations, under UAV’s physical constraints. An adap-
tive plan implies that the sequence of plots is not defined
beforehand, and the next site where to sample may depend
on the history of previous observations (positions and val-
ues) and it is determined dynamically. We follow the work
of (Peyrard et al. 2013) where MRF are used to model weed
abundance maps distributions, and the definitions of estima-
tion and quality are based on the remaining uncertainty in
the estimated complete map. This representation of spatial
phenomena through MRF is general and can be used for a
variety of data collected from sensors.

MRF modelling of abundance maps
The MRF model for abundance map is defined as follows.
To each site i ∈ V = {1, . . . , N} of the field is attached a
discrete random variable Xi with domain D = {1 . . .K},
where K is the number of abundance classes. The joint dis-
tribution of the whole map X = (X1, . . . , XN ) is assumed
to be expressed as a pairwise MRF: ∀x ∈ DN ,

P(X = x) =
1

Z

N∏
i=1

fi(xi)
∏

(i,j)∈E

fi,j(xi, xj) (1)

The set E is the set of all pairs of order 1 neighbours in the
grid of sites and Z is a normalising constant. The fi andfi,j
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are non negative functions called respectively order 1 and
order 2 potential functions. Roughly speaking, the order 1
potential functions weight the relative proportions of the K
abundance classes while the order 2 potential functions en-
code spatial correlation between abundance values at differ-
ent sites. The choice of an appropriate MRF model amounts
to the choice of these potential functions. We will provide
an example of such a choice in the case of weeds maps.

Adaptive sampling in MRF
Optimal adaptive sampling in MRF with an objective of map
reconstruction has been modelled in (Bonneau, Peyrard, and
Sabbadin 2012) as the problem of finding a policy tree that
optimises a given quality criterion under sampling budget
constraint depending on the distance, the wind direction and
force, etc. The quality U(A, xA) of a trajectory A is given
by the sum of max marginals over the sequence of observa-
tions gathered xA:

U
(
A, xA

)
=
∑
i∈V

[
max
xi∈D

{
P(xi | xA)

}]
. (2)

U(A, xA) can be interpreted as the expectation of the num-
ber of well-classified sites, when allocating their values to
the modes of the marginals P(xi | xA).

The quality of a sampling policy δ is, in those cases, de-
fined as an expectation over all possible trajectories τδ (de
facto, a policy tree) that can be followed by executing δ:

V (δ) =
∑
τδ

P(xA) · U(A, xA). (3)

And the optimal sought quality is given by:

δ∗ = arg max
c(δ)≤B

V (δ). (4)

Here, c(δ) is defined as the maximum of the costs of all tra-
jectories in τδ , and B is a fixed budget for sampling. In the
UAV case, B is the battery total energy and a policy is ad-
missible only if none of the trajectories it can generate use
more energy than available.

Apart from the cost constraint, our problem is similar to a
Partially Observable Markov Decision Process with terminal
rewards U

(
A, xA

)
, which generally prevents to solve it on-

line on-board the UAV for limited-CPU and time reasons.
The sampling policy optimisation problem defined above

is too hard to solve exactly for two independent reasons.
First, to determine whether there exists an adaptive sampling
policy whose utility is above a given threshold is PSPACE-
complete (Bonneau, Peyrard, and Sabbadin 2012), and rep-
resenting such a policy tree takes exponential space in the
problem description. Second, computing the Maximum Pos-
terior Marginals argmaxxi∈D P(xi | xA) for a given sam-
pling observation is #P-complete and NP-hard to approxi-
mate (Roth 1996).

As exact inference algorithms like junction tree and
Monte Carlo methods, that calculate exact marginal prob-
ability distributions, are too computationally expensive for
on-board computations, we turn toward approximate meth-
ods. Several approaches have been proposed to approxi-
mately solve this problem, but none seems to fit the needs of

our application-oriented framework. The greedy approach
mentioned before (Peyrard et al. 2013) fails in consider-
ing neither future sampling steps nor the available sam-
pling budget. A reinforcement learning (RL) type approach
(Barto, Sutton, and Watkins 1989; Bonneau, Peyrard, and
Sabbadin 2012), together with a dedicated value-function
approximation method, would require excessive “off-line”
computation resources to solve the RL problem.

A replanning-based approach for efficient pest
sampling and field mapping

We proposed an original approach to solve the optimisation
problem stated above, using a replanning framework to gen-
erate a pest sampling strategy – in fact a partial MDP policy
– synthesised by means of several calls to a classical (deter-
ministic) planner (Albore et al. 2015).

The planning problem of reconstructing a pest abundance
spatial distribution map with an UAV is built and executed in
a closed-loop fashion. First, we generate a set of n plots to
sample that maximise the expected quality gain, a quantity
defined below and derived from the MRF model. Then we
compute a full plan to find a trajectory that minimises the
navigation cost while visiting all the n sampling sites. This
plan consists in a sequence of locations and expected obser-
vations. The plan is then executed by the UAV, and the ob-
servations collected. We monitor the execution so to stop it
and recompute a new plan whenever the accumulated differ-
ence between the actual observations and the expected ones
exceeds a given threshold. In this case, we also update the
expected quality gain for all the sites. This replanning ap-
proach is close in spirit to fault-tolerant planning (Domshlak
2013) and planning under assumptions (Albore and Bertoli
2006), with the difference that in this problem, no execution
dead ends can occur.

After a given set of observations, (A, xA), we define, for
each variable Xi of the MRF, the expected quality gain as
an optimistic approximation of the increase of the updated
utility U(A ∪ {i}, xA, Xi) − U(A, xA). For a variable Xi,
we define the expected quality gain q̄(Xi, xA) as:

q̄(Xi, xA) = max
k

( ∑
dist(i,j)≤r

max
xj

P(xj |Xi = k, xA)
)

+

−
∑

dist(i,j)≤r

max
xj

P(xj |xA). (5)

Sensitivity perimeter Elaborating the marginals
P(xj |Xi = k, xA) for any possible observation is
generally a costly operation that slowed the approach pre-
sented in (Albore et al. 2015). We improved the marginals
elaboration modifying the Loopy Belief-Propagation (LBP)
algorithm (Murphy, Weiss, and Jordan 1999) to approximate
inference in the MRF by considering that the convergence in
a Markov Field is governed by the second largest eigenvalue
of its transition matrix (the transition matrix is diagonal and
always has the first eigenvalue equal to 1), and its “decay
rate” is given by the eigenvalue itself. We can compute
from the eigenvalues, the subset of variables for which the
information changes after each observation above a certain

SPARK 2015 - Scheduling and Planning Applications woRKshop - 08/06/2015

ICAPS 2015

25



threshold (1% of the former value). When applying the
LBP algorithm, we thus update only the varibles in that
sensitivity perimeter of the observed variable, regardless the
dimension of the field, obtaining a good quality estimation
while reducing the calculation time.

A Classical Planning Model for the navigation task
The navigation problem in an unknown field can be
modelled as a deterministic planning model with action
costs. Such model can be characterised as a tuple S =
〈S, s0, SG, A, f, c〉 where S is a finite set of states, s0 ⊆ S
is the initial state, SG is the set of goal states, A is a set of
actions with A(s) denoting the actions in A that are applica-
ble in the state s. An action a applicable in a state s changes
the state to s′ = f(a, s), with f : A× S → S the transition
function. The cost function c for actions is c : A→ R+

0 .
An action sequence π = a0, . . . , an is applicable in a state

s0 if ai ∈ A(si), 0 ≤ i ≤ n, and there exists a sequence of
states s0, . . . , sn+1 , such that si+1 = f(ai, si); in such a
case we say that π achieves sn+1 when executed in s0. π is
a plan for P if it achieves a state g in G, when executed in
the initial state. The cost of a plan π is c(π) =

∑
a∈π c(a).

For the UAV’s navigation problem, the planning space
consists in states encoding an UAV’s pose, and the status
of the sites (observed/not observed). The initial state is
given by the UAV’s initial pose, while the goal is to have
performed an observation in all the sites given in a set that
maximises the expected quality gain. We consider two kinds
of actions: goto actions move the agent between neighbour
sites, and each observation action flags a plot and its neigh-
bours in the field as observed. This causal relation between
observed sites and their neighbours is dictated by the result
of updating a site i in the MRF with an observation: the max
marginal values of the neighbour sites vary more for sites
closer to i. This implies that the quality gain expected from
observing the value of a site is small if it is close to a plot
that has already been observed.

Moving between two adjacent sites has unit cost, which
corresponds to measuring the Manhattan distance for dis-
tant sites, while sampling has a slightly higher cost, as we
consider that stabilising the UAV to take a picture consumes
more resource than flying between two adjacent plots.

Interleaving planning and execution The map recon-
struction task is separated in two clear parts: (1) selection of
observation sites; (2) search of a visiting order that optimises
the flying time constraints of the UAV. This decoupling per-
mits to observe and update the knowledge model within a
robotic platform in real time while moving to the next site.

To guarantee that distance constraints (reflected in the fly-
ing time) are respected, the states that violate the given con-
straints are pruned from the search space, in a very similar
way to what (Ivankovic et al. 2014) do using global numer-
ical state constraints (but without considering them yet in
the heuristic evaluation), or what the planner MBP (Bertoli
et al. 2001) does with problem invariants coded as the
verification of invariant properties in the NuSMV model
checker (Cimatti et al. 2000). We use a numerical variable

that is updated along with the state and whose value is mon-
itored at planning-time.

On top of this constraint, replanning occurs when the
quality requirements are not met at execution-time. We illus-
trate this behaviour in the following pseudo-code: Routine

Algorithm 1: Main (re)planning loop.
1 Function ReplanningLoop(s0):

Input: initial state s0
2 s←− s0;
3 goals←− ∅;
4 repeat
5 goals←− bestPlots();
6 π ←− plan(s, goals);
7 s←− execute(π, s);
8 until π = ∅;

Replanning-loop(init) takes the initial state of the planning
problem as input and obtains n sampling locations by se-
lecting the sites with the biggest expected quality gain in the
MRF at step 5. This list is set to be the goals of the planning
problem: at step 6 the planner synthesises a plan consisting
in goto and observation actions. Step 7 updates the current
state with the outcome of executing the plan π. The loop
repeats until all the sites are visited, or no plan is can be
synthesised under the given constraints (step 8).

Routine Execute(π, s) applies the actions a in the plan π,
and updates the current state, and, if a is an observation,
updates the MRF as well. This step also updates the accu-
mulated difference in expected quality gain q̄, which must
remain smaller than a fixed value ε, otherwise a replanning
episode is triggered.

Empirical evaluation of the platform
We implemented the previously described replanning algo-
rithm applied to the weeds mapping problem within the
Robot Operating System (ROS) framework (Quigley et al.
2009), a robotic meta-operating system that provides hard-
ware abstraction, low-level device control, implementa-
tion of commonly-used functionality, message-passing be-
tween processes, and package management. The evalu-
ation of marginals in the MRF and the planner are inte-
grated on the same platform, taking advantage of our imple-
mentation of the LBP algorithm, and the (re)planning loop
uses the Lightweight Automated Planning Toolkit (Ramirez,
Lipovetzky, and Muise 2014) run with a Serialized Iterated
Width algorithm (Lipovetzky and Geffner 2012), that we
adapted as a ROS independent planning package, that we
made available to the community.

We ran all empirical evaluations using the MORSE sim-
ulator for academic robotics (Echeverria et al. 2011), which
enables to perform software architecture-in-the-loop (SAIL)
realistic simulations, i.e. to test the exact same functional ar-
chitecture as the one that will be implemented on-board the
real UAV, but replacing the physical sensors and actuators by
simulated data. Interestingly, we can feed simulated sensors
like cameras with real data such as true images, meaning that
the image analysis algorithm can deal with the same kind of
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Figure 1: Platform simulation on MORSE. At the upper right cor-
ner, the UAV’s semantic camera framing weeds.

images in the simulation as during the real flight. We get
weeds abundance classes in the field plots from the standard
semantic camera sensor of MORSE (cf. Fig. 1) set to 50mm
focal length. From a planning point of view, SAIL simula-
tions allow us to test in realistic conditions.

We considered crop fields of size corresponding to an av-
erage field. A field was divided into a regular grid of 425
plots. Weeds can be structured into patches and depend-
ing on the weed species, the crop and the period of the
year, these patches can be more extended into tillage direc-
tion (Johnson, Mortensen, and Gotway 1996), since disper-
sion is made easier. Therefore, we considered two MRF
models of weeds spatial distribution: an isotropic model
(M1) and its anisotropic version (M2).

M1 : log[fi,j(xi, xj)] = β ·
(
1− |xj − xj |

K

)
, β ∈ R

M2 : log[fi,j(xi, xj)] = βt ·
(
1− |xi − xj |

K

)
·1(i,j)∈Et+

+ βo ·
(
1− |xi − xj |

K

)
· 1(i,j)∈Eo , (βt, βo) ∈ R2

where for model M2, Et denotes the set of neighbours sites
in the direction of tillage, while Eo is the set of neighbours
sites in the orthogonal direction. With these two models,
assuming no prior information is available about a dominant
abundance class in the map, we considered that all order 1
potential functions, fi(xi), are equal to one. Then, the max-
imal order 2 weight is given when neighbouring sites i and
j are in the same state, and this weight decreases when the
absolute difference between xi and xj increases. We consid-
ered 4 abundance classes (K = 4) and the parameters were
fixed to the values of β = 2, and {βt, βo} to {4, 1}, corre-
sponding to realistic values for weeds maps split in plots of
9m2. 200 abundance maps of weeds were generated using
the Gibbs sampling algorithm (Koller and Friedman 2009)
for model M1 and for model M2. On each map we applied
our on-line planning approach and we compared the map es-
timated from data sampled during the UAV trajectory with
the real one.

Figure 2: Plot of quality versus distance for model M1. Small
dashed line is the initial greedy approach, dashed line is the updated
greedy approach, plain line is the replanning approach, dotted line
is the planning approach with improved LBP algorithm.

Figure 3: Plot of quality versus distance for model M2. Small
dashed line is the initial greedy approach, dashed line is the updated
greedy approach, plain line is the replanning approach, dotted line
is the planning approach with improved LBP algorithm.

We compared the performances of our replanning plat-
form to the greedy approach of (Peyrard et al. 2013) on sim-
ulated crop fields. We show the figures for the distances
and the corresponding quality in Figs.2 and 3, comparing
the four approaches on model M1 and M2, with a numerical
constraint on distance of 4500m, which roughly corresponds
to 20 minutes of flight time. We recall that the planning
model we use encodes side effects of observing on the ex-
pected quality gains, namely the neighbours of an observed
site as not worth visiting. We improved the greedy model to
include a similar modelling of the sampling: when selecting
the next-to-visit site, the close neighbours of sites already
visited were ruled out, even if observing the weed density
there would lower the remaining uncertainty in the estimated
complete map. This “greedy-constrained” algorithm ends up
having similar quality performance on the final map than the
original “greedy” approach, with the flown distance smaller,
as the sampling process stops when 40-45% of the plots have
been observed.

The planning approach using the customized LBP algo-
rithm (denoted “planning LBP” in the graphs) improving on
the “planning” results from (Albore et al. 2015) both in cal-
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culus time and in the final map quality. The better results of
the “planning LBP” algorithm over the other planning ver-
sion that uses the LibDAI implementation (Mooij 2010) of
LBP algorithm (Murphy, Weiss, and Jordan 1999), depend
on the generally larger sensitivity perimeter used for appre-
ciating the expected quality, resulting in a better selection
of sampling sites (we used LibDAI with a fixed size for this
perimeter for all models).

Crucially, both the replanning approaches end up with a
much better map quality at the distance limit. The differ-
ent behaviours in terms of ratio quality/distance of the two
approaches can be ascribed both to the difference in the vis-
iting sequence, clearly less expensive when using a planner,
and to the selection criterion. More details of empirical eval-
uation can be found in (Albore et al. 2015).

The AMPLE robotic execution framework
We turn toward an execution framework that parallelises the
evaluation of the marginal values in the MRF, the generation
of a plan, and the execution of the plan. The AMPLE meta-
planner (Chanel, Lesire, and Teichteil-Königsbuch 2014)
is a configurable anytime meta-planner that can drive our
planner, dealing with all pending and time-bounded plan-
ning requests sent by the execution framework from many
reachable possible future execution states, in anticipation of
the probabilistic evolution of the system.
AMPLE is designed as a configurable bi-threaded pro-

gram: an “execution” thread reactively interacts with the
execution engine by managing multiple present and future
planning requests, while an “optimisation” thread delibera-
tively optimises planning problems in background. The op-
timisation thread of the meta-planner, in our case, is dele-
gated to update the MRF in order to offer the most updated
expected gains to the planning requests pending in the ex-
ecution thread, even if we limit the recalculations of new
expected quality gains, i.e. computing the values of all con-
ditional marginals P(Xi = k|xA) for each possible sample
in each site, only when the accumulated error εA exceeds a
given threshold, with εA =

∑
Ai∈A |xAi − x∗Ai |, and xAi

and x∗Ai are respectively the observed and the expected val-
ues in site Ai.

In an endless loop, AMPLE looks at, and accordingly re-
acts to, the current execution state (matching environmental
conditions) by launching MRF updates, anticipating replan-
ning episodes depending on the accumulated error on the
reconstructed map, while executing the current best sam-
pling action. Planning requests management in the execu-
tion thread conforms to a formal model defined as a config-
urable finite state machine, whose particular configuration in
conjunction with the optimisation thread algorithm actually
yield to a well-defined planning algorithm (Chanel, Lesire,
and Teichteil-Königsbuch 2014). The execution thread adds
and removes planning requests according to the current ex-
ecution state, and reads the action to execute in the current
policy backed from the optimization thread or in a default
policy if no optimized action could be found in the requested
time for the current execution state. On top of dissimilar
expectations on quality gains, we can elaborate in parallel

separate plans that optimize different optimization criteria,
delegating the AMPLEto select the most advantageous one.

To adapt our algorithms to the above architecture, we
rewrite our routines to conform to the general algorithmic
schema of the meta-planner AMPLE, meaning that we ensure
to return an applicable relevant action in any possible given
state at a precise time point, when required by the execution
engine. In other words, the algorithm should be proved to be
strictly anytime in the sense of policy execution under time
constraints. This step is easily done by using an anytime
version of the best-first search algorithm for our classical
planner (E.A. Hansen 2007).

Conclusions
We have described here a novel AI planning-based approach
to deploy autonomous UAVs on demand without any heavy
logistics, in order to sample pests in a crop field and map
their spatial distribution. Currently, the most common sam-
pling method relies on a fixed choice of sampled plots in
the field, visited by humans that assess the abundance class.
This solution is time consuming and in practise only a lim-
ited number of plots can be sampled. On the contrary, our
approach autonomously produces an estimated map of pest
abundance in the fields. The platform integrates Markov
random fields for knowledge representation, updated at run-
time by the observations of the UAV’s embarked sensors.
We have illustrated the planning approach to the problem of
weeds mapping in crop field, on a realistic SAIL simulation
platform. When compared to a greedy approach that selects
the next sites to be visited by the UAV without accounting
for the future flight duration, we observe that the planning
approach leads to results of similar quality but at much less
cost (measured as the distance covered during the flight).
This means that if the same distance is allocated to the two
approaches, the planner will enable to sample more plots,
and therefore to provide better quality estimated maps.

To embed multi-criteria planning, and real-time decision
making based on gathered knowledge, we have proposed an
instantiation of AMPLE, a framework for anytime anticipated
optimisation of probabilistic planning problems and anytime
execution of the resulting policy, that embeds our replanning
platform. The meta-planner efficiently parallelises the nav-
igation and sampling tasks, while anticipating as much as
possible the expected quality gains and permits us, for in-
stance, to plan from the most informative probabilistic dis-
tribution of the spatial phenomena observed.

AI planning has been recently used with success for UAV
mission planning, i.e. Search-And-Rescue problems with
low-cost quadcopters (Bernardini, Fox, and Long 2014) or
Multi-Target Detection and Recognition with middle-size
UAVs (Chanel, Teichteil-Königsbuch, and Lesire 2013).
While the former application is more oriented towards target
tracking, the latter is focused on dynamic data acquisition
and environmental knowledge optimisation like the applica-
tion we present in this paper. But while they rely on rather
complex POMDP techniques, our approach assumes the use
of small UAVs with limited resources, which requires light
planning capabilities like our determinisation-based replan-
ning method.
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To the best of our knowledge, this approach to the pest
mapping task is among the first applications of planning on-
board UAVs, whose problems cannot be known prior to the
flight, and whose policies are optimised and successfully ex-
ecuted during the flight.
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Abstract 
Space mission planning/scheduling is determining the set of 
spacecraft activities to meet mission objectives while 
respecting mission constraints. 
  One important type of mission constraint is data 
management.  As the spacecraft acquires data via its 
scientific instruments, it must store the data onboard until it 
is able to downlink it to ground communications stations.  
Because onboard storage is limited, this can be a 
challenging task. 
  This paper describes a formulation of the data downlink 
scheduling problem used for the Rosetta orbiter, a European 
Space Agency cornerstone mission currently investigating 
the comet 67P/Churyumov-Gerasimenko.  We first describe 
the abstract problem and the Rosetta mission specific 
problem, along with desirable features of downlink 
schedules.  We outline several algorithms (including the 
Rosetta operational algorithm) and we compare their 
performance on both actual mission data. 

 Introduction   
Spacecraft enable us to measure and explore a wide range 
of targets spanning Earth, to the planets and bodies of our 
solar system, to bodies beyond our galaxy to the furthest 
reaches of the universe. 
 Mission planning and scheduling is an extremely 
challenging part of operating these space missions.  While 
in the space community it is termed mission planning, from 
an Artificial Intelligence perspective the issue is more 
scheduling than planning as the challenge is to find 
appropriate times to schedule observations to achieve 
mission objectives that conform to the operations 
constraints of the spacecraft.  Space mission planning 
represents a fertile applications area for Artificial 
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Intelligence-based planning and scheduling techniques 
with a wide range of deployed systems (for a survey see 
[Chien et al. 2012]).  
 One particular challenge for space mission planning is 
downlink planning.  In this problem the data acquired 
onboard from engineering telemetry and science 
observations is stored onboard.  This onboard storage is 
limited and is often pre-partitioned in an inflexible 
allocation.  Commonly, first a schedule is negotiated 
between the space mission and a ground communications 
station provider (or providers).  Once this schedule has 
been determined, a prior version of a mission plan is 
adapted to ensure that all data is preserved - determining 
exactly which portions of onboard storage are downlinked 
when so as to enable the science and engineering data to be 
acquired and downlinked without loss of data.   
 Many variants of this downlink problem exist.  For 
example, there may be some uncertainty as to the volume 
of acquired data. There may be certain types of data that 
have deadlines for downlink.  We describe a particularly 
challenging downlink problem in which data generation 
may occur over extremely long periods of time overlapping 
downlink periods. 

Problem Definition 
 
We formalize the data downlink problem as follows: 
 
Given:  
a set of buffers B = {b1, b2, ... bn} 
where each bi has  
an initial fill state: init_filli 
 (fill state of buffer at start of planning interval) 
end fill limit: end_filli 
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 (hard limit on fill state of buffer  
  at end of planning interval) 
hard capacity: capacityi 
desired margin: margini 
 (soft limit on buffer fill volume  
  at any point in the interval) 
and the operations plan dictates for each bi in B, there is a  
 
fill_function fill(bi,t)→rate where rate is bits/s 
 
and there is a set of downlinks D={d1,...dm} where each  
 
di=<start_di, end_di, rate_di> 
 
(we assume that no downlinks are overlapping) 
 
for each downlink specify a downlink rate from each 
buffer such that the sum of all buffers downlink rates is <= 
downlink data rate 
 
∀bi, a function empty(bi,t)→rate (bits/s) such that  
 
∀downlink di 
start_di ≤ t ≤ end_di Σ empty(bi,t) ≤ rate_di 
(i.e. at any point in time we can only downlink up to our 
downlink capacity) 
 
∀t ∈ current_schedule current_fill_state(bi, t) ≤ capacityi   
 
also it is desired that peak fill state and end fill state meet 
their targets.  Specifically: 
 
no peak margins are violated 
∀t in current_schedule, for all bi 
max(current_fill_state(bi, t)) ≤ margini   
 
no end margins are violated 
for t = end of current_schedule,  
∀bi current_fill_state(bi, t)) ≤ end_filli   
 
In reality, as we will see, flight software on actual missions 
is not designed to allow for arbitrary downlink policies, so 
that our ability to control the empty(bi,t) function is not as 
flexible as desired. 
 

The Rosetta Downlink Scheduling Problem   
 
The Rosetta onboard data storage is partitioned into a set of 
buffers, called packet stores, for different types of science 
and engineering data. Each instrument is designated a 
packet store with a specified hard upper volume limit that 
cannot be changed during routine scheduling.  

 The behavior of each downlink can only be controlled 
by two commands: SET_SCI_DW_LEVEL and 
STOP_DUMP.  
• The first, SET_SCI_DW_LEVEL, is issued at the 

start of the downlink and assigns a priority to each 
of the packet stores.  

• The second, STOP_DUMP, can be issued any time 
during the downlink and stops the downlink of data 
from the specified packet store for the remainder of 
the current downlink. Note that once a packet store 
has been stopped, it cannot be restarted for that 
downlink. 

 These two commands, along with their timing and 
parameters, make up the decision variables available to the 
scheduler for controlling the “empty” functions described 
earlier. To fully understand how these variables affect the 
“empty” function, we must examine the onboard software 
that controls the data downlink. We summarize the 
behavior of the downlink software in the following set of 
rules. 
• Two of the packet stores (used for high-priority 

engineering data) have fixed priorities and cannot 
be stopped with STOP_DUMP commands.  

• A packet stores remains “active” until the 
STOP_DUMP command is issued, after which no 
data will be downlinked regardless of priority. 

• When more than one active packet store has data 
waiting to be downlinked, the one with higher 
priority will be dumped first. 

• If more than one active packet store all have the 
same priority, data will be downlinked in a round-
robin fashion. 

• Each packet store has a predefined packet size 
which defines the minimum amount of data that will 
be downlinked on each round-robin cycle. 

• When a packet store contains less than one packet, 
downlink for that packet store will stop, possibly 
allowing downlink to start on the next highest 
priority packet store. 

• If, at any time during the downlink, data is added to 
an empty but active packet store, downlink for that 
packet store will restart, preempting any downlink 
from lower-priority packet stores. 

• Both the “active” state and the priority are reset at 
the end of the downlink. 

 Given the two available commands, and the set of 
downlink rules, the primary job of the downlink scheduler 
is to assign priorities and decide when to stop dumps in 
order to prevent overflow on all packet stores. The 
secondary goal of the scheduler is to make selections that 
prevent margin violations. Last, for some of the packet 
stores, there is a desire for the scheduler to keep margins as 
large as possible. 
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 To achieve these goals, the scheduler must first model 
the behavior of the packet stores so that volume and 
overflows can be accurately predicted. Fill rates from 
observations, and dump rates from downlinks, are all 
provided as inputs to the scheduler.  When constructing the 
schedule for the first time, the scheduler must decide on 
which observations to include as well as which downlink 
commands to issue to best satisfy science requests. In this 
paper, we focus on the scheduling of downlink commands 
only, assuming an observation schedule is fixed. Note that 
this type of re-scheduling of the downlink commands is 
necessary during short-term planning when certain last-
minute changes must be made (e.g. due to the loss of a 
downlink). However, in the larger mission 
planning/scheduling process, observation scheduling and 
downlink scheduling are performed simultaneously.   
 With a model of how data is collected and downlinked, 
the scheduler can generate a profile for each packet store 
that predicts the data volume at any point during the 
planning period. This profile can be used not only to 
predict overflows, but also provides information to the 
scheduler about when, and by how much, data will 
overflow. This information can then be used to make 
decisions about which priority values to assign at the start 
of each downlink, and when to stop the dump during each 
downlink. For example, after a given downlink, if there is 
one particular packet store that will overflow sooner, or 
exceed its limit by more than any other packet store, then 
that packet store should be given higher priority or more 
time to downlink. 
 In our original implementation, we used a fixed set of 
pre-assigned priorities that were mostly unique, and 
selected only the length of time for each dump. Due to the 
serial nature of the resulting dump schedule, this method 
proved brittle to communication loss (packet stores 
scheduled near the end of the downlink would be unfairly 
impacted). To address this problem, we implemented the 
priority-based method, which assigned different priorities 
for each downlink but did not issue STOP_DUMP 
commands. Ideally, both SET_SCI_DW_LEVEL and 
STOP_DUMP would be used to select the best possible 
dump schedule, measuring both quality and robustness of 
the schedule. This is left for future work. 
 In this paper, we focus on the priority-based method, 
since this is the default method used in current operations. 
Therefore, in this formulation, the control variables are: 
 
 for each downlink:  d1,...di 
 for each packet store:  s1,...sj 
 assign a priority to Pa,b for a =1...i, and b = 1...j 
 
Note that these priorities, together with the packet store 
initial states and incoming data, effectively define an 
empty(bi,t) function. 

 Figure 1 contains the pseudo-code for scheduling 
downlink priority commands for the Rosetta spacecraft. 
The initial schedule contains only fill activities that 
generate data into packet stores with continuously 
increasing volumes (beyond their limits). Lines 3-6 
heuristically assign a priority to each packet store of each 
downlink, generating a list of overflows that result. If an 
overflow occurs before the end of a downlink, the schedule 
will perform limited backtracking to reschedule at most 
two of the previous downlinks (line 8). 
 The function priorityHeuristic (lines 11-17) implements 
the operational heuristic for making priority-based buffer 
allocations for a given downlink. Here, packet stores are 
given a priority that is inversely proportional to the number 
of the downlinks that occur before the first overflow (lines 
15-17). This ensures that high priority is given to packet 
stores with more urgent need for downlink. A similar 
heuristic is used to choose STOP_DUMP times in the 
time-based method. As an example, if two or more packet 
stores have future overflows at around the same time, then 

they will likely be assigned the same priority (or same 
amount of time). If an immediate overflow has been 
identified for the given packet store, then it will be 
assigned the highest priority (line 12-13). An immediate 
overflow is defined as one that occurs before the next 
downlink. Note that downlink parameters are chosen 
independent of other downlinks and packet stores. Choices 
made for one downlink have only an indirect impact on the 
choices that will be made for future downlinks.  
 For evaluation purposes only, we consider three 
additional heuristics for selecting priorities. First, as a 
baseline, we randomly select priorities. Second, we assign 
the highest priority to the packet store with the largest 

1. scheduleDownlinks(downlinks) 

2.   sortByStartTime(downlinks) 

3.   for each d in downlinks 

4.     for each ps in packet stores 

5.       p = priorityHeuristic(d, ps) 

6.       setDumpPriority(d, ps, p) 

7.     if overflows exist 

8.       backtrack 

9.   return overflows 

10.  

11. priorityHeuristic(d, ps) 

12.    if ps has an immediate overflow 

13.      return MAX_PRIORITY 

14.    else 

15.      o = findFirstOverflow(ps) 

16.      n = numberOfDownlinksBetween(d, o) 

17.      return MAX_PRIORITY – n 

 
Figure 1: Scheduling algorithm 
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volume measured as percent of capacity. The remaining 
buffers are assigned the lowest priority. Last, we 
implement a heuristic that assigns priorities by normalizing 
the percent full values across the available priorities (e.g. 
with 10 priority values, a packet store with volume <10% 
is assigned the lowest priority). All four heuristics are 
compared in the empirical evaluation section of this paper. 
 Finally, certain packet stores may contain time-sensitive 
data (e.g. data which may impact future plans). For these 
“urgent” packet stores, the downlink latency (i.e. time 
between collection and downlink) can be reduced by 
increasing the required margin. To find the largest margin 
without creating overflows, we wrap the 
scheduleDownlinks function in a binary search loop. Each 
iteration of the loop either increases or decreases the 
margin, depending on the existence of overflows. The 
result is a schedule with large margins, keeping the data 
volume low, and reducing the time that data waits in the 
packet store. This technique is limited, however, to data 
collection schedules that have feasible downlink schedules 
(i.e. a solution must exist with no overflows). 

Estimated Computational Complexity of the 
Scheduling Algorithm 
 
Our analysis of the above scheduling algorithm indicates 
the following factors in its computational complexity 
 
scheduleDownlinks = O(D * P * F) 
 
where  
D = # downlinks,  
P = # packet stores,  
F = # fill rate changes 

Finding the best margin only adds a constant factor lg100 
(binary search on a percentage between 1 and 100). 
 For the Rosetta mission, downlink planning is typically 
processed over a "Medium term plan" or MTP, which is 
generally 4 weeks in length.  For Rosetta there are 16 
packet stores, and for one MTP, there are typically 30+ 
downlinks and hundreds of fill rate changes. 

Empirical Evaluation of the Scheduling 
Algorithm 
 
To date, we have conducted an empirical evaluation of the 
priority-based scheduling algorithm, the primary method 
used in operations. We use data from 4 medium-term 
planning (MTP) periods during the Rosetta mission, with 
each period spanning approximately 4 weeks. The CPU 
time required to generate each MTP downlink schedule 
was less than 1 minute running on a typical Windows 
laptop. The results are summarized in Figure 2 and Figure 
3, with more details provided in Appendix A. The actual 
names of the packet stores and MTPs have been replaced 
for security reasons. 
 We evaluate its performance using the following 
metrics: 

• Max peak volume percent: the maximum percent 
volume consumed for any packet store at any time 
during the MTP (no overflow if less than 100%) 

• End volume percent: the percent volume 
consumed at the end of the MTP period 

• Urgent limit: the smallest limit (i.e. largest 
margin) found by the schedule for the packet 
stores designated as containing urgent data 

• Data collected: how much total data was collected 
from observations during the MTP 
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• Data downlinked: how much total data was 
downlinked out of the packet stores during the 
MTP 

• Downlink available: how much downlink was 
theoretically available during the MTP (downlink 
duration multiplied by the bit rate). 

• Packet store hard limit: what was the physical 
limit on the packet stores, and how do the data 
amounts compare 

• Packet store soft limit: what was the operational 
limit imposed (including margin), and how do the 
data amounts compare 

• Start and end volume: what was the volume of the 
packet store at the start and end of the MTP 

 
 The “Max peak volume” reported in Figure 2 give the 
maximum percent volume consumed for any packet store 
at any time during the MTP as a percent of the capacity for 
that packet store. This shows that, during the given 16-
week period, at no point are any of the packet stores 
predicted to overflow. In addition, the data in Appendix A 
shows that at no point are any of the packet stores expected 
to exceed the desired “soft” limit. Some margin (typically 
20%) on the packet store volume is maintained in order to 
account for uncertainties in the data collection and 

downlink model, which can occur from such things as 
variable data compression rates and communication 
outages. The “End volume” series in Figure 2 shows the 
percent volume consumed at the end of the MTP. 
Operationally, there is a preference to have minimal carry-
over from one MTP to the next. For these four MTPs, the 
end volume stays below 10% of the capacity. 
 In each MTP, the data in two or three of the packet 
stores was considered urgent (designated with a ‘*’ in the 
tables in Appendix A), and the downlink scheduler 
searched for the largest feasible margin on the packet 
stores. This meant keeping the volume low for the urgent 
packet stores without overflowing the other packet stores. 
In this way, the urgent data is not left to accumulate in the 
packet stores over long periods of time. The “Urgent limit” 
series in Figure 2 gives the smallest limit found by the 
scheduler for the packet stores containing urgent data. 
 In Figure 3, we see that the data collected amounts are 
very similar to the downlinked amounts for each MTP. It 
also shows that both values stay greater than 80% of the 
theoretical downlink available. The available downlink 
increases in the last MTP due to an increase in downlink 
rate, which occurs as the spacecraft exits solar conjunction. 
Finally, we can see that the data collected in each MTP is 
roughly between 2x and 3x the total packet store limit. 
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 We should mention that there are certain packet stores 
that are designated as containing high-priority, engineering 
data (marked with ‘**’ in the tables in Appendix A). The 
data in these high-priority packet stores is downlinked first, 
and all of the data is downlinked before time is given to the 
other packet stores. Note that peak volume (column 3) 
stays very low for these packet stores. 
 Additional runs were performed to compare different 
heuristics for selecting priorities. Tables 1 and 2 show the 
results. In the “random” heuristic, priorities were selected 

at random to create a baseline for comparison. The “full” 
heuristic assigns the highest priority to the packet store 
with the highest volume measured as a percent of buffer 
capacity. The “even” heuristic assigns priorities by 
normalizing the fill percentages across the available 
priority values. The “ops” heuristic is the operational 
heuristic described in this paper. Table 1 records the 
maximum peak volume that resulted from applying each of 
the heuristics to each MTP. Table 2 records the smallest 
limit achieved for the “urgent” packet stores. The most 

	  
Peak	  Volume	  

	  
random	   full	   even	   ops	  

MTPA	   68.4	   69.2	   60.9	   59.6	  

MTPB	   64.7	   52.9	   54.4	   55.3	  

MTPC	   204.6	   231.3	   119.4	   82.2	  

MTPD	   77	   69.5	   66.1	   70.2	  

Avg	   103.675	   105.725	   75.2	   66.825	  
 

Table 1: Peak Volume 

	  
Urgent	  Limit	  

	  
random	   full	   even	   ops	  

MTPA	   17.2	   14.1	   14.1	   10.9	  

MTPB	   31.2	   32.8	   29.7	   28.1	  

MTPC	   100	   100	   100	   32.8	  

MTPD	   32.8	   18.7	   20.3	   17.2	  

Avg	   45.3	   41.4	   41.025	   22.25	  
 

Table 2: Urgent Limit 

 
Figure 4: GUI
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significant difference can be seen in MTPC, which has the 
least amount of downlink available. In this case, only the 
operational heuristic generates a downlink schedule that 
does not result in packet store overflow. Note that the 
operational heuristic finds the smallest “urgent” limit in all 
four cases, but to achieve this, will sometimes create a 
higher maximum peak volume. 
 The GUI used in operations to evaluate the downlink 
schedule can be seen in Figures 4 and 5. The first is a 
zoom-able, scrollable, interactive graph that shows how the 
packet store volumes change over time within the given 
MTP. The bottom of the graph contains data on the various 
parameters that affect the volume, some of which the 
scheduler can control (e.g. priorities) and others that it 
cannot (e.g. downlink volume). The second page of the 
GUI provides a report on the resulting downlink schedule. 
The values in Appendix A were taken from this report. 
 In the future, we plan to evaluate the time-based 
scheduling method, as well as a combined method that 
selects both priority and stop time for each packet store, 
which in theory should produce the best results. Also, we 

plan to conduct scaling tests to validate our analysis of the 
computational complexity of the algorithm.  We also plan 
on developing synthetic problem generators to further 
explore the performance of the downlink scheduling 
algorithms. 

Discussion 
 
Automated downlink planning is in operational use for the 
Mars Express [Cesta et al. 2007] mission.  However in 
their data model observations produce data 
instantaneously, whereas in the Rosetta model data 
producing activities have rates that have significant 
temporal extent (such as engineering production 
continuously over the entire mission, and science 
observations doing the same).  Interestingly, Cesta et al. 
characterize the problem as a planning problem (that of 
producing the sequence of downlink controlling 
commands).  We take an opposing view that the end 
product is a scheduling/resource allocation problem, that of 
providing a downlink profile.  MEX-MDP (Mars Express 

 
Figure 5: Report
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Spacecraft Memory Dumping Problem) also takes into 
account the size of the plan (this is not an issue for 
Rosetta).  Their robustness metric is similar to our margin 
requirement.   

Onboard downlink management [Pralet et al. 2014] is 
proposed in order to address challenges of uncertainty in 
data generation (due to the uncertainty of effectiveness of 
content-dependent compression schemes).  This 
formulation of the problem adds even several more 
complexities such as antenna pointing, multiple channels, 
data latency, and encoding table time.  Again for a typical 
earth imager, the data production is effectively 
instantaneous, in contrast to the Rosetta problem. 

Most other deployed automated planners must also solve 
some version of the downlink planning/scheduling problem 
however in most cases it is not the focus of the overall 
scheduling problem (e.g. Hubble Space Telescope 
[Johnston and Miller 1994], Earth Observing One [Chien 
et al. 2005, 2010] or Orbital Express [Knight et al. 2013]). 

The Philae Lander for the Rosetta Mission has a science 
scheduling with downlink problem [Simonin et al. 2012].  
They use ILOG-scheduler in a system called MOST to 
solve for most of the scheduling constraints except data 
management.  They examine the problem of scheduling 
science experiments with fixed science experiment storage 
and downlink buffer storage but with a fixed priority 
downlink strategy.  This problem is analogous to the full 
Rosetta scheduling problems [Chien et al. 2014]. However, 
one key difference is that MOST does not have the ability 
to re-program buffer priorities dynamically as we have on 
the Rosetta Orbiter (and described here in DALLOC). 

Summary 
We have described the downlink scheduling problem, a 
well defined subproblem within the overall space mission 
planning and scheduling problem.  While this problem can 
be and often is solved in isolation, it is also addressable 
concurrently with the overall scheduling problem. 
 We then described the Rosetta downlink scheduling 
problem as a specific instantiation of the general downlink 
scheduling problem - with additional constraints.  We 
describe two implemented heuristic solutions to this 
problem and we present complexity analysis and empirical 
evaluation on actual Rosetta mission data. 
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Appendix	  A	    

  

	   	   	   	   	   	   	   	   	   	  

	   	  
MTP	  A	  

	  

	   	  
#1	   #2	   #3	   #4	   #5	   #6	   #7	  

	  

	  
PS1**	   2800.0	   127.8	   4.6	   80.0	   101.2	   3.6	   30.0	  

	  
	  

PS2**	   3200.0	   154.9	   4.8	   80.0	   103.3	   3.2	   30.0	  
	  

	  
PS3**	   960.0	   67.5	   7.0	   80.0	   0.0	   0.0	   30.0	  

	  
	  

PS4	   800.0	   273.3	   34.2	   80.0	   10.8	   1.4	   30.0	  
	  

	  
PS5	   50.3	   21.0	   41.7	   80.0	   12.3	   24.4	   30.0	  

	  
	  

PS6	   160.0	   91.8	   57.4	   80.0	   17.5	   10.9	   30.0	  
	  

	  
PS7	   320.0	   86.8	   27.1	   80.0	   4.8	   1.5	   30.0	  

	  
	  

PS8*	   640.0	   67.5	   10.5	   11.0	   18.7	   2.9	   30.0	  
	  

	  
PS9*	   320.0	   33.8	   10.6	   11.0	   18.8	   5.9	   30.0	  

	  
	  

PS10	   1600.0	   494.6	   30.9	   80.0	   41.9	   2.6	   30.0	  
	  

	  
PS11	   7516.2	   3645.7	   48.5	   80.0	   0.0	   0.0	   30.0	  

	  
	  

PS12	   0.8	   0.0	   0.0	   80.0	   0.0	   0.0	   30.0	  
	  

	  
PS13	   800.0	   288.1	   36.0	   80.0	   81.2	   10.2	   30.0	  

	  
	  

PS14	   4000.0	   2385.0	   59.6	   80.0	   0.0	   0.0	   30.0	  
	  

	  
PS15	   0.8	   0.0	   0.0	   80.0	   0.0	   0.0	   30.0	  

	  
	  

PS16	   880.0	   325.4	   37.0	   80.0	   62.2	   7.1	   30.0	  
	  

	  
PS17	   595.6	   25.4	   4.3	   80.0	   14.9	   2.5	   30.0	  

	  

	  
PS18	   888.0	   57.4	   6.5	   80.0	   10.0	   1.1	   30.0	  

	  

	  
TOTAL/AVG	   25531.7	   8146.1	   31.9	   72.3	   497.6	   1.9	   30.0	  

	  

	  
	   	   	   	   	   	   	   	  

	  
	  

MTP	  B	  

	  
#1	   #2	   #3	   #4	   #5	   #6	   #7	  

PS1**	   2800.0	   173.2	   6.2	   80.0	   131.2	   4.7	   30.0	  

PS2**	   3200.0	   206.6	   6.5	   80.0	   193.2	   6.0	   30.0	  

PS3**	   960.0	   67.4	   7.0	   80.0	   0.0	   0.0	   30.0	  

PS4	   800.0	   353.8	   44.2	   80.0	   155.6	   19.5	   30.0	  

PS5	   50.3	   18.8	   37.3	   80.0	   14.0	   27.8	   30.0	  

PS6	   160.0	   85.6	   53.5	   80.0	   33.0	   20.7	   30.0	  

PS7	   320.0	   0.0	   0.0	   80.0	   0.0	   0.0	   30.0	  

PS8*	   640.0	   168.5	   26.3	   27.0	   6.7	   1.0	   30.0	  

PS9*	   320.0	   28.4	   8.9	   27.0	   24.6	   7.7	   30.0	  

PS10	   1600.0	   193.8	   12.1	   80.0	   57.2	   3.6	   30.0	  

PS11	   7516.2	   1839.7	   24.5	   87.0	   729.1	   9.7	   30.0	  

PS12	   0.8	   0.0	   0.0	   87.0	   0.0	   0.0	   30.0	  

PS13	   800.0	   174.4	   21.8	   80.0	   75.1	   9.4	   30.0	  

PS14	   4000.0	   1799.1	   45.0	   75.0	   753.2	   18.8	   30.0	  

PS15	   0.8	   0.0	   0.0	   75.0	   0.0	   0.0	   30.0	  

PS16	   880.0	   304.2	   34.6	   80.0	   28.0	   3.2	   30.0	  

PS17*	   595.6	   29.3	   4.9	   27.0	   8.6	   1.4	   30.0	  

PS18	   888.0	   0.0	   0.0	   80.0	   0.0	   0.0	   30.0	  

TOTAL/AVG	   25531.7	   5442.8	   21.3	   71.4	   2209.5	   8.7	   30.0	  

 

#1	   Packet	  store	  hard	  limit	  
#2	   Peak	  volume	  
#3	   Peak	  volume	  (%	  hard	  limit)	  
#4	   Peak	  volume	  soft	  limit	  (%	  hard	  limit)	  
#5	   End	  volume	  
#6	   End	  volume	  	  (%	  hard	  limit)	  
#7	   End	  volume	  soft	  limit	  (%	  hard	  limit)	  

 
*	  Contains	  urgent	  data	  
**	  Contains	  high-‐priority	  engineering	  data	  
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MTP	  C	  

	  
#1	   #2	   #3	   #4	   #5	   #6	   #7	  

PS1**	   2800.0	   164.3	   5.9	   80.0	   2.5	   0.1	   30.0	  

PS2**	   3200.0	   275.4	   8.6	   80.0	   68.7	   2.1	   30.0	  

PS3**	   960.0	   337.3	   35.1	   80.0	   0.0	   0.0	   30.0	  

PS4	   800.0	   516.4	   64.6	   80.0	   89.3	   11.2	   30.0	  

PS5	   50.3	   27.2	   54.0	   80.0	   18.7	   37.2	   30.0	  

PS6	   160.0	   87.3	   54.6	   80.0	   58.3	   36.4	   30.0	  

PS7	   320.0	   0.0	   0.0	   80.0	   0.0	   0.0	   30.0	  

PS8*	   640.0	   209.5	   32.7	   33.0	   21.8	   3.4	   30.0	  

PS9*	   320.0	   80.7	   25.2	   33.0	   28.2	   8.8	   30.0	  

PS10	   1600.0	   797.1	   49.8	   80.0	   146.0	   9.1	   30.0	  

PS11	   7516.2	   6177.7	   82.2	   87.0	   804.1	   10.7	   30.0	  

PS12	   0.8	   0.0	   0.0	   87.0	   0.0	   0.0	   30.0	  

PS13	   800.0	   410.2	   51.3	   80.0	   102.8	   12.8	   30.0	  

PS14	   4000.0	   2732.3	   68.3	   75.0	   0.0	   0.0	   30.0	  

PS15	   0.8	   0.0	   0.0	   75.0	   0.0	   0.0	   30.0	  

PS16	   880.0	   447.1	   50.8	   80.0	   28.8	   3.3	   30.0	  

PS17*	   595.6	   43.4	   7.3	   33.0	   16.4	   2.8	   30.0	  

PS18	   888.0	   25.0	   2.8	   80.0	   17.6	   2.0	   30.0	  

TOTAL/AVG	   25531.7	   12330.8	   48.3	   72.4	   1403.3	   5.5	   30.0	  

 

	  
MTP	  D	  

	  
#1	   #2	   #3	   #4	   #5	   #6	   #7	  

PS1**	   2800.0	   172.0	   6.1	   80.0	   46.7	   1.7	   30.0	  

PS2**	   3200.0	   232.9	   7.3	   80.0	   77.5	   2.4	   30.0	  

PS3**	   960.0	   67.5	   7.0	   80.0	   0.0	   0.0	   30.0	  

PS4	   800.0	   265.1	   33.1	   80.0	   50.7	   6.3	   30.0	  

PS5	   50.3	   29.7	   59.0	   80.0	   13.8	   27.3	   30.0	  

PS6	   160.0	   67.0	   41.9	   80.0	   42.1	   26.3	   30.0	  

PS7	   320.0	   0.0	   0.0	   80.0	   0.0	   0.0	   30.0	  

PS8*	   640.0	   83.4	   13.0	   17.0	   20.2	   3.2	   30.0	  

PS9*	   320.0	   50.5	   15.8	   17.0	   6.4	   2.0	   30.0	  

PS10	   1600.0	   424.1	   26.5	   80.0	   32.1	   2.0	   30.0	  

PS11	   7516.2	   4465.6	   59.4	   87.0	   0.0	   0.0	   30.0	  

PS12	   0.8	   0.0	   0.0	   87.0	   0.0	   0.0	   30.0	  

PS13	   800.0	   217.5	   27.2	   80.0	   29.1	   3.6	   30.0	  

PS14	   4000.0	   2806.2	   70.2	   75.0	   330.0	   8.2	   30.0	  

PS15	   0.8	   0.0	   0.0	   75.0	   0.0	   0.0	   30.0	  

PS16	   880.0	   337.0	   38.3	   80.0	   27.4	   3.1	   30.0	  

PS17*	   595.6	   42.7	   7.2	   17.0	   26.7	   4.5	   30.0	  

PS18	   888.0	   0.1	   0.0	   80.0	   0.1	   0.0	   30.0	  

TOTAL/AVG	   25531.7	   9261.3	   36.3	   69.7	   702.9	   2.8	   30.0	  
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Abstract 
Prior space missions have not routinely used onboard 
decision-making.  The Autonomous Sciencecraft (ASE), 
flying onboard the Earth Observing One spacecraft, has 
been flying autonomous agent software for the last decade 
that enables it to analyze acquired imagery on board and use 
that analysis to determine future imaging. However ASE 
takes approximately one hour to analyze and respond. 
This paper describes a scheduling prototype for the Earth 
Observing Autonomy (EOA) project to increase the 
responsiveness of spacecraft flight software for onboard 
decision-making as well as to increase the capabilities of 
flight software. Specifically, we target onboard image 
analysis and response within a single orbital overflight at 
low Earth orbit (about eight minutes). We focus on the re-
scheduling of the future image acquisitions in the context of 
an existing set of requests along with new requests based on 
onboard analysis of just acquired imagery.  We describe a 
greedy, constructive, scheduler with O(n2) performance and 
present preliminary results on its performance.   

 Introduction   
The Earth Observing Autonomy (EOA) project targets the 
development of a spacecraft autonomy capability to enable 
a wide range of Earth Observing, pointing spacecraft (e.g., 
Earth Observing One [Ungar et al. 2003], The Spot 
constellation [Wikipedia Spot 2015], Orbview Class 
spacecraft (such as Worldview-3)  [Ball, 2015, Wikipedia 
Worldview-3 2015] to image, analyze the image, and re-
image based on that analysis within a single overflight, 
imposing a responsiveness constraint of 5-8 minutes.  This 
would represent a dramatic improvement over the current 
state of the art, ASE [Chien et al. 2005], which responds 
within roughly 1 hour. 
 We describe a software prototype of the EOA capability 
that includes several autonomy components: 
1.    Onboard science processing algorithms. Science 

analysis algorithms process onboard image data to 

                                                
Copyright © 2015, California Institute of Technology. All rights reserved. 
 

detect science events and suggest reactions to 
maximize science return.  Specifically we investigate 
the use of the Mixture –tuned Match Filter (MTMF) 
[Boardman and Kruse 2011] for onboard spectral 
analysis of acquired imagery. However ASE has 
already demonstrated the utility of thermal analysis for 
volcanoes and wildfires [Davies et al. 2006], spectral 
analysis for flooding [Ip et al. 2006], spectral analysis 
for cryosphere study [Doggett et al. 2006], as well as 
spectral unmixing for mineralogical analysis 
[Thompson et al. 2012].   

2.    Onboard planning and scheduling software. The 
Continuous Activity Scheduling Planning Execution 
and Replanning (CASPER) [Chien et al. 2000] 
combined with the Eagle Eye Mission Planning 
Software [Knight et al. 2013] system generates a 
baseline mission operations plans from observation 
requests.  This baseline plan is subject to considerable 
modification onboard in response to data analysis from 
step 1. The model-based planning algorithms enable 
rapid response to a wide range of operations scenarios 
based on models of spacecraft constraints.  However, 
in this paper we focus on a greedy, constructive, non-
backtracking scheduler designed specifically for this 
application. 

3.    Robust execution software. The JPL core flight 
software [Weiss 2013] (CFS) expands the CASPER 
mission plans to low-level spacecraft commands and 
includes a powerful and expressive sequencing engine. 
The CFS sequencing engine monitors the execution of 
the plan and has the flexibility and knowledge to 
perform improvements in execution as well as 
procedural responses to execution anomalies. 
 

One challenge to spacecraft autonomy is limited computing 
resources. An average spacecraft CPU offers 200 MIPS 
and 128 MB RAM – far less than a typical laptop 
computer. For the EOA prototype, we baseline a Rad 750 
or Leon processor for all of the autonomy capability. 
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 EOA demonstrates an integrated autonomous mission 
response capability using onboard science analysis, 
replanning, and robust execution. EOA performs intelligent 
science data analysis, and spacecraft retargeting.  This 
capability can reduce data downlinked in cases where 
onboard analysis determines the data not of interest (e.g. 
search for active volcanos and return only images that 
contain active volcanos).  This capability can also enable 
an increase in science return.  In many cases, a mission is 
not limited by observation time, but rather by downlink 
volume. In these cases, if the spacecraft can acquire 
imagery searching for a specific signature and not return 
the data if the signatures not found, then search can be 
made much more efficient. Specifically, the spacecraft can 
search  for active volcanoes a large amount of the time, and 
only pay the downlink cost proportional to the number of 
images with active volcanoes rather than the total number 
of images acquired searching for active volcanoes.  In 
cases where phenomena may be short-lived, onboard 
detection may enable additional data to be acquired, 
gathering more science data on the scarce phenomena (e.g. 
when detecting an active volcano, add requests to image it 
more frequently and in greater detail). 
 The execution flow of the EOA software is shown in 
Figure 1.  As the spacecraft overflys targets, it images 
them.  As the imagery is acquired, it is processed onboard 
the spacecraft.  Based on the operations policies of the 
missions, this analysis may result in new image requests.  
These image requests are folded into the prior image 
requests and a new schedule is constructed that may 
acquire the new image and may change other images 
acquired (such as pre-empting a less valuable target).  
Spacecraft execution then continues. 

These capabilities enable radically different missions with 
significant onboard decision-making allowing new ways to 
conduct science from space. The paradigm shift toward 
highly autonomous spacecraft will enable future space 

missions to achieve significantly greater science returns 
with reduced risk and reduced operations cost. 
In this paper, as the meeting topic is planning and 
scheduling, we focus on the rescheduling portion of the 
overall responsiveness of the mission.   We begin by 
describing the overall on board response scenario to show 
the overall mission timeline and the context of 
rescheduling. 

Autonomous Science Scenario 
Our onboard planning capability is designed to support an 
EOA mission scenario. While the EOA software is 
designed to support a wide range of spacecraft without any 
modification, in this section, we describe a scenario with a 
Worldview-3 like spacecraft [Ball 2015, Wikipedia 2015] 
to image science targets, process and analyze onboard 
image data, and re-plan operations based on science 
results.  
 For this demonstration we assume several baseline 
mission parameters.  

 
Parameter Value 
Orbit 950 km Sun synchonous 
Initial Science Images 30-40° lookahead from nadir 
Response image Nadir to 20° lookahead 
Spacecraft slew rate 4.5° per second, instantaneous 

start and stop, no settle time 
Imaging time Dwell of 1s per image 
Image request granule 
"footprint" 

0.5 km along track x 4 km 
across track 

 
In Figure 1 we highlight some of the geometry 
characteristics of the EOA scenario.   As the spacecraft 
orbits the earth, it has several viewing windows. The first 
viewing window is the initial science image window which 
covers from 31 to 38° in front of the spacecraft. The 
second viewing window is the response image which 
covers from 0° lookahead (nadir) to 28° lookahead. As the 
spacecraft flies over the earth it is imaging in large number 
of locations in the initial science window.   As it acquires 
this imagery, software analyzes the imagery onboard the 
spacecraft.  This analysis indicates the possible need to 
take follow-up imagery (in the response imaging window).   
For example, in the initial science window we might search 
for the thermal signature of a volcanic eruption or wildfire.  
In the response window we might further image to 
precisely determine the extent of the lava flow and the 
exact temperature map of the flow.   
The goal of the scheduler is to accommodate as many of 
the initial science and response imaging requests but is 
guided by the priority of the requests and restricted by the 
pointing and slewing capabilities of the spacecraft (as well 
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as any other operations constraints).  As shown in Figure 2, 
from a side view, the speacecraft must slew forwards and 
backwards looking a variable amount ahead to view the 
image targets.  At the same time, the spacecraft is moving 
forwards due to orbital motion (at approximately 7.5km 
per second).  Because processing the images requires some 
time, the initial search window is significantly ahead of the 
response window.  This enables initial search-ed images to 
be processed/analyzed in time to allow for scheduling of 
followup imagery in the response window.  The response 
window does not extend behind the spacecraft in order to 
maintain consistent lighting conditions. 
 This slewing forwards and backwards along the 
spacecraft motion track is complicated by two things.  
First, the angle at which the spacecraft must look forward 
to view the target is a non linear function of when the 
spacecraft wishes to view the target. Specifically, at nadir, 
for the Earth, in a 950km orbit, 1 degree of lookahead 
corresponds to 16.6 km ahead of nadir in the ground track.  
However, at 37° of lookahead, 1° of further lookahead  
(e.g. to 38° lookahead) corresponds to 30.7 km ahead in 
the ground track.  The second issue is that typically the 
slew rate of the spacecraft is not linear, there is a ramp up 
acceleration of the spacecraft to some maximum slew rate, 
a portion of the slew at the maximum rate, then a ramp 
down as the spacecraft arrives at the desired position.   
 Figure 2, Case 1 shows these two factors from the 
spacecraft pointing perspective.  In this example the 
spacecraft is looking ahead and wants to view a target 
further ahead beyond the current look angle.  The spaceraft 
could  simply wait until the target comes into view, or it 
can slew ahead to meet the target.  The blue line shows the 
track of a fixed point on the ground in terms of the look 
angle from the spacecraft as the spacecraft approaches the 
point.  This line indicates that at time 0 the target is at 42° 
lookahead.  The red line shows the angular position of the 
spacecraft reachable from the starting point of nadir as a 
function of time.  The intersection of these two lines shows 
the earliest possible time that the spacecraft can view the 
target.  The graph indicates that if the spacecraft begins 
slewing it will be able to reach the target but that the target 
will be at 38° lookahead when it is reached.  In this case 

the motion of the spacecraft is helping us to meet the target 
earlier. 
 The right side of Figure 2 shows a different case, Case 2.  
In Case 2, the spacecraft is pointing at 38° lookahead, and 

wants to next view a target currently at 20° lookahead.  In 
this case the spacecraft motion is carrying the target 
(relative to the spacecraft) away from the current 
spacecraft pointing and the slew must catch up.  The graph 
shows that the by the time that the spacecraft can view the 
target it will be at 17° lookahead. 
 Figure 4 is a view from above the spacecraft looking 
down on the Earth.  As the spacecraft moves along track 
(from left to right in Figure 4), the spacecraft must also 
slew across track (up and down in the Figure) as well as 
forwards and backwards along the ground track (left and 
right in the Figure) to image targets. 

 
This scheduling problem is a challenging one for several 
reasons. 
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1. The spacecraft has limited ability to slew from 
one target to the next (e.g. each slew takes up 
valuable time). 

2. Targets are distributed across the ground track of 
the spacecraft so that the amount of time required 
to image a target depends on the preceding and 
following (temporally) targets in the schedule. 

3. Because the initial viewing and response doing 
windows are separated angularly, slewing back 
and forth between these windows can be wasteful 
of time. 

4. Image analysis takes time.  During this time 
spacecraft is moving towards the target(s).  This is 
the reason why the initial image analysis and 
response image analysis windows are not 
overlapping, to allow the onboard software time 
to analyze the images. 

5. Generating the schedule also takes time (the focus 
of this paper). 

6. When calculating a start time to schedule an 
observation of a target, the spacecraft intercepts 
the target.  The spacecraft must slew to a given 
position (of the target), reaching that position at 
the exact time that the target is in that position 
relative to the spacecraft. This requires an 
accurate model of the spacecraft slew time as well 
as the ability to project where relative to the 
spacecraft any target will be at any point in time. 

7. In addition to pointing, the scheduler must 
consider other resources such as power, thermal, 
data volume (e.g. [Chien et al. 2010, Chien et al. 
2012]).  However in this paper we focus on the 
pointing and slewing aspect of the problem as the 
state and resource management aspect of the 
problem has been considered elsewhere. 

 
In order to simplify the scheduling problem we first 
transform the image request locations from a <latitude, 
longitude, altitude> coordinate frame of reference to an 
<along track, across track> frame of reference (in this 
process using a model of the spacecraft orbit). From this 
<along the track, across track frame of reference>, 
combined with the spacecraft orbit, the set of valid times to 
view any target in the initial viewing window or response 
window is easily computed. 
 
R = {r1,…rn} sorted from highest priority to lowest priority 
 
achieved_requests = {} 
best_solution = nil 
for adding_request ∈{r1…ra} 
  call schedule( achieved_requests ∪ {adding_request}); 
  if success then  
 achieved_requests ← achieved_requests ∪ {adding_request} 

 best_solution ← solution returned by schedule 
 
 
Schedule(request_set = {r1…ra}) 
Sort request set by earliest start time  
   (e.g. request with earliest start time is first in set) 
current_solution = {} 
for current_request ∈{r1…ra} 
 attempt to add current_request to current_solution  
 by scheduling it at the earliest possible time that  
 it will fit into the schedule 
 if cannot add return FAIL 
 else (success} continue 
return current_solution 
 
This scheduling algorithm represents a greedy outer loop 
where we try to add requests in priority order.  The inner 
loop is given a set of requests, and attempts to schedule 
them sweeping forward in time considering earliest 
possible start time requests first. 
 Figure 5 shows the inner loop of the scheduler.  In figure 
5a the two headed arrows indicate the earliest and latest 
possible times each image can be acquired.  The longer 
intervals are response images and the shorter intervals are 
initial search requests.  In Figure 5a the requests are sorted 
by earliest possible start time.  Figure 5b shows the 
requests being scheduled.  The software tries to add each 
request in the earliest start time sorted order, adding the 
request to the schedule as early as possible.  The orange 
blocks indicate the slew time and the blue blocks indicate 
the imaging time.  The imaging time is roughly constant 
but the slewing time is higher if the preceding image was 
of a different type (initial, response), this is because the 
spacecraft is generally slewing a greater distance (up to 0° 
! 38° lookahead) as opposed to from one initial search to 
another (maximum slew from 31° ! 38°) or from one 
response to another (from 0° ! 28°).   
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As the inner loop of the scheduler is attempting to insert 
the next request, it must repeatedly solve the problem of 
slewing forwards and backwards along track to view 
targets either ahead of or behind the current position.  The 
scheduler solves this problem of the intersection of the 
earliest possible slew position curve intersecting the target 
position angle relative to the spacecraft using Newtons 
Method [Wikipedia Newtons 2015].  In computing this 
observation time the software must take the latest of: the 
spacecraft along track slew intersecting the target, the 
mission mode constraints (e.g. initial search allowed look 
angles, response image allowed look angles), as well as the 
across track slew time to view the target.  Solving for the 
across track slew time is simpler than the along track 
problem – while the earths curvature does make the 
angular position a nonlinear function of the ground 
distance, there is no across track motion to compensate for 
and indeed this conversion from ground distance to angular 
distance can be pre-processed. In practice for our scenario 
slew times can range from a fraction of a second (for 
adjacent tiles) to 5-10 seconds. 
 While we currently use a simple constant slew rate 
model for our current prototype, a more realistic model 
would have: 

1. an acceleration/decceleration profile,  
2. a maximum rate,  
3. a different model for different axes of the 

spacecraft,  
4. a settling time for the spacecraft to stabilize after a 

slew in which the settling time depends on the 
parameters of the image being acquired as well as 
the velocity and acceleration profile of the slew 

In our software architecture we treat the slew computation 
as a black box so that we can easily insert a high(er) 
fidelity model. 

Estimated computational complexity of the 
scheduling  algorithm 
 
Our analysis of the above observation scheduling 
algorithm indicates several factors in its computational 
complexity. 
 Since we schedule from scratch each iteration we will 
always make R passes through the outer loop where R is 
the number of scheduling requests. 
 Each of the R passes through the outer loop makes a 
single call to the “schedule” function.  The schedule 
function performs a computation to attempt to add a slew 
and image to the schedule each iteration. This effort to add 
a slew and image requires computation in worst case on the 

order of the number of items currently in the schedule.  
While the number of items currently in the schedule is 
certainly no worse than R above (total number of requests) 
if the number of requests that can actually fit into the 
schedule Smax is much smaller than R this will be a much 
lower bound.   
 For example, if the entire search window corresponds to 
200s of observation time, and the minimum observation 
length is 2s Smax < 100 so if R is >> 100 it does not matter, 
the complexity is of order Smax.  So overall the 
computational complexity of the scheduler is RSmaxC 
where R is the total number of requests and Smax is the 
number of requests that will actually fit in the schedule and 
C is the computation required to evaluate the feasibility of 
inserting a single request into the schedule. 
 Note that this algorithm does not take advantage of the 
fact that the set of changes to the request set is small 
compared to the size of the request set. An obvious 
optimization would be to only reschedule the portion of the 
schedule of lesser priority than the highest priority new 
request. 

Empirical evaluation of the scheduling 
algorithm 
In order to verify our analysis of the computational 
complexity of the algorithm, we also performed a limited 
empirical analysis of the algorithm.  For this analysis we 
generated a synthetic data set using the following 
parameters. 
 

Parameter Value 
Initial request probability 1-5% 

Probability of a response image 
given a search request performed 

25, 50, 75% 

 Scheduling horizon 45° lookahead 
 

Figure 6: Preliminary run information 
 
The empirical data is shown at the end of the paper.  
Graphs 1 and 2 show that the scheduler can only 
completely achieve a relatively small percentage of initial 
search requests (a few percent).  Already if 2% of all 
possible tiles are requested for search with no responses 
many of the search requests are not being satisfied. 
 When response requests are included this further drives 
down the percentage of search requests that can be 
scheduled because response requests are higher priority 
and they preclude search requests.  Graphs 3 and 4 show 
that as response images are added to the scheduling 
problem (at higher priority than search requests) the 
scheduler is able to accommodate fewer search requests.  
Graph 3 shows where 25% of searches yield a response 
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and Graph 4 shows where 75% of searches yield a 
response. 
 Graphs 5 and 6 show the CPU time required for the 
scheduler in VxSIM.   The run-time data indicates that the 
scheduler is extremely fast, taking only a fraction of a 
second in the software simulation.  While the flight 
processor is expected to be significantly slower, the 
scheduling algorithm is not optimized in any way.  One 
obvious optimization is that the scheduler is solving the 
problem from scratch each invocation when the majority of 
the inputs have not changed.  Clearly an incremental 
rescheduler offers great potential for efficiency gains. 

Discussion 
 
The Autonomous Sciencecraft (ASE) has been flying the 
CASPER continuous planner on board the Earth Observing 
One (EO-1)spacecraft for the past decade. However, the 
response time for CASPER on EO-1 is tens of minutes-in 
part due to the meager computation on board the 
spacecraft: 3 MIPS and no floating point computation in 
hardware for the RAD 3000 CPU on board. Additionally, 
the planning problem for EO-1 does not involve significant 
geometric issues. The spacecraft generally only images 
using its push broom imager and a fixed angle relative to 
nadir, therefore there is no flexibility in the imaging time 
for any target. The problem is rather one of which 
combination of images should be acquired.  The same issue 
of computing which combination of images and slews is 
feasible is challenging (and solved on the ground).  The 
EO-1 pointing problem is complex because EO-1 only has 
three reaction wheels, therefore as further observations are 
required momentum builds up on the reaction wheels that 
restricts later pointings of the spacecraft due to maximum 
rates that the reaction wheels can achieve.  While this 
momentum can be relieved using a magnetic torque bar, 
this is a very slow process so observations are quite 
constrained by builtup angular momentum (for further 
details see [Chien et al. 2010]).  

The CLASP [Rabideau et al. 2010, Doubleday et al, 
2014] and Eagle eye [Knight et al. 2013] planners solve 
geometric coverage planning problems from a ground 
context.   These systems can incorporate more complex 
geometric constraints but also have better computational 
resources and less time constraints. 

AEOS [LeMaitre et al. 2002] is another project to 
perform automatic observation planning on the ground. 
AEOS solves a much more complicated and expressive 
problem in which the spacecraft slews while imaging to 
cover target polygons and the direction of the slew can be 
optimized to cover the polygon as efficiently as possible.  
In contrast we assume a framing imager and that the 
alignment of the imager is in a fixed aspect ratio with 
respect to a long track and across track to simplify the 
problem. We do this because our onboard computation 

capabilities are necessarily limited and also our response 
time for the scheduler correspondingly constrained. 
  In the future we plan on further maturing this work, 
refining the scheduling algorithms as well as bringing the 
work into a relevant hardware testbed. 

Summary 
We describe an overall software architecture for onboard 
imaging, image analysis, operations scheduling, and re-
imaging within a realistic flight software operating system 
and flight hardware performance environment.  This 
prototype demonstrated the feasibility of performing such 
functions autonomously within a low earth-orbiting 
environment (roughly 5-8 minutes overflight time).  Future 
efforts will further mature this concept and software by 
bringing the prototype into a relevant flight hardware 
testbed. 
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Graph	  1:	  1%	  search	  0%	  response	  –	  almost	  all	  search	  requests	  
scheduled 
X	  axis	  is	  number	  of	  requests	  presented	  to	  scheduler 
Y	  axis	  is	  %-‐age	  of	  search	  requests	  scheduled

Graph	  2:	  2%	  search	  0%	  response	  –	  some	  search	  requests	  already	  are	  
not	  achieved. 
X	  axis	  is	  number	  of	  requests	  presented	  to	  scheduler 
Y	  axis	  is	  %-‐age	  of	  search	  requests	  scheduled 
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Graph	  3:	  4%	  search	  25%	  response	  –	  response	  images	  are	  higher	  priority	  so	  
all	  are	  getting	  scheduled.	  	  Search	  images	  are	  pre-‐empted	  and	  s/c	  loses	  time	  
slewing	  between	  search	  and	  response	  windows. 
X	  axis	  is	  number	  of	  requests	  presented	  to	  scheduler 
Y	  axis	  is	  %-‐age	  of	  search	  (red)	  or	  response	  (blue)	  requests	  scheduled 

Graph	  4:	  4%	  search	  75%	  response	  –	  more	  response	  images	  are	  pre-‐
empting	  search	  images. 
X	  axis	  is	  number	  of	  requests	  presented	  to	  scheduler 
Y	  axis	  is	  %-‐age	  of	  search	  (red)	  or	  response	  (blue)	  requests	  scheduled 
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Graph	  5:	  4%	  search	  25%	  response 
X	  axis	  is	  number	  of	  requests	  (search	  +	  response)	  presented	  to	  scheduler 
Y	  axis	  is	  CPU	  time	  to	  construct	  schedule 

Graph	  6:	  4%	  search	  75%	  response 
X	  axis	  is	  number	  of	  requests	  (search	  +	  response)	  presented	  to	  scheduler 
Y	  axis	  is	  CPU	  time	  to	  construct	  schedule 
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Abstract 

This paper presents COURSR, an online deployed system 

aiming at helping trainees (students, lifelong learners, etc) to 

decide whether they are able to attend an educational object 

(e.g., a university class, an online series of lectures, etc), 

taking into account their other commitments. COURSR 

encompasses a detailed description of every aspect of the 

educational object that demands effort, commitments or 

simply time from the trainee. For example, a course may 

have lectures, with constraints on their attendance or not, 

labs, mid-term exams, final exams, homework, projects and, 

of course, home reading. All this information is represented 

using a suitable ontology that has been developed in order to 

allow easy information exchange with other systems. 

Taking into account all this information, COURSR is able to 

analyze whether it is possible for the trainee to schedule a 

new course or a set of courses within his calendar or not. 

This is achieved using an existing powerful personal 

activities scheduling system, named SELFPLANNER. Taking 

informative decisions is important for the trainee, both for 

financial and for psychological reasons.  

Introduction 

Organizing personal time nowadays has become 

increasingly complex, due to the many tasks, 

commitments, deadlines and interleaving constraints that 

govern our life. Traditional calendars, either electronic or 

paper-based, have already reached the limits of their 

capabilities. Busy people maintain numerous of electronic 

calendars, trying to classify their tasks according to their 

purpose, e.g., business, leisure, family, personal, etc. 

People spend a lot of time to maintain all this information, 

which is a significant task by itself. Calendar information 

maintenance has two aspects. The first has to do with 

entering the information concerning the user’s activities 

and commitments. The second has to do with rescheduling 

events, as new requests arise. Both these tasks are 

performed manually by most modern commercial 

electronic calendar applications. 

 In the recent years, there are research efforts that try to 

automate the scheduling and rescheduling part of an 

electronic calendar’s maintenance. Research has focused 

on enhancing electronic calendars with powerful 

scheduling engines, which are capable to provide high-

utility valid schedules, taking into account the constraints 

imposed by the user and the tasks, as well as the user’s 

preferences. One example of such effort is the 

SELFPLANNER system (Refanidis and Alexiadis, 2011; 

Refanidis and Yorke-Smith, 2010; Refanidis, 2007), which 

works on top of Google Calendar, allowing the user to 

describe activities using a rich model of attributes, while it 

takes into account events directly added to the user’s 

Google Calendar. Recent results have further increased the 

quality of the plans produced by the underlying scheduling 

engine (Alexiadis and Refanidis, 2013; 2015), using 

stochastic post-processing local search optimization 

methods. 

 However, while trying to alleviate the effort needed for 

scheduling and rescheduling a user’s activities over his 

calendar, the effort needed to enter all the necessary 

information for each activity, in order for the scheduler to 

be able to schedule it, increases drastically. Particularly, 

the minimum information needed for an activity so that the 

scheduler to be able to schedule it, is its temporal domain 

(usually a set of temporal intervals), its duration and its 

location. Additional information that is useful in order to 

produce high utility plans includes its utility, potential user 

preference over the way the activity is scheduled by itself 

or in conjunction to other activities, the possibility to be 

scheduled in parts (preemptive scheduling) or in parallel to 

specific types of other activities, etc. Despite the fact that 

an intelligent user interface has been developed for the task 

of entering all the necessary information for each activity 

(Alexiadis and Refanidis, 2009), this task constitutes the 

main reason why end users are hesitant in adopting an 

intelligent calendar application like SELFPLANNER to 

organize their everyday activities. 

 One approach that has been adopted by some systems to 

overcome the problem of entering all the necessary 

information needed by the scheduler to produce useful and 

valid plans is to provide ready-to-use activity descriptions 

for specific application domains. This approach has been 

used by the MYVISITPLANNER system (Refanidis et. al., 

2014), an intelligent application that helps visitors and 

residents of the area of Northern Greece to select cultural 

activities and schedule them within their calendar. Activity 

descriptions in MYVISITPLANNER are relatively simple, 

comprising a temporal domain, a duration range and a 

location. Complex activities take only the form of bundles 

of simple activities, e.g., visiting two museums within a 

specific time period (e.g., the same day). MYVISITPLANNER 

employes the scheduling engine of SELFPLANNER, 
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provided as a web service, to solve the underlying 

scheduling problem. 

  

 This paper presents COURSR, another prototype system 

that adopts a similar approach to MYVISITPLANNER, but 

applies it in the educational domain. Activities in the 

educational domain are inherently more complex than, e.g., 

visiting a museum. A single educational activity may 

include synchronous and asynchronous tasks, deadlines, 

temporal constraints, hard and soft constraints, cardinality 

constraints (not even supported by SELFPLANNER), etc. 

Describing all this information for an educational object is 

a tedious task and, furthermore, this information is not 

usually provided by those offering the educational activity. 

Thus, even if the user wanted to enter all this information 

into his calendar, this information would not be available. 

 An educational activity may range from simple ones, 

like attending a one-day tutorial (either with physical 

presence or online) or reading a book, to very complex 

ones, like attending a university class, enrolling to a master 

degree or learning a foreign language or a musical 

instrument. Having access to this information before 

deciding to adopt an educational activity is crucial for the 

trainees in order to take informative decisions. Problems 

that arise from non-informative decisions range in two 

dimensions (Moka and Refanidis, 2010): First, enrolling 

with a course usually incurs paying significant tuition fees 

for the student, so a potential failure implies financial 

harm. However, of equally importance is the psychological 

harm that a student experiences in case he cannot 

successfully complete the undertaken course.  

 The COURSR system tries to solve exactly this problem. 

It allows the course instructors or the owners of simple 

educational objects to describe in fine-grained detail all 

sorts of time requirements incurred for a student if he 

decides to attend one or more courses. This is achieved 

through a rich ontology for describing all temporal aspects 

of a course. Furthermore, COURSR allows exporting such 

descriptions in various ontology formats, in order to be 

used or simply validated by other systems. By having 

access to all this information, the potential student is able 

to perform a what-if analysis, that is, check whether adding 

one or more educational objects into his calendar is 

feasible. For this purpose, COURSR employs the 

SELFPLANNER scheduling engine, offered as a web service 

that returns either a valid plan or failure. 

 The rest of the paper is structured as follows: First we 

outline how educational objects are described within 

COURSR and we present a typical student’s session with the 

system. Next, we describe the integration of SelfPlanner 

scheduling services to the system. Then we give some 

insight of the underlying ontology and the COURSR 

SPARQL endpoint. Finally, we conclude the paper and 

identify directions for future research. 

System Overview 

COURSR is currently available at 

http://coursr.herokuapp.com/. Its starting page is shown in  

Figure 1. 

 

 

Figure 1: The start page of COURSR 

 

 Users can create local accounts (SignUp) or login using 

an Open ID account (Google, Facebook, LinkedIn and 

StackExchange are supported). In its current version the 

system has some limitations, which we are working 

constantly to overcome. The most severe of them is that 

there is a single interface for tutors and students, that is, 

everybody can add new courses into the system, as well as 

inspect and schedule existing courses (added by other 

users) within his calendar. Another limitation concerns the 

number of calendars supported for every user: Currently, a 

single calendar per user is only supported, so if a user 

maintains events in multiple calendars, these are ignored 

while scheduling courses. 

 The main screen of COURSR, after logging in, shows the 

dashboard containing recent actions performed by the user, 

like the new courses he created (if he is a tutor) or the new 

courses that he (as a student) enrolled in. (Figure 2). 

 

 

Figure 2: The COURSR dashboard 
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 In order to create a new course, the user starts by 

clicking the “Create Course” button. In the first screen, the 

basic course information should be added, namely its title, 

the name of the instructor, the semester when the course is 

offered, its start and end dates, as well as an optional 

description. Note that no course activity is allowed to take 

place outside the temporal window defined from the “starts 

on” and “ends on” fields, including exams (Figure 3).   

 

 

Figure 3: Basic information for the newly created course 

 

 Having inserted the basic course information, the next 

step is to describe its individual activities. By selecting 

“Activities Info” in the main window, the user can add any 

number of activities for the course. COURSR supports six 

(6) types of activities: 

 Lecture 

 Lab 

 Midterm exam 

 Final exam 

 Presentation 

 Homework 

 

For each one of these types of activities, the user can enter 

the following information: 

 

 Workload (in mins): The time required by the student 

to get prepared in advance, in order to be ready for the 

activity. For example, for a weekly lecture, the student may 

need 60 mins for preparation, in order to take the most 

from attending the lecture, whereas for the final exams the 

student may need 12 hours to prepare in order to success in 

the exams. This workload concerns asynchronous time, 

that is, a student could allocate the workload at the time of 

his convenience, taking into account his other 

commitments.  

 

 Duration (in mins): The actual duration of the activity. 

For example, a lecture may last 90 mins, whereas the final 

exams 180 mins. This is synchronous time, that is, a 

student has no flexibility as of when to schedule this time.  

 

 Periodicity: In this field the instructor defines the 

periodicity of the specific activity of the course. This is a 

text field and the text entered by the instructor is analyzed 

by a dedicated parser in order to extract the intended 

periodicity. Examples of valid periodicity descriptions are 

the following: 

 Every Monday at 15:00 

 Every second Monday at 12:00 

 Every Monday at 12:00 and Tuesday at 14:00 

 Every Monday at 15:00 up to 31/5/2015 

 Every Monday at 18:00 from 10/2/2015 to 20/4/2015 

 On 13/4/2015 at 20:00 

 Every Monday at 12:00 excluding 27/4/2015 including 

28/4/2015 at 20:00 

 

 For each valid periodicity description, in the field 

“Auto-completed dates” are shown the dates of the 

individual occurrences of the event (Figure 4). 

 The instructor can create multiple activities for a course, 

of any one of the six available types, which are shown at 

the bottom area of Figure 4. They can be edited, updated 

and deleted at any time. 

 From the tab “Activities” the instructor can edit each 

individual activity, by assigning a title, a description and a 

comment to it. For example, concerning the multiple 

lectures created in Figure 4, an individual title, description 

and comment could be added to any one of them (Figure 

5). 

 

 

Figure 4: Duration and periodicity of an activity that is 

part of a course 
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Figure 5: Editing individual activities 

  

 The instructor can also add special requirements in order 

for successfully completing a course. Three types of 

requirements are supported by the current version of 

COURSR:  

 Course prerequisites 

 Attendance prerequisites 

 Activity prerequisites 

 

 Course prerequisites concern the fact that in order for a 

student to attend this course, he should attend another 

course in advance. In the field “Course prerequisites” 

(Figure 6) the instructor has simply to write the name (s) of 

the pre-required course (s).  

 Attendance prerequisites concern the minimum 

attendance requirements per activity in order for the 

attendance of a course to be considered successful. For 

example, for a course with 13 lectures, an attendance 

prerequisite may impose that the students should attend at 

least 10 out of the 13 lectures, or that the students should 

deliver at least the second and third homework otherwise 

they fail. 

 Activity prerequisites allow the instructor to impose 

ordering constraints between asynchronous activities of the 

course. As an example, in order for a student to take part to 

the mid-term exam, he should have participated to at least 

3 lab sessions. 

 

 

Figure 6: Imposing prerequisites in order to successfully 

complete a course 

 

 Finally, the instructor can export the course description, 

with all of its activities and prerequisites, in some 

ontological format (Functional, Turtle, RDF/XML and 

simple XML are supported).  

 Currently an RDBMS (PostgreSQL) is used to store all 

the data of the application, mainly for performance and 

efficiency reasons. However, the application gives the 

option to the tutor to additionally persist all the information 

of each course to an on-disk triple-store in RDF format, 

using the Sesame API (Brickley and Miller, 2012). By 

doing that, this information becomes available to be 

queried on later, by not only the users of the system, but by 

external users or other system, through the SPARQL 

endpoint provided by COURSR. 

 

 

Figure 7: Exporting a course description in ontological 

format 
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Student experience 

Students using COURSR need to grant the system access to 

one of their Google calendars. This is important for two 

reasons: First, COURSR will use this calendar in order to 

put there information about the scheduled activities of the 

selected courses, that is, when the student needs to 

accomplish a synchronous or an asynchronous activity. 

Second, COURSR reads other (non-COURSR) activities 

already in this calendar, and considers them as busy time, 

thus avoiding to schedule there any course-related activity. 

 To inform COURSR about his calendar, the user selects 

“Profile” through a popup menu, by pressing on his name 

in the upper right corner of the application. In Figure 8, the 

user has the option to give access to his basic Google 

calendar, provided that he has one, by just giving the 

Calendar in the relevant field. ID.    

 

 

Figure 8: Editing a user’s profile 

 

 Alternatively, if the user does not want to use his 

existing Google calendar, he can create a new one and 

grant access to it. In either case, this access to the calendar 

can be revoked at any time. 

  

 Students are interested in enrolling to courses. To see a 

list of available courses, they have to select “Students” 

from the main menu of Figure 8, in order to retrieve the 

courses list. They can filter the list of available courses by 

using the related fields in the top-right corner and they can 

subscribe to any number of courses by clicking on 

“Subscribe” buttons. 

 Having subscribed to a number of courses, the student 

can focus on them through the tab “My courses” (Figure 

9). 

 

 

Figure 9: List of subscribed courses and consistency check 

 

 By pressing the button “Compute” in Figure 9, COURSR 

sends all the necessary information for the subscribed 

courses to the scheduling engine of SELFPLANNER and 

receives either a plan with all the necessary course 

activities scheduled in it, or a failure. In this way, the 

student is informed about whether he is capable to 

subscribe (enroll) simultaneously in the selected courses or 

not, a piece of information that is of great value for his 

subsequent decisions. In case the student receives a 

negative answer, he can unsubscribe from some of the 

selected courses and try to schedule the remaining courses 

again. In this way, he can examine several scenarios 

concerning what are the combinations of courses he can 

afford, from a time availability point of view.  

SELFPLANNER Integration 

 COURSR takes advantage of the powerful scheduling 

engine SELFPLANNER to provide plans to students. 

SELFPLANNER is a general-purpose activity scheduler 

unaware of the specific prerequisite Coursr is using in 

course definitions. However, it supports various types of 

unary and binary constraints that might apply to single 

activities and pairs of activities, respectively (Refanidis 

and Yorke-Smith, 2010). Ordering constraints are used 

when an activity needs to be scheduled before another, 

implication constraints might exist between activities, 

usually donating prerequisites (e.g. Traveling to Jerusalem, 

presumes booking a flight reservation) and proximity 

constraints which imply minimum/maximum temporal 

distance between a pair of activities. 

 COURSR is using its pre-processing engine to convert 

course prerequisite to unary and binary constraints 

supported by SELFPLANNER. COURSR Activity 

Prerequisites can be encoded using the implication 

constrains supported by SELFPLANNER. For example, if the 

student should have taken the Mid-term exam in order to 
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be eligible to participate to the Final exam, then we define 

the implication rule “Final-exam Activity ⇒ Mid-

term exam Activity". This constraint conveys to 

SELFPLANNER the information that in order to produce a 

valid plan, it must add the Mid-term exam activity, in case 

Final-exam activity is also present in the final plan. 

 There are activities that should be scheduled, before, 

after or between other activities. For example, Studying for 

the Final exam should always proceed the Final exam 

activity, while Studying for Lecture C should be scheduled 

some time between the end of Lecture B and the start of 

Lecture C. We can pass these kind of information to the 

SELFPLANNER using one of the following ways:  

 Pre-computing the valid time domain of the activity 

to be scheduled and give it directly to the 

SELFPLANNER. 

 Using Ordering constraints mechanism to indirectly 

limit the time domain of the activity and let 

SELFPLANNER handle the constraint for us. 

 The use of ordering constraints relieve from the burden 

of pre-computing the domain of the activity. A problem 

with how ordering constraints work in SELFPLANNER, is 

that in case of a constraint of the form A < B < C (A 

proceeds B and B proceeds C), if SELFPLANNER does not 

insert to a plan the activity A, this will indirectly change 

the temporal domain of the activity B; The starting time of 

B’s temparal domain will become the same as the starting 

time of the plan domain itself. For example, activity B may 

be scheduled 2 months before the scheduled time of the 

activity C. To overcome this problem, proximity 

constraints are used in conjunction with ordering 

constraints, by defining the max distance in time between 

activity B and activity C to be less than a specific time (e.g. 

a week in case of week lectures) 

 The majority of the activity types COURSR is using, have 

inelastic temporal domains, meaning that they should be 

scheduled only on specific time and with specific duration. 

For example Lecture C will takes place at 13 May 2015, at 

13:00 and its duration will be 2 hours. In these cases, 

COURSR will create and pass to SELFPLANNER an activity 

with a strict temporal domain (13/5/2015,13:00 - 

13/5/2015,15:00). SELFPLANNER will either add the 

activity in that time spot (if that is possible), or it will not 

include it at all to the final plan. 

 A feature provided by COURSR but not supported by the 

SELFPLANNER specifications, is the ability to define 

cardinality constraints. For example, in order to participate 

to the Final exam, the student should have submitted 3 out 

of the 5 homework throughout the semester. Currently, 

there is no way to communicate this information to the 

SELFPLANNER; however in the aforementioned example a 

plan with 3 homework activities should be considered 

valid, while a plan with  should not. 

 A way to approach this desirable behavior is by applying 

different utility values for each activity. SELFPLANNER 

always tries to compute a plan with the highest possible 

cumulative utility (i.e., the sum of the utilities of all 

activities included in the plan). The utility value which 

COURSR will give to an activity will be determined by the 

significance of the activity to a valid plan. For example, the 

activities of the prerequisite "Student needs to submit 8 out 

of 10 homeworks", will have larger utility values, from the 

ones of the prerequisite "Student needs to attend at least 3 

out of 10 lectures". Activities of the first case will have 

larger priority, compared to the ones of the second 

prerequisite during the plan creation, increasing the 

probability the plan to satisfy both prerequisites. In case of 

a failure in finding a valid plan, COURSR will update the 

utility values of the activities and re-submit a request for a 

plan. COURSR users can specify (through application 

preferences) the max number of tries, before COURSR stop 

requesting for new plans. 

The COURSR Ontology 

The COURSR ontology was developed as an essential part 

of the COURSR system and aims at representing and 

describing the various activity types of an educational 

domain (e.g. lecture, exam), their relationships (e.g. to 

enroll in course B, you should have completed successfully 

course A) and the information that defines them (e.g., what 

is the subject of a course or lecture, when is the final exam 

date). The ontology is consisted of: 
 

 41 classes (owl:Class) 
 53 named individaul objects - including examples 

(owl:NamedIndividual) 
 33 object properties (owl:ObjectProperty) 
 37 data properties (owl:DataProperty) 
 49 subclass relations (rdfs:subClassOf) 
 14 equivalent classes (owl:equivalentClass) 

 
Some of the more prominent classes of the ontology are the 
following: 
 
Course: This class can be considered as the "root" of the 

whole ontology, as it uses explicitly or implicitly almost all 

the other classes. It is used to encode all the information a 

course may consist of, like the various activities it 

includes, the starting/ending dates of the course etc. 
 
SchoolActivity: This class represents a generic school 
activity. As previously described, in our domain we define 
6 types of activities, each one being a subclass of the main 
class SchoolActivity. 
 
SchoolActivitySynopsis: Contrary to SchoolActivity class, 
this class is used to represent information not about a 
single activity, but meta-data info relative to the whole set 
of all activities of the same type. For example, a 
LectureActitySynopsis (subclass of SchoolActivitySynopsis) 
contains information like the number of a Lectures of a 
specific course, the periodicity of all lectures, or the 
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duration of them. As with SchoolActivity, for each activity 
type there is a corresponding ActivitySynopsis subclass. 
 
Periodicity: This class encodes the various periodicity 
types. Currently, our ontology supports 4 types of an event 
(activity) periodicity: One time, some-times, week and 
month periodicity. 
 
Prerequisite: This class contains 3 subclasses, each one 
representing a different type of prerequisite (course, 
activity and attendance) our application supports. 
 
User: This class is used to represent information about the 
two types of users: Student and Tutor. In the future, we 
intend to integrate this class with elements of other 
established ontologies like FOAF (Broekstra, Kampman 
and Harmelen, 2002). 
 
Figure 10 gives an overview of COURSR ontology. 

 

Figure 10: A graphical representation of the COURSR 
ontology 

 

SPARQL endpoint 

COURSR provides a SPARQL endpoint, in order to give the 

users the option to access its database in an ontological 

way, using SPARQL queries (Figure 11). The full 

SPARQL language is supported, with a link to its 

documentation. In the default page, the user can see the 

first 100 triples stored on the RDF database, and the 

respective SPARQL query. Of course he can change the 

query at will. Additionally, all results presenting in the 

result table are clickable. By clicking on a subject, property 

or object the query is being updated, returning all the 

statements where the specific resource is the subject of 

them. Additionally, the user can get the results of a query 

in csv format.  

 

 

Figure 11: Accessing COURSR RDF database through its 

SPARQL endpoint 

Related Work 

To the best of our knowledge there is no other mature 

research results or just some research prototype trying to 

focus on describing the workload imposed by educational 

objects and exploit this information through a powerful 

scheduling engine in order to allow the prospective student 

to examine various scenarios concerning whether he has 

the necessary resources to undertake new educational 

commitments or not.  

 Of course, there are several research efforts trying to 

help people to organize their time. One of them, already 

mentioned in this paper, is SELFPLANNER, which serves as 

the scheduling engine of COURSR. There are many systems 

developed over the last two decades that mainly focus on 

automated meeting scheduling. Some of them concentrate 

on specific aspects of this problem (Garrido and Sycara 

1995; Jennings and Jackson 1995; Sen and Durfee 1994; 

Sen and Durfee 1998). More recent efforts tend to 

incorporate learning components or to integrate with the 

SPARK 2015 - Scheduling and Planning Applications woRKshop - 08/06/2015

ICAPS 2015

56



Semantic Web. For example, RCal (Singh 2003) is an 

intelligent meeting scheduling agent that assists humans in 

office environments to arrange meetings. RCal agents 

negotiate with each other on behalf of their users and agree 

on a common meeting time that is acceptable to all users 

and abides by all the constraints set by all the attendees. 

RCal supports parsing and reasoning about semantically 

annotated schedules over the web, such as conference 

programs or recurring appointments (Payne, Singh and 

Sycara 2002). 

CMRadar (Modi et al. 2004) is an end-to-end agent for 

automated calendar management that automates meeting 

scheduling by providing a spectrum of capabilities ranging 

from natural language processing of incoming scheduling-

related e-mails, to negotiate with other users or making 

autonomous scheduling decisions.  

PTIME (Berry et al. 2006) is an ongoing effort being 

developed under the CALO project (Myers 2006), that 

aims at facilitating meeting scheduling. The innovation of 

PTIME lies at its capability to learn the user's preferences 

thus adapting its future behavior, whereas it emphasizes in 

adopting natural language for interfacing with the user. 

Part of the work in the PTIME thrust is Emma, a 

personalized calendar management assistant designed to 

help its user handle email meeting requests, reserve venues 

and schedule events. Emma interfaces with commercial 

enterprise calendaring platforms and operates seamlessly 

with users who do not have Emma. It is designed to learn 

scheduling preferences, adapting to its user over time. The 

system is in initial deployment at SRI International.  

Another effort within the CALO project concerns 

Towel (Conley and Carpenter 2007), an initial attempt 

towards an intelligent to-do list. Towel allows the user to 

organize to-dos (group, tag, check, etc) as well as delegate 

them to other users or agents. Although to-dos can be seen 

as tasks, Towel emphasizes on to-dos manipulation rather 

than in solving the scheduling problem associated with 

actually performing these to-dos. 

Conclusions and Future Work 

COURSR is an innovative prototype application aiming at 

integrating educational data with intelligent calendar 

applications. Intelligent calendar applications face the 

problem of lacking data of enough expressivity, in order to 

apply their sophisticated constraint optimization 

algorithms. People usually consider entering all this 

necessary information as not worthy the time needed to 

enter this information in order to get better schedules. So, 

they avoid using intelligent calendar applications, 

preferring to stay with traditional electronic calendars, 

even with paper-based ones. 

 The solution to this problem lies in defining standards 

that can be used to provide ready-to-use activity 

descriptions for a plethora of application domains. This 

resembles existing calendar standards that are used for 

exchanging calendar information, like iCal, however with 

much more expressive power, in order to give people the 

ability to describe complex activities with a variety of 

interactions among them, as well as end user constraints 

and preferences over the way the activities are scheduled in 

time and space. Having such standards in hand, it would be 

easy to define complex activity descriptions for a variety of 

domains like, e.g., going shopping, attending classes or 

having some leisure time. 

In this work we identified the education domain as a 

promising candidate to be used for describing temporal 

activity descriptions with complex structure. Educational 

activities may have significant structure and complexity, 

which is very hard to be entered manually in a user’s 

calendar. So, providing ready-to-use activity descriptions 

for the educational domain may greatly facilitate the 

students to keep track of their duties, manage their time 

effectively and take informative decisions.  

Our future plans concerning COURSR include extending 

its database with more educational objects, by trying to 

collect such data using crowd-sourcing techniques. 

Particularly, the best candidate to feed COURSR’s database 

are the instructors themselves. By providing them a simple 

widget to be included in the courses’ web pages, allowing 

them to insert workload data for their courses and having 

them stored in COURSR’s database, would be beneficial for 

all involving parts (students, instructors and COURSR). 

Other potential extensions include underlying 

COURSR’s ontology, which could be connected with other 

well-known ontologies and be extended even further to 

express more complex interactions between parts of an 

educational object. 
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